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ABSTRACTS

Under certain conditions, one electrical parameter (inde-
pendent variable) is not enough to detect high impedance faults
on certain surface conditions. These faults do not draw suffi-
cient current for detection and may draw less current than
similar faults on other soil surfaces. Moreover, because ev-
ery electrical detection parameter displays characteristics of
randomness, it is difficult to assign a probability that a given
event is a high impedance fault versus a switching event. It has
been shown that detection by induction laws can improve the
classification of faults and switching events. The second and
third laws of induction are utilized with a minimum entropy
method. Setting detection threshold values using induction
methods is also proposed. The methods presented in this pa-
per are taken from ongoing research in high impedance fault
detection. While the techniques have not been reduced to prac-
tice or field tested, they hold promise for future improvements
in the relaying of high impedance faults.

Keywords: high impedance fault, expert system, induction the-
ory, minimum entropy, pattern classification, learning.

INTRODUCTION

Conventional expert systems approach final decisions by
assigning a basic probability to each event and then calculating
belief functions based on this probability assignment|1]. By the
combination rule, it is possible to achieve a combinational belief
function. This concept holds some promise for detecting high
impedance faults and distinguishing these faults from normal
system activity and switching events on a distribution feeder.

A basic problem with this method consists of the initial
assignment of probabilities for each event measured on the dis-
tribution feeder. As has been shown in previous work{2], there
are numerous electrical parameters which give an indication
of high impedance faults, but which also may be active for
switching and other normal events. The amount of data avail-
able is often not sufficient to draw a deterministic conclusion.
A trained observer can still decide whether a waveform repre-
sents a fault or not, but extracting sufficient indicators from
this expertise is quite difficult. An approach which has been
used recently is to set threshold values for fault detection in an
arbitrary, but expert manner. For example, earlier algorithms
have used the "noise” from arcing faults as an indicator of the
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presence of a high impedance fault versus a switching event on
the feeder. Using several electrical parameters, we can monitor
the relative increase in amplitude over a particular window of
investigation (e.g. 30 cycles). Based on the level of the ampli-
tude over this window, the status of the system, either fault or
not, is decided.

While this system works under certain select conditions,
high impedance faults on unusual surfaces conditions such as
concrete or asphalt are quite difficult to separate from switch-
ing events based on the observed behavior of the waveform. It
has been shown that using one variable such as amplitude in-
crease or randomness is insufficient for full classification. The
use of several detection variables is therefore deemed necessary
for secure separation of faults from normal activity.

Even though we may use several variables, it is quite dif-
ficult to assign probability functions to each variable as de-
scribed above. Our objective is to utilize all the information
available to us on each variable while remaining within the
practical limits of software implementation. After considerable
investigation, the concept of using induction with minimum en-
tropy to classify and recognize fault patterns was adopted [3,4].

METHODOLOGY

High impedance faults are characterized by a high degree
of randomness in the magnitude changes and burst durations
of the harmonic currents[2]. Previous research at Texas A&M
University has developed several algorithms to take advantage
of the increase in “energy” level and the degree of “random-
ness” associated with arcing, high impedance faults [5,6]. In
these algorithms, one compares electrical parameters measured
during staged faults to normal states to develop expertise as to
the different behavior of these parameters. Threshold values
for detection are based on somewhat arbitrary means. Only af-
ter developing significant insight and expertise from reviewing
numerous fault scenarios can these thresholds be set by intu-
ition. The various parameters which have been used for de-
tection include various harmonics(even, odd, or “in-between”)
and high frequency components(2 KHz and above). Under cer-
tain conditions, one parameter may be sufficient to classify the
fault, but in other cases, several parameters may prove insufhi-
cient. These differences are exemplified by the following facts.
Figure 1(a) shows the cycle "energy” level of arcing fault on
wet soil. Figure 1(b) shows the cycle "energy” level of arcing
fault on grass. Figure 1(c) shows the cycle "energy” level of
an air switch switching on and off. The parameter used is a
composite of all the odd harmonics up to 2KHz which are fil-
tered from the fault waveform through the 60Hz notch filter,
then the comb type filter, and sampled with a rate of 7200Hz.
Here the “energy” means the summation of the magnitude of
squared sample values over one 60 Hz cycle.

When we observe high impedance fault waveforms for faults
on asphalt and grass, the current amplitude changes and ran-
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domness are at a reduced level compared to certain faults on
bare soil. Separation of these faults from switching events can
be difficult using only one parameter.

To resolve this problem, we turn to the concept of en-
tropy. Entropy is a measure of the disorder in classifying data.
Entropy minimization is an ordering principle by which we
determine which past events are more like our future events
in ways that are sufficient for predicting the outcome. If one
wishes to classify a set of samples into a more ordered state,
he attempts to lower the entropy. Therefore, by minimizing
entropy, we can induce rules for classification. The following
is an introduction into the use of induction laws as they apply
to pattern recognition for the purposes of fault classification.
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Figure 1. Waveforms of Three different Sample events

INDUCTION THEORY

The essential principles of induction have been known for
centuries. The first is Bernoulli’s Principle of Insufficient Rea-
son: If there is insufficient reason to suppose that two prob-
abilities are not equal, then they are to be treated as equal.
The second is Poisson’s Frequency Limit Hypothesis: As the
number of observations of an event increases without bound,
the frequency of an outcome approaches the probability of the
outcome. The third is Ockhams’s Razor: The induced rule is
the simplest rule consistent with all available information.

Three laws of induction are summarized as below[3]:

1) Given a set of irreducible outcomes of trial, the induced
probabilities are those probabilities consistent with all avail
able information which minimize the entropy of the set.

2) The induced probability of a set of independent obser-
vation is proportional to the probability density of the
induced probability of a single observation.

3) The induced rule is that rule consistent with all available
information for which the entropy is minimum

We do not need to assign probability factors if we can
separate faults from switching events easily and formally. The
third law is appropriate for detection and we might use the
second law to calculate the reliability of the rule and mean
probability of each step of separation. From the second law,
the following is derived|3].

z+1

<p>=
P n+2

where,

< p > is a mean probability(when there are only two
classes).

n is the number of observations.

z is the number of observations classified as True.

Here, either True or False can be assigned to indicate
Fault. If one is chosen, the other indicates switching events.

More general mean probability is is given by

z+1

<p>=—
P n+t+f

where:

t is the number of distinguishable True states.

f is the number of distinguishable False states.

n is the number of observations.

7 is the number of observations classified as True.

The classical problem of the third law of inductior is the
problem of pattern recognition, that is, classification. In pat-
tern recognition we completely disregard the probability as-
pects of the problem and simply ask whether it is True or
False.

For classification we need as many independent variables
as possible. Initially, we find values of each variable at each
sample and then make 1/0 tables with the data. For example,
for the total number of burst cycles in a given window length,
there are many cases in which the value varies from 0 to 30. So,
one usually chooses the median as a border line of 1/0 logic.
The reason for using the median is to set the border line at
the medium value of all values. Median is not always the best
for classification. so another method. threshold value, will be
treated later.

So if the median 1s 5 for example. and if a sample shows 6



for this independent varable, the variable is assigned a "1”. A
value of 4 would correspond to "0”. With this 1/0 table, the
next step taken is to find rules to recognize the True and False
pattern.

For seven variables, there are seven digit numbers and it
is known which numbers are in the class of True and False.
The procedure is to select one from the possible rules. This
rule should have minimum entropy. There are many possi-
ble rules and it takes much time to derive all the possible rules
and corresponding entropies and determine which one has min-
imum entropy. A simplified approach is now introduced. At
each step. find one variable which has maximum weight or im-
portance and then separate samples into two classes by this
variable. All the values are converted to 1 or 0 logic; therefore,
one variable is just a digit in a multi-digit number. Finally, cal-
culating the reliability of the induced rules tells how reliable
the induced rule is.

GENERAL APPROACH TO PATTERN CLASSIFICATION

The entropy on a set of possible outcomes of a trial where
one and only one outcome is True 1s defined as:

S=-k S?;lp,- Inp,

In other words. the entropy is the expected value of the
information. Mathematically. the information contained in an
event that has a probability p of occurring is given by the for-
mula I = —klInp. where k is any positive constant, and I is
the information contained. What this means is that the more
unlikely the occurrence of the event, the greater the amount
of information gained by observing the event. In order to un-
derstand the relationship between entropy and information in
information theory, it is necessary to first recall what is meant
by expected value. Suppose that, on a given trial there are
several possible outcome events , one and only one of which
will occur. Suppose that a value is assigned to each of the
possible outcome events (e.g., the amount of money one would
win should that particular outcome occur). The expected value
of the trial is then simply the sum of the weighted values of
the various possible outcomes, each outcome being weighted
according to its probability of occurrence. Suppose now that
the value assigned to each of the possible outcomes of events is
its information value, which is of course uniquely determined
by its probability according to the above formula. Then, if
the information value of each of the possible outcome events is
weighted by its probability of occurrence and these weighted in-
formation values are summed, the expected information value
of the trial is obtained. This is what is called the entropy of
the set of the possible outcomes of the trial.

On the other hand, the entropy of a rule is defined as
below:

S=-kY " zipilnp;

where,

m is the number of total steps

1 is the step

z; is the number of samples of either True or False at step 1
pi is a mean probability of the i** step for either True or False
and k is a constant.

The third law of induction which is typical in pattern
recognition says that the entropy of a rule should be mini-
mized to have a simple and reliable rule. To find the minimum
entropy and its corresponding rule, all the possible combina-
tions of steps and of rules are to be investigated. The number
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of possible » digit numbersis N = 27. A rule which separates
these N numbers into two classes is desired. There are N?
ways of separating N numbers into two classes. There are only
m samples. Then the number of available patterns are 2™.
This means, if there are 7-digit numbers and only 31 sample
patterns, then there are 2°! ways of separation.
For simplifying the steps in rule induction, some easily

derivable relations and tips for entropy minimization are

1) -the higher p; is, the smaller § is.

2) the bigger z; is, the higher p; is.

3) the bigger the index of digit n is, the bigger =, is.

Also, the digit index is defined as the rating of separation
into two classes in each digit for both True and False classes.

For example, suppose there are two classes of True and
False and each class has four, 3-digit numbers as below:

TRUE FALSE
101 001
010 110
011 111
000 100

If we consider the first digit index, and choose Oxx as
True(x means don’t care), then we have one wrong separa-
tion in True and another one in False. For the second digit,
if we choose either x0x as True or x1x as True, we have two
wrong separations at both classes. So, apparently using the
first digit is better than using the second digit.

Next it is necessary to find an index of a digit to find out
which digit is most important to separate numbers into two
classes.

First, count the number of 1’s in True and count the num-
ber of 0’s in False, and divide each number by the number of
samples in each class. Then the digit counts, d,,’s are as below:

TRUE FALSE
d] dz d3 d] dz d3
025 05 05 0.25 0.5 0.5

Then, adding together digit by digit, the result is:

dy d; ds

05 1.0 1.0

If the value of d,, is closer to 1, that digit is not important
to separate. That is, 1’s and 0’s have the same weight(number,
frequency, or importance) on both sides. If the value of d,, is
away from 1, there are less 1’s or 0’s in one class, so the index
of the digit n, I,, is defined here using d,,. The maximum value
of I, is 1.

I, = idn - 1j

Therefore, from the above example,

I, = 0.5, I,=0.0, and I3 =0.0, so the first digit has max-
imum index of digit. This digit can be used to separate two
classes if only one digit is used to classify.

The following is the simplified version of entropy mini-
mization:

1) Find maximum index of digit 7. Then separate two classes
by either 1 for True or 0 for False.

2) Eliminate those samples which are subset of the above
step.

3) Find the maximum index of the digit from remainders.

4) Do steps 1) - 3) until two classes are empty.

THRESHOLD VALUE

In a discrete system, it is easy to assign 1’s and 0's, but
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in continuous system, certain values must be set to divide the
sample events into 1’s and 0’s. This is called a threshold value.
If the threshold value is changed, the 1/0 table is changed and
so are the steps, rule and entropy value. How to set a threshold
value to separate two classes efficiently and simply is the point
of the next discussion.

The idea is simple: find a threshold value of each inde-
pendent variable which makes a minimum entropy for that
independent variable. In this case, the problem is still a clas-
sification system. The only difference is, this case is inside of
an independent variable, but the previous one(rule induction)
is the classification with all the independent variables. So, the
idea of minimum entropy of the induced rule is still used here
in threshold value calculation. Thus, finding a threshold value
is a kind of finding rule for an independent variable. Assume
that a threshold value for an independent variable z in the
range of X1 to X2 is being sought. Then for this independent
variable z only, the entropy equations are written as below[2]:

S(2) = p(2)S,(z) + g(2)S,(2)

Sp(e) = = 242 pr(x) In pi(z)

Selz) = - Y1, qule)ln g (x)
where.

S(z): entropy of an independent variable z

Sp(r): entropy of an independent variable z in the region X1
to X1+ ¢

Sq(r): entropy of an independent variable z in the region X1+
rto X2

pr{r): probability of the k** outcome class given that the in-
dependent variable value is in the region X1 to X1 + .

m: number of outcome classes. It is 2 for True and False
gx(z): probability of the k*" outcome class given that the in-
dependent variable value is in the region X1 + « to X2.

Relatively unbiased estimates for pi(z) and p(z) are:
pe(z) = mi(e)/n(z).  plz) = n(z)/n
where,
nk(7): the number of samples located between X1 and X1+ ¢
in the k** outcome class.
n{z): total number in this region in all the classes.
n: total number of samples.

Now z can be chosen by various manipulation. This  can
be any value between X1 and X2. Here we make steps in the
value of z: ie., z;’s. If S(z;) is minimum, then X1 + z; is
the threshold value. So if each digit has its minimum entropy
at the threshold value, then the total entropy for rule is also
minimized.

The following is a simplified and coarse example for finding
a threshold value. Here we do not use even steps but randomly
choose z,. for example purposes, for the digit n(even steps are
shown in the Application Example section). Here we have only
two classes, so k in the above equations has values 1 and 2 or
T(for True) and F(for False). Therefore m equals 2.

TRUE : 10 20 16 18 24 33 47 74
FALSE: 76 83 45 90 66 33 72 84

From above list, X1=10 and X2=90. The calculation of
S(x;) is shown in Table 1.

The minimum occurs at r, . i.e. at 26. Thus. 36 can be
used as a good threshold value. This result can be compared
with the median. Now, 36 is a border line for 1 and 0 logic. so

Table 1. Calculation of the Threshold Value

2 21 22 z3 24 z5
Value for z; 8 26 40 60 75
Range for py(e;) 10- 18 10 - 36 10 - 50 10 - 70 10 - 85
17 (=) 3/3 6/7 7/9 7/10 8/15
pr(z) 0/3 1/7 2/9 3/10 7/15
gr(z;) 5/13 2/9 1/7 1/6 0/1
gr(z;) 8/13 7/9 6/7 5/6 1/1

p(z;) 3/16 7/16 9/16 10/16 15/16

9{z;) 13/16 9/16 7/16 6/16 1/16

Sp(zi) 0.000 0.400 0.529 0.611 0.691

Sq{zi) 0.666 0.530 0.410 0.451 0.000

S(z;) 0.541 0.473 0.476 0.551 0.648
Threshold X

the 1/0 table is:
True: 00000011
False:1111101

Assuming that only this digit is used for separation, the
rule is:

0 — True, or 1 — False.

We have two wrong decisions in True and one wrong deci-
sion in False. But if we choose the border line the median, i.e..
47 in this example, we have two wrong decisions in True and
another two wrong decisions in False. The 1/0 table is omitted
for the case of median. Here it is shown that the threshold
value is better than any arbitrarily chosen value in this simple
example. But the more important point here is that we have
a basis for finding a border line of 1 and 0 that leads us into a
better position in rule induction. As S(z3) indicates, a border
line value of 50 as another threshold value has the very same
result as the value of 36.

Thus the induced rule will be simpler and more reliable
with this threshold value.

DETECTION AND LEARNING

Induction with entropy minimization is basically for pat-
tern recognition, that is to classify faults and switching events.
However, we can apply this tool for detection to the learning
problem. Information-processing systems that improve their
performance or enlarge their knowledge bases are said to be
"learning”[7]. One of the objectives of learning is to automate
the acquisition of knowledge. The relationship of detection and
learning with minimum entropy is summarized as below:
Detection:

1) Get as many samples as possible on faults and switching
events.

2) Get as many independent variables as possible to be used
to separate samples into two classes

w
-

List all the samples with their corresponding values for
each independent variable

Find a threshold value for each independent variable with
minimum entropy

Find 1/0 table with the threshold value given above
Perform the procedure of finding a rule with minimum
entropy

i

(=2l

-1

Use only this rule as a detection tool.




All the steps except 7) are preliminary and preparatory
states. Only the rule is used to detect faults and switching
events.

Learning:

1) Write a learning program which reads variable values of
sample. The variables are given by a human. The class of
the sample is also given by a human expert.

2) At the end of putting samples into program, the learn-
ing program will do jobs 3) through 6) in the detection
procedure.

3) Finally the learning program has a rule which can classify
samples.

4) Use this rule for detection.

Figure 2 shows the relationship between detection and
learning. Stage 1 is for learning and stage 2 is for detec-
tion. At stage 1, from parameters, a human expert chooses
the variables for detection. Whenever the sample event comes
into the learning program with the variables chosen, an expert
teaches the learning program which sample event is "Event”
and which is "Fault”. If all of the sample events are entered,
the learning program performs sample event listing-Threshold
value calculation-1/0 table-Rule induction with minimum en-
tropy. So, the output of the learning program is the induced
rule. Additionally, from the induced rule we can see which vari-
ables are essential in detection and which are not. At stage 2,
the induced rule from stage 1 is used. The same variables cho-
sen by an expert can be used, or only variables which proved
to be essential in detection from the induced rule at stage 1
can be used.

STAGE 1
\Y {
Parameters rah.xes o INDUCTION |, Rule
Sample Events) Variables

L Selected Variables [Classes taught

by Human by Human
STAGE 2
—__w, RULE » Classification
(Real World Data)

Figure 2. Learning and Detection

APPLICATION EXAMPLE

Twenty-one faults on various unusual surface conditions
have been studied. The purpose is not to discriminate faults
from normal activity, but to discriminate faults on unusual
surface conditions(i.e., grass, asphalt, concrete) from switching
events.

The surface conditions involved were reinforced concrete,
non-reinforced concrete, dry asphalt, wet macadam, and grass.
For switching events, 10 samples of various switching con-

1635

ditions weré¢ studied. Switching conditions included are air
switch on and off, capacitor bank on and off, and load tap
changer raise and lower. We focus on the frequency character-
istics of the fault and switching event waveforms. For the fre-
quency components, all of the harmonics can be examined[8!.
But here we chose only odd harmonics. The measurement pa-
rameter used for the odd harmonics is the "energy” level.

The independent variables we chose are described below.
Each independent variable occupies one digit.

Digit 1: The number of burst cycles(on-cycles) in 30 cycle win-
dow. Here, it should be mentioned that a long term
average energy of normal states is known and if the
energy is 1.5 times greater that that of normal, it is
counted as an ”on” cycle; otherwise, it is counted as
an "off” cycle.

Digit 2: The number of off-cycles in the same window length.

Digit 3: The average number of on-cycles.

Digit 4: The average number of off-cycles.

Digit 5: Randomness index.

Digit 6: Average relative amplitude increase of on-cycles.

Digit 7: Average relative amplitude increase of off-cycles.

Digits 1, 2, 3, and 4 show both their activities and spo-
radicities. Digits 6 and 7 are essential to detect level changes
of the switching events. Digit 5 is defined here: If the energy of
a current cycle deviates from the energy of the previous cycle
by 0.5 times the normal energy level, count it as an index of
randomness.

All of the procedures which find the values of 7 digits
start when the the first on-cycle is seen. The list of all 31
samples is shown in Table 2. We have 21 fault cases on various
surface conditions such as concrete, asphalt. and grass. Ten
switching event cases include air switch operations, capacitor
bank operations, and a load tap change.

There may be many ways to set steps(z;) between X1 and
X2. For simplicity, we have performed the calculation of each
threshold value with the following steps.

We have 10 steps for each independent variable to find a
threshold value. X1 is minimum value of each independent
variable and X2 is the maximum of it. The single step value
is derived by (X2 — X1)/10. The procedure of threshold value
calculation for the first digit is shown at Table 3. The samples
of Event and Fault are shown below:

EVENT:3442303030218
FAULT:986201321152721121230623322

S(zg) has a minimum entropy. Therefore the threshold

value is 28.

Other threshold values are similarly calculated and each
value of step z; and corresponding entropy from digits 2 through
7 is shown at Table 4. The values in bold face indicate the min-
imum entropies.

Now we have threshold values for each digit. If any value
is greater than its threshold value at each digit. that value will
be converted to 1 in the 1/0 table. otherwise 0.

Below is the list of the threshold values:

Digits: 1 2 3 4 5 6 n
Threshold Value: 28 9 22 27 2 1.79 1.01
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Table 2. The List of Samples

Table 4. Calculation of Threshold Value for the Other Digits

DIGIT
# 1 2 3 4 5 6 7 Class
1 9 21 2.25 7 7 1.74 | 1.01 | Fault
2 8 22 1.60 | 4.4 3 1.82 | 1.04 | Fault
3 6 24 1.50 8 4 1.86 | 1.07 | Fault
4 20 10 20.0 10 0 1.67 | 1.35 | Fault
5 13 17 4.30 8.5 0 1.58 | 1.35 | Fault
6 2 28 2 28 0 1.60 { 1.19 | Fault
7 1 29 1 29 )] 1.53 | 1.06 | Fault
8 15 15 7.5 15 0 1.78 | 1.09 | Fault
9 27 3 13.5 3 1 2.08 | 1.45 | Fault
10 2 28 2 28 1 1.58 | 1.04 | Fault
11 1 29 1’ 29 1 1.61 | 0.99 | Fault
12 1 29 1 29 0 1.55 | 0.97 | Fault
13 2 28 2 28 1 1.56 | 1.01 | Fault
14 1 29 1 29 0 1.58 | 1.05 | Fault
15 2 28 2 28 1 1.61 | 1.04 | Fault
16| 30 0 30 0 0 2.14 | 1.00 | Fault
17 2 28 2 28 0 1.62 | 1.06 | Fault
18 3 27 3 27 1 1.66 | 1.05 | Fault
19 3 27 3 27 1 1.62 | 1.07 | Fault
20 2 28 2 28 2 1.73 | 1.05 | Fault
21 2 28 2 28 2 1.99 | 0.99 | Fault
22 3 27 3 27 4 2.08 | 0.99 | Event
23 4 26 4 26 5 2.59 | 1.14 | Event
24 4 26 4 26 3 2.07 { 0.89 | Event
25 2 28 1 14 4 2.22 | 0.88 | Event
26| 30 0 30 0 9 10.23 | 1.00 | Event
271 30 0 30 0 8 10.43 | 1.00 | Event
28| 30 0 30 0 8 10.34 | 1.00 | Event
29 2 28 2 28 4 1.91 | 0.20 | Event
30| 1 29 1 29 4 0.79 | 0.17 | Event
31 8 22 1.3 3.7 )] 1.52 | 1.43 | Event

Table 3. Threshold Value Calculation for First Digit

& T F&3 T3 Ty L5 Te 7 Zg Ty

Value of z; 3 6 9 12 15 18 21 24 27
Range 1-4]1-7]1-10]1-13]1-16[1-19]1-22]1-25}1-28
pe(®;) 6/1916/20]7/237/24|7/25 7/25(7/26)7/26 | 7/27

pr(z:) 13/19]14/20]16/23(17/24|18/25]18/25]19/26]19/26]20/27

aelzi) a/1214/11| 3/8 | 3/7 | 3/6 | 3/6 [ 3/5 | 3/5 | 3/4

ar{z:) 8/12|7/11| 5/8 | 4/7 | 3/6 | 3/6 [ 2/5 [ 2/5 | 1/4

p(z;) 19/31|20/31|23/31|24/31}25/31|25/31|26/31]26/31]27/31

q(z;) 12/31|11/31| 8/31 | 7/31 | 6/31 | 6/31 | 5/31 [ 5/31 [ 4/31

Splai) 0.62410.61110.614]0.603}0.593}0.593]0.582]0.582]0.572

Sq(=:) 0.637]0.656]0.662]0.683]10.694[0.694]0.673]0.673{0.563

S(x;) 0.630[0.627[0.626]0.621{0.613}0.613[0.597]0.597]0.571

Threshold X

The 1/0 table with the calculated threshold values is shown
in Table 5.

The steps of rule derivations are shown below. The relia-
bility of the rule is also shown.

First. the digit count, d,,, needs to be found for Event and
Fault classes.

For Event:d; = 0.30,d; = 0.70,d5 = 0.30,d; = 0.20,ds =
0.90,d¢ = 0.80,d; = 0.20

For Fault:d; = 0.95,d; = 0.10,d; = 0.95,d4 = 0.52,ds =
0.86,d¢ = 0.81,dy = 0.29

Then, the added d,’s are shown:

dy = 1.25,d, = 0.80,d3 = 1.25,d4 = 0.72,ds = 1.76,d¢ =
1.61,dr = 0.49

DIGITS
2 3 4 5 6 7
EN 3 3 3 1 1 0.12
S(zy) | 0.618 0.626 0.597 0.417 0.482 0.551
22 6 6 6 2 2 0.24
S(z2) | 0.597 0.621 0.613 0.344 0.509 0.551
23 9 9 9 3 3 0.36
S(z3) | 0.597 0.613 0.624 0.379 0.509 0.551
24 12 12 12 4 4 0.48
S(zq) | 0.613 0.613 0.616 0.534 0.509 0.551
z5 15 15 15 5 5 0.60
S(zs) | 0.621 0.600 0.616 0.571 0.509 0.551
2 18 18 18 6 6 0.72
S(z¢) | 0.621 0.600 0.616 0.509 0.509 0.561
27 21 21 21 7 7 0.84
S(z7) | 0.628 0.571 0.616 0.509 0.509 0.507
25 24 24 24 8 8 0.96
S(zs) | 0.629 0.571 0.616 0.591 0.509 0.629
9 27 27 27 9 9 1.08
S(zo) | 0.655 0.571 | 0.579 0.628 0.509 0.621

Table 5. The 1/0 Table

DIGITS DIGITS
#11 2 3 4.5 6 Tclassj# |1 2 3 4 5 6 7 class|
110100100 F|17/01 01001 F
210100111 F|18/010000T1 F
310100111 F|19|{0 000011 F
410100001 Fl20|0101001 F
510100001 F{20f0 100010 F
610101001 F|22/0 100110 E
710 1 01001 F23]/0100111 E
810 100001 Fl24f0 100110 E
9910 0 0 0 011 F 250 100110 E
00101 001 F{26f/1 010110 E
110 1. 0 1 0 0 0 F|27]1 010110 E
1210 1 0 1 0 1 0 F|28{1 010110 E
10101010 F{20|l0 101110 E
1410 10 1001 F{3|0101100 E
1510 1 01 0 01 F|31]0 1 0 0 0 o0 1 E
1611 0 1 0 010 F

Then the indicies of index are calculated and shown:

I = 0.25,, = 0.20,I; = 0.25,I, = 0.28,15 = 0.76, I, =
0.61,I; = 0.51

The fifth digit has the maximum index of all digits. The
first step is to use this digit. Before we perform the steps, we
want to define some variables here. z is the number of samples
in the digit formation for each step in either Event or Fault. n
is the number of samples in the digit formation for each step
in both Event and Fault.

xxxxlxx: Both(Event:z/n = 9/12)

xxxx0xx: Both(Fault:z/n = 18/19)

Therefore, the first step is : xxxx0xx — Fault
Then the mean probability of this step is:
<p>=(z+1)/(n+2) = (18 +1)/(19 + 2) = 0.90.

We eliminate all the samples of this digit formation, then
we have following remainders.
Event: 0100110, 0100111, 0100110, 0100110, 1010110
1010110, 1010110, 0101110, 6101100
Fault: 0100100, 0100111, 0100111



Similarly the indicies of index are calculated, and shown:

I, =0.33,I, = 0.33,I; = 0.33,1, = 0.22,I5 = 0.00,1s =
0.22,1 = 0.56

Thus, the 7th digit has the maximum index. So

xxxxxx1: Both(Fault:z/n = 2/3)

xxxxxx0: Both(Event:z/n = 8/9)

So the second step is : xxxxxx0 — Event

Then < p >=9/11 = 0.82

Then, remainders are:
Event: 0100111
Fault: 0100111, 0100111
So the third step is simple
xxxxxxx — Fault(z/n = 2/3) with < p >=0.6

The induced rule is shown below:

Stepl: xxxx0xx — Fault, <p >=0.90,z =18
Step2: xxxxxx0 — Event, < p >=0.82,z =8
Step3: xxxxxxx — Fault, < p >= 0.60,z =2

Thus, the entropy of this rule is,

S = —k((18)0.91n0.9 + (8)0.821n0.82 + (2)0.61n0.6) =
3.62k

The specific entropy is defined as[3] S/W, where W is the
number of samples, is S/W = 3.62k/28 = 0.13k

The reliability of the rule is also defined as{3];

—k R InR=S/W,

so reliability of this rule is R = 0.86.

Applying this rule to detection, the first step is to find
randomness. If it is 0 in the 1/0 table, it is considered as
Fault. If not 0, then move to second step to check whether the
average amplitude increase of off-cycles is 0 in the 1/0 table.
If it is, then that is Event. If not, the third and final step is
to consider all the remainders as Fault. On the steps of the
induced rule, it is seen that digits 1 through 4 and digit 6 are
not important in discrimination of high impedance faults on
unusual surface conditions from switching events. The most
important digit is the randomness index.

From this rule, we can detect and classify samples. The
other aspect of this rule is that it determines which variables
are important and which are not for classification purposes.’

CONCLUSIONS

As a detection/classification tool for various fault data,
the induction rule with minimum entropy is proposed. This
method is easy and very promising, especially when it is hard
to set probability factors or deterministic decision criteria on
the sample data, and holds promise in the classification of high
impedance faults. This induction rule for pattern recognition
does not need any probability threshold. The learning ability
to improve the performance of detection is briefly mentioned.

For a better induction rule, setting proper threshold values
for the continuous world is also proposed. This detection tool
is proposed primarily for comparing faults on unusual surface
conditions with switching events, but this tool can also be to
compare and classify all kinds of high impedance faults and
switching events as well as normal states. An area for addi-
tional study is the setting of values for defining on-cycles and
off-cycles which affect the detection process.

The methods presented in this paper are taken from on-
going research in high impedance fault detection. While the
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techniques have not been reduced to practice or field tested,

they hold promise for future improvements in the relaying of
high impedance faults.
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