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Abstract—The physical variables and environmental param-
eters which influence the behavior of a high impedance fault are
quite large in number and difficult to quantify. While several tech-
niques to detect high impedance faults have been proposed, and
much progress has been made,;a complete and flexible solution
has not been perfected. Texas A&M University(TAMU) research
has concentrated on designing an intelligent relay system which
utilizes multiple detection parameters and a learning ability to
provide a more effective solution for detecting low current faults.
An intelligent system is characterized by an effective analysis and
synthesis of information and a learning ability which makes the
system’s reactions appropriate to each situation. To classify sys-
tem status, inductive reasoning has been used. However, for a
detection system using the inductive reasoning process, only the
induced detection rule will be applied to classify and detect faults.
This detection system has a problem: an unreliable teacher. To
solve this problem, a learning detection system is proposed which
synthesizes the status output of the decision rule and an event
detector to identify the system status. This learning detection
system improves its performance over time. The learning detec-
tion system has been successfully tested with a complex set of

sampled fault data from staged faults.

Keywords: High impedance fault, intelligent system, computer

relay, learning system, induction process, decision rule.

INTRODUCTION

The clearing of distribution line fauits is usually accomplished
by devices that can sense the overcurrent produced by a fault and
quickly react to disconnect the faulted section of the feeder from
the healthy system. Such devices usually include overcurrent relay

and circuit breaker combinations, reclosers, and fuses. In addition
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to providing overcurrent protection, these devices must be capable
of carrying an acceptable increase in the level of load current
and transient overcurrents. The current which flows during a
fault depends on a number of variables, one of which is the fault
impedance. A high impedance at the fault point can limit the fault
current to levels that are well below the threshold of operation of
conventional fault clearing devices. In such circumstances, the
existence of a fault cannot be detected by overcurrent devices
and will persist until some external event signals its presence.

The physical variables and environmental parameters which
can influence the behavior of a high impedance fault have been
known to be quite large in number and difficult to quantify in a
deterministic manner. Quite a few efforts have been made to in-
vestigate, in a statistical manner, specific behavior characteristics
such as arc burst duration, arc repetition rate, and the depen-
dency of frequency spectral magnitude on the arc burst duration
and surface condition[1, 2].

Several techniques to detect high impedance faults have been
proposed, and much progress has been made [3, 4, 5, 6, 7]. How-
ever, a reliable and flexible solution has not been found. Most
fault detection techniques have considered and focused only on
one parameter for the detection of a fault under given set of
conditions. However, the behavior of high impedance faults is
affected by many physical and environmental variables such as
feeder configuration, load level and type, surface condition, and
weather. It was noted that, while each technique may offer a
partial solution, none to date has proven to be totally acceptable
under all conditions. In addition, the behavior of the parameters
of high impedance faults is very random and, in most cases, un-
predictable; therefore, the result of each technique is not always
certain. Moreover, even though each technique has at least one
weakness with respect to environmental parameters, it does not
give any means to provide adaptability to the environment.

TAMU research has concentrated on finding an intelligent
detection system which uses multiple detection parameters and
utilizes a learning ability. This will provide an automatic per-
formance improvement with experience, and thus a more effective
solution for high impedance fault detection. Automatic adaptabil-
ity to physical and environmental factors is a major research con-

cern. In developing this intelligent system, the reasoning method
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has been the backbone of the whole system structure. We will

examine the inductive reasoning method in the next section.

INDUCTIVE REASONING

Inductive reasoning for pattern classification is based on en-
tropy minimization. Entropy is a measure of the disorder in classi-
fying data. Entropy minimization is an ordering principle by which
it is determined which past events are more like future events in
ways that are sufficient for predicting the outcome. If one wishes
to classify a set of samples into a more ordered state, he attempts
to lower the entropy. Therefore, by minimizing entropy, a decision
rule for classification can be induced. By this rule, the concept
of each class, fault and non-fault, is learned from sample events.
This rule indicates the knowledge of the classes of a given situa-
tion.

The end of induction is to discover a law having objective
validity and universal application. However, the conclusions of
a process of inductive reasoning are merely to attach one new
particular to those particulars taken in the beginning. Thus, be-
ginning with the particular “all high impedance faults observed to
date show high frequency current bursts,” it might be concluded
with the universal “all high impedance faults show high frequency
current bursts” or with the less general “all high impedance faults
observed to date show high frequency current bursts and it is
highly probable that the next high impedance fault to be observed
shows high frequency current bursts.”

The essential principle of induction for classification is: the
induced rule is that rule consistent with all available information
for which the entropy is minimum.

The entropy of a rule is defined as below[8]:

m
S = —kZXipi In p;
i=1

where,
m is the number of total steps in a rule,
iis the step,
X; is the number of samples of either Fault class or Non-Fault at
step 1,
pi is a mean probability of the it? step for either Fault class or
Non-Fault,
and k is a constant.
For simplifying the procedure in rule induction, a simplified
entropy minimization formula was derived([9}:
1) Find a best variable (so called maximum digit index) which
can classify the samples into most orderly state.

2

~—

Separate two classes using the chosen variable, then find a
step or a rule.

3

()

Eliminate those samples in both classes which are the subsets

of the above step.

4) From remainders, do steps 1 - 3 until there is no more re-

mainder.

With above induction process and its derived rule, a detec-
tion system can be developed. The next is the discussion of the
procedural behavior of the detection system using the induction
process. First, the detection system initializes the induction pro-
cess with the parameters of sampled data. The parameters and
corresponding class of samples are given by a human expert or
historical data with experience of actual operation or staged fault
tests. For a better induction process, as many variables as possible
are necessary to fully describe each class. The electrical parame-
ters are chosen by experience. The chosen electrical parameters
must positively identify high impedance faults and at the same
time, possess an ability to discriminate transients associated with
normal system events.

Harmonic currents are the major electrical parameters. They
are total odd harmonic current, total even harmonic current, sub-
harmonic current, high frequency current, second, third, and fifth
harmonic currents. With these parameters, it is necessary to find
a statistical measure which can indicate the activities of each
parameter for each class, and thus indicate the high impedance
fault. Mean, standard deviation, and mean absolute value were
chosen for this purpose. The variables which are used for the
induction process are a combination of parameters and statistical
measures. The length of data for measuring these variable values
is limited to, for convenience, 30 cycles. This makes a sample
value.

Secondly, we start the induction process calculating the thresh-
old values of each variable. With threshold values the variables of
each sample data are converted into binary values. From these bi-
nary values, the simplified minimum entropy process follows. The
final decision rule is derived with an induction process. This rule
is applied to find the final status about a distribution feeder.

Thirdly, we update a decision rule when experimental sample
data are provided as operational experiences. The same induction
process is used with new data to obtain a new decision rule.

The rule is based on no more than the available information
and on all of the available information. Therefore, the detection
rule might be changed in different cases. An investigation was
done to find how the detection rule changes, or does not change,
as the high impedance fault case changes.

As was mentioned, the behavior of high impedance faults is
random, transitory, and thus unpredictable. However, it is possible
to categorize behavior in terms of the fault current amplitude
increase and the arc burst duration. Five different cases were
studied. The first and second cases were high impedance faults
and non-faults on wet soil. The third, fou}th, and fifth cases were
on dry soil. High frequency currents as a electrical parameter was
not included in this investigation. However, it has been found that

the behavior of high frequency current is very similar to that of
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sub-harmonic current in most fault cases. The result of this study
is summarized in Table |. From this investigation, the following
were found.

1. No one general rule is found, therefore, different rules are
necessary at different sites.

2. Even harmonics and sub-harmonics are generally important
parameters to classify the activities of high impedance faults
and non-faults.

3. If amplitude increase is small and arc burst duration is short,
then the sub-harmonic is the best parameter for classification.

4. If amplitude increase is large and arc burst duration is long,
then any harmonic parameters can be selected for classifica-

tion.

Therefore, we need a system which is intelligent enough to
adapt itself to outside environment. An intelligent device, includ-
ing man, can be thought of as a system capable of adjusting to its
environment. To make such adjustments, the device must con-
tinually classify a slightly different status of the environment as
equivalent or not equivalent[10]. It has been shown that inductive
reasoning can improve the classification of faults and switching
events and, combined with other information such as an event
detector output and operator interaction, can be used as an intel-
ligent system to adapt a detection device to its environments with
an induced rule[9]. In the next two sections, we will examine the
intelligent systems at large and the upgrade of a detection system

with inductive reasoning to a learning detection system.

Table |. Rules for Different Fault Cases.

Faulted Signa] Harmonic Parameters
Examples A Remarks
Description

Mag. | Burst jRule 1{Rule 2|Rule 3|Rule 4

1 (site 1)| Large | Long Even | ANY Even
MediumiMedium
Short
2 (site 1)| Medium|Medium | Sub ANY Sub
Small | Short EXCEPT
EVEN
3 (site 2)| Medium| Long Sudb Sub Sub
Medium 3rd

4 (site 2)| Large | Long ANY ANY

§ (site 2)| Medium|Medium | Sub 0dd Sub
Small | Short 3rd 0dd
1+2 Large Long | Even | Even Even

(site 1) | Medium|Medium
Small { Short

3 + 4+ 65 | Large | Long Sub 0dd Sub
(site 2) | Medium|Medium 3rd 0dd
Small | Short

1+2+3+4+5 | Large | Long Even | Even 2nd Sub Even
(site 1+2)| Medium|Medium Sub
Small | Short
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INTELLIGENT SYSTEMS

A system that possesses and acquires knowledge and reasons
with that knowledge, like a human, seems the most desirable in-
telligent system. An intelligent system is characterized mostly by
a learning ability which makes the system’s reactions appropriate
to each situation [11]. When a system improves its performance
at a given task over a period of time, without amending programs
or structures, it can be said to have learned something. Our main
concern in learning is to attempt to provide a more reliable and
adaptive solution for high impedance fault detection.

A typical learning system consists of four major components:
Critic, Learner, Rule, and Performer[12]. This system contains
a feedback loop. Essentially this is the general frame work of a
pattern classifier which learns to associate input descriptions with
output categories or classes. The Critic compares the system
status with the actual status. In practice this job is done by a
human expert, or teacher. The function of the Critic is known
as confirmation/unconfirmation assignment. The Learner is the
heart of the system. This is the module that has responsibility for
updating the knowledge base or decision rule to be adaptive to
the varying physical variables and environmental parameters. The

Rule is the data structure or modularized procedure that encodes
the systems’ current level of expertise. It guides the activity of

the Performer. It can be updated by the actions of the modules
in a feedback loop. The Performer is the part of the system which
carries the task. This action is guided by the Rule in some way,
and thus when the Rule is updated, the behavior of the system as
a whole changes.

To improve the analysis and synthesis of information from a
distribution system, and thus to improve overall detection and dis-
crimination under a wide variety of conditions, a multiple variable
approach with inductive reasoning is proposed. If adaptability is
added to this scheme, it is felt that most high impedance fault
cases can be detected and classified. Conclusively, an intelligent
detection system consists of multiple variable inductive reasoning
incorporated with other supporting elements. This intelligent de-
tection system, as a whole, works as a learning detection system:
the detection system which learns the varying and unknown infor-
mation during operation and the learned information is, in turn,
used as an experience for future decisions and detections.

In an intelligent detection system for high impedance faults,
a learner and a rule can be provided by an inductive reasoning
process. Inductive reasoning is to classify and learn about the
system by receiving knowledge of system status under a variety of
conditions. An operator and an event detector will act as a critic
to confirm or unconfirm what the induced rule decided about the
system status. The next section examines a learning detection
system. The rule will be combined with the critic to learn about

the system and to be updated by the learned knowledge.
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A LEARNING DETECTION SYSTEM

We have discussed inducing a rule from received information
about electrical parameters from the distribution line. The out-
puts from this decision rule, when applied to a distribution system
to detect faults, make a final decision on system status. This final
decision activates a performer, i.e., relay, to trip or not to trip.
However, when there is any discrepancy between the final decision
and the actual status, the decision rule needs to be changed and
updated. This is the reason why we have a closed feedback loop
inside a typical learning system.

For the induction process to learn about the system status
and thus to update a rule, data with a known classification is
necessary. However, when the system is operated, there is not

any way to confirm that the final system status decided upon by

a decision rule is correct. In this circumstance, it is impossible

to save the data and class as correct sample data to be used for
learning in the induction process.

Because using incorrectly identified stored data is very dan-
gerous and unreliable, the problem of the reliability of the final
decision, which is also known as the problem of an unreliable

teacher, should be minimized and ideally eliminated. This is to
be done by a critic or a reliable teacher. The problems of an

unreliable teacher are summarized below.
1. Type | error: The system is under a Fault status, but the
final decision is “Non-Fault.”
2. Type Hl error: The system is under a Non-Fault status, but
the final decision is “Fault.”
3. There is no way to indicate the actual system status with

only the decision rule and induction process itself.

To meet these problems of an unreliable teacher, operator in-
teraction and an event detector are assumed as a critic or a reliable
teacher. Operator interaction provides confirmed or unconfirmed
information on the final decision of a fault. When a final decision
of “Fault” is made and the “TRIP” signal is issued and the power
line disconnected, then an operator checks and replies if it is ac-
tually a fault or not. This information provides the actual system
status (i.e., reliable teacher) and is very essential to eliminate Type
I} errors. By this confirmation/unconfirmation, the data class to
be stored is correctly identified. However, this operator interac-
tion still does not provide any useful information to eliminate Type
| errors, because an operator interaction is activated only after a
final decision of “Fault.”

To minimize Type | errors, an almost perfect event detector is
assumed. This event detector is a part of an existent fault detector
which has a sensitivity problem. It detects any disturbance or
event on the distribution line. High frequency current or sub-
harmonic current, which are very sensitive to any kind of transient,
is the best candidate for an event detector. If a disturbance or
event is detected by this detector, a ‘1" output will be issued,
otherwise, a ‘0’ output will be issued.

Even though the final decision is not “Fault,” there might be
some numbers of consecutive events. Then it is suspected that a
fault condition might be present and remain undetected. In this
particular situation, a “WARNING" signal is issued to call an op-
erator’s attention to the feeder. Until there is a response from an
operator, all the data which are involved in this particular decision
will remain unclassified and thus not stored as valid data. When
an operator response is entered, with confirmation or unconfir-
mation, then the correct system status is obtained and thereafter
data classification can be achieved.

To perform these functions, a decision control block inside
the learning detection system combines and synthesizes the sta-
tus output from an induction process, an operator input, and an
output from an event detector. Here, it is assumed that when
the final combined decision from a learning detection system is
a “Fault” then a “TRIP” signal is issued and it activates a per-
former to disconnect the distribution feeder. Then, an operator
provides a confirmation or unconfirmation input to the system.
Combining all these inputs, a learning detection system success-
fully learns about the system and parameters, identifies the data
which makes the decision controller decide such results, and places
the identified data into a fixed-size memory. This memory is later
accessed by an induction process to update rules. The newly in-
duced rule will replace the old one, and thus change the behavior
of the detection system as a whole.

The structure of a learning detection system is shown in Fig-
ure 1. Data storage is in memory where classified data are stored.
This data storage, which has a fault data section and a non-fault
data section, is a fixed-size FIFO (First In First Out) memory.
Therefore, when a new classified data comes in, the first data

goes out.

EVENT
DETECTOR

DATA SELECTED [—¥ TECHNIQUE
' TREAT| +—4 TECHNIQUE{ __4 COMBINATION

{

TECHNIQUE
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!
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—3 ReE 1
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P! QUTPUT
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PROCESS [~ STORAGE
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-
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Figure 1. Structure of a Learning Detection System.
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The signals inside a learning detection system are E, R, P,
and D. E indicates an event output (1 for event, 0 for otherwise),
R indicates a status output from a decision rule of an induction
process (1 for fault, 0 for otherwise), P indicates an operator
input (1 for confirmation, 0 for unconfirmation), and D indicates
a data class to be stored as a valid data (1 for fault class, 0 for
otherwise). These signals are combined and synthesized in the
decision control block. The reasons that all the signals are used
to get one final output are recapitulated below.

1. A decision rule from induction is based on no more than the
available information, and on all of the available informa-
tion. Therefore, it might miss some unexperienced and very
unusual data.

2. An ideal match between the status output from a decision
rule and an event detection is always expected. However, in
this case, higher security against false decision making and
more reliable and accurate detection can be highly guaran-

teed by combining all the signals.

A decision control block controls and decides a sequence to
a final decision. If assuming 2 digit numbers and each number
indicate the status of E and R. Then any uninterrupted 3 counts
of {01, 11, 10, 11} will cause a “TRIP” signal, any uninterrupted
6 counts of {01, 00, 10} with less than 2 counts of any {01, 11,
10, 11} will cause a “WARNING” signal. In case of both “TRIP""
and “"WARNING” signals, the data involved in the corresponding
signal output is still pending until their is an operator input to get
conformation /unconfirmation on the decision. When an operator
input comes in, then the data is classified and stored as fault data
(when P=1), or non-fault data (when P=0). Any counts of {00}
will cause no output and the corresponding data is classified and
stored as non-fault data (i.e., D=0). The numbers 3 and 6 are
adjustable; we can lower the number to increase the detection
sensitivity, or raise to provide a strong safety against false trip.

The time frame of the intelligent detection system is dis-
cussed here. When a “TRIP” signal is issued, a relay is tripped
and the line is disconnected, then the operator input makes the
detection system classify the data which are involved with this
particular final decision and remained unclassified. The classified
data are stored in the memory as valid experience data. With

these new memory contents, a new rule is induced. This new rule
will substitute an existing rule, and adjust the total performance

and behavior of a detection system. A decision comes out of the
detection system every 30 cycles. During this time, the amount
of data which are pending and unclassified should be considered.
Therefore, a data buffer is necessary in the decision control block.
An example execution using this learning detection scheme is dis-

cussed in the next section.

AN EXAMPLE EXECUTION

With sample data, an example execution with this learning
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detection system was performed. The training sample data con-
sists of high impedance faults, capacitor bank operations, and
load tap changer operations. Fortunately, the high impedance
fault case is not frequent; therefore, for the number of data in
the training case, it seems appropriate to provide more non-fault
data than fault data. A total of 58 sample data sets were chosen
where 17 of them were fault data and the rest were non-fault data.
Figure 2 shows part of a high impedance fault waveform which
was used for the knowledge acquisition purpose in a learning pro-
cess. With these training sample data, an induction process can
describe each class in terms of statistical measures. To calculate
the statistical measures for each parameter, the waveforms were
passed through a notch-filter to minimize the fundamental com-
ponent. From this notched waveform, each electrical parameter
1s obtained through a corresponding filter. With these electrical
parameters, means, standard deviations, and mean absolute val-
ues of parameters are obtained over a fixed window of 30 cycles.
Table Il shows first 25 sets of training samples with statistical
measures of three electrical parameters:odd harmonics, even har-
monics, and sub-harmonics. Then, the threshold value calculation
follows. From the 1/0 table derived using the threshold values,
the induction process starts to derive a rule. For more detailed
procedure of rule induction, one can consult reference 9. In this
example, the 6th digit has a maximum digit index, so the first

step is on this 6th digit:
Step 1: If the 6th digit is 1 (that is, the standard deviation of
even harmonic currents is higher than a threshold value,

i.e, 0.614), then it is Fault.

A
ANt
gRNRTE

magnitude

Sample Number

Figure 2. Training Sample Waveform.
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Table II. First 25 Training Samples.
*# ELECTRICAL PARAMETERS CLASS
00D HARMONICS EVEN HARMONICS SUB-HARMONICS
MEAN  MEAN STD | MEAN MEAN STD | MEAN MEAN STD
ABS _ DEV . ABS.___DEV _ABS _DEY _

T[-0.170 9.304 19.114[ 0.026 2.008 4.393|-0.140 3.271 6.660| F
2| 0.215 29.866 34.525]-0.197 7.288 9.267| 0.262 10.630 13.892| F
3{ 0.106 26.667 30.498(-0.089 5.720 7.411} 0.167 10.649 14.381] F
4| 0.037 12.703 18.098] 0.060 3.500 4.957| 0.127 6.849 12.536|
51 0.026 27.285 32.204(-0.008 6.469 7.965(-0.223 10.861 13.9541 F
6|-0.024 21.807 27.810(-0.08¢ 4.505 5.835| 0.201 7.169 9.275| F
7]-0.233 14.640 20.383| 0.166 3.395 4.609]-0.152 6.164 9.033| F
8l 0.180 6.101 7.874|-0.162 3.121 4.106| 0.118 3.998 5.753| F
9] 0.045 6.457 8.075|-0.022 2.843 3.764| 0.004 5.419 8.268] F
10} 0.125 5.771 9.2471-0.130 2.248 3.261] 0.170 3.297 5.121| F
11{0.038 2.506 2.942|-0.037 1.362 1.801( 0.024 1.914 3.078| F
12| 0.078 2.303 2.746|-0.066 1.292 1.784]0.104 1.937 3.248| F
13| 0.035 3.589 4.960[-0.043 1.985 2.853| 0.033 2.747 4.541| F
14]0.006 1.251 1.4771-0.001 0.306 0.377|-0.005 0.365 0.449 | F
15[-0.001 2.816 3.946| 0.006 1.291 2.020{ 0.008 2.245 4.384 | F
16]0.017 2.323 3.6941-0.021 0.698 1.242] 0.028 1.465 3.331| F
17]0.045 1.382 1.744]-0.046 0.62¢ 0.941] 0.050 1.020 1.878| F
18|0.703 1.231 1.435[-0.719 0.782 0.505| 0.822 0.994 0.931] NF
19]0.672 3.365 4.011(-0.682 0.743 0.571| 0.803 0.985 0.975 | NF
2010.645 3.308 3.937|-0.667 0.669 0.394 0.774 0.845 0.644 | NF
21|0.637 3.230 3.829|-0.653 0.655 0.368] 0.759 0.817 0.603 | NF
220.639 3.203 3.759|-0.651 0.652 0.346] 0.755 0.802 0.564 | NF
2310.640 2.171 2.776-0.653 0.699 0.441]| 0.760 0.990 0.980 | NF
2 |0.649 1.116 1.184[-0.662 0.662 0.222] 0.766 0.766 0.349 | NF
25 |0.647 1.089 1.154|-0.660 0.660 0.218] 0.767 0.767 0.336 | Wr

After this step, all the samples which have 1 in their 6th digit are
eliminated. From the remaining samples, using a similar proce-
dure, the second step is derived.

Step 2: If the 2nd digit is O (that is, the mean absolute of odd

harmonic currents is less than a threshold value, i.e.,
3.628), it is Non-Fault.

Testing sample data is somewhat complicated in the high
impedance fault case. It has various kinds of bursts in terms of
amplitude increase and of length. Some parts of this sample data
have a few normal or event-looking data, but the conductor is

still on the ground. Figure 3 shows a test sample waveform. The
first four samples are apparently normal. At the fifth sample, a

fault starts with a large amplitude increase, and long and medium
length burst durations. Sample numbers 10 and 11 look normal,
or at least like an event by observing the total current, but, the
conductor is on the ground; they are actually a fault. Sample
numbers 12 through 16 show apparent fault only by the total
current. Sample numbers 17 and 18 show normal or event by
observing total current; however, they are a fault. Sample 19 is
fault data.

The status from the decision rule is obtained by passing vari-
ables through the rules. The first rule is on the standard deviation
of even harmonic current and the second rule is on the mean ab-
solute value odd harmonic current. The output status is shown in
Table 11

The data of samples 1 through 4 has been automatically clas-
sified and stored as non-fault data. These data already replaced
the first 4 data of the non-fault section of an existing memory.
The data of sample 5 and 6 are pending unclassified. At the 7th
sample, a “TRIP" signal is issued, and if a confirmation input
from an operator arrives at the detection system, each data of
sample 4 through 7 is classified as fault data. These data go to
the memory and replace the first 3 existing fault data. The new

magnitude

3 4
Sample Number

magnitude

7 8 9 10 i1 12 13

—

Sample Number

magnitude

14 15 16 17 18 19
Sample Number

Figure 3. Test Sample Waveform.

rule says that:

Step 1:  If the 6th digit 1 (that is, if the standard deviation is
higher than a new threshold value, i.e.,0.609), then it is
Fault.

Step 2:  If the 7th digit is 1 (that is, if the mean value of
sub-harmonic currents is greater than a new threshold
value, i.e., 0.407), then it is Non-Fault.

Step 3:  If the second digit is O (that is, if the mean absolute
of odd harmonic currents is less than a new threshold
value, i.e., 4.762), then it is Non-Fault.

As we see here, the new rule is slightly different from the existent

rule.

Table 111, Status Output from Test Samples.

TEST ACTUAL DECISION  EVENT DECISION
SAMPLE STATUS TREE DETECTOR  CONTROL
NUMBER STATUS OUTPUT SIGNAL

1 NF NF 0 N/A

2 NF NF 0 N/A

3 NF NF 0 N/A

4 NF NF 0 N/A

5 F F 1 N/A

6 F F 1 N/A

7 F F 1 TRIP

8 F F 1

9 F F 1

10 F F 1

1" F F 1

12 F F 1

13 F F 1

14 F F 1

15 F F 1

16 F F 1

17 F F 1

18 F F 1

19 F F 1
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It is not appropriate to draw any general and convincing con-
clusions by the execution of a detection system on this particular
set of test samples. However, it is found that there is no false trip
and no missed trip where most techniques usually miss low-level
faults. The decision rule from an induction process shows very
good performance. Both reliable detection and security against
false trip could be acquired by multiple detection parameters and
an induction process. By adding an event detector, which shows
a perfect performance in indicating the occurrence of events, the
intelligent system is getting experience and adapting itself to a

variety of conditions.

CONCLUSIONS

The objective of this research was to find an intelligent de-
tection system. This intelligent system has two specific proper-

ties. First, it is capable of taking advantage of multiple detection
parameters or variables. Secondly, it provides adaptability using

inductive reasoning, incorporated with some critic modules in a
detection system. Inductive reasoning which will minimize entropy
was applied to acquire the knowledge of fault class and non-fault
class. We applied this knowledge to make the intelligent system
adaptive to surrounding environments.

A learning detection system was implemented with inductive
reasoning and an event detector. An example execution was shown
with a decision rule which was derived using training sample data
consisting of high impedance faults, switching events, and normal
status. A complicated set of test data was used to test the perfor-
mance of the learning detection system. It was found that, even
when it met very complicated situations, the learning detection
system made smart decisions and evolved itself to a new situation

with a newly derived decision rule.
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