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An Algorithmic Approach for Fuzzy Inference

C. J. Kim, Member, IEEE

Abstract—To apply fuzzy logic, two major tasks need to be for numerical input—output pairs was suggested [3]. This
performed: the derivation of production rules and the determina-  scheme, which aims to extract a rule for each input—output
tion of membership functions. These tasks are often difficult and i however, determines the partitions of the domain interval
time consuming. This paper presents an algorithmic method for d bershio functi in zad h Artificial
generating membership functions and fuzzy production rules; the _an _mem €rship functions in oc manner. rancia
method includes an entropy minimization for screening analog intelligence (Al) and neural network techniques have also been
values. Membership functions are derived by partitioning the applied to extract fuzzy rules from numerical data, however,
variables into the desired number of fuzzy terms and production they require that the number of divisions in the input variable
rules are obtained from minimum entropy clustering decisions. In be defined in advance [4].

the rgle d.erivation process, rule weights are als_o calculatgd. This Clear t Hi hich te both
algorithmic approach alleviates many problems in the application early, _an au Qma IC process W_ ICh can ge_:nera € bo
of fuzzy logic to binary classification. membership functions and production rules directly from
experienced sample data would be of considerably more value.
The primary objective of this paper is to develop an algorithm
which is capable of automating fuzzy logic applications in
binary classification and decision-making problems. Using
an algorithmic approach that utilizes the concept of entropy

minimization, membership functions are generated and, based

FUZZY logic has been applied with reasonable SUCCe§$on them, fuzzy production rules and rule weights can be

to many control problems for which only conventionafjgiermined. The rule weight devised in this paper, unlike
control methods had previously been utilized. In such contrgla «rejative weight” used for medicine and biology [5], is
problems, the value of fuzzy logic is that vague meani”%%signed by an algorithmic process. '

and relationships, expressed in ordinary language, can be

effectively formulated. The fuzzy inference procedure includes

the translation of an analog value into membership grades, ||. ALGORITHMIC APPLICATION OF FUzZY LOGIC

which are defined by the membership function of fuzzy terms.I f loai licati bershio functi i
Although fuzzy logic theory was introduced in the 1960’s n Iuzzy logic appications, membership functions, -usu

its application to industrial control emerged in the early 1970323{;;].:':;%“'6‘; (:Tr]zit:]agezglrctisl :Zggred’.nhélwe etyp;f’ﬂgcse:: d
with a procedure for the control of a steam engine [1]; ' y nhu Xperts. Ingly, exper

since then, fuzzy logic has been applied in other contr Pe:nmgrrr]wss:]ssh? a;ﬁ;:gotx\;o Is?i?ndillgﬁ gu;SZezllneSr(IZLgséirTl;?égg
areas. Currently, fuzzy logic is involved in many industri P ' Y, yp

and commercial applications, even in home appliances.akl’ff)‘ve beer_1 deylsed from _expert opinion. T_he fundame_ntal
apply fuzzy logic, we must define fuzzy production rule roblem with this approach is that the production rules derived

fuzzy terms, and membership functions. It is often difficu y the expert using experience and common sense are not

. . . lways the most suitable ones for an automatic controller.
and time-consuming to derive these rules and members 8 Y .
rthermore, there is no way to assess whether or not a

functions. By devising an automatic procedure for derivinH“e correctlv and ontimally represents most of the experi-
membership functions and production rules, therefore, we y P y rep P

. - : enced sample data. We propose to develop an algorithmic
can make fuzzy logic applications much easier to produceé. roach which without human intervention. can be uti-
Advanced applications (such as leaming fuzzy control) neﬁggd universall ,for fuzzy logic applications in ’classification
an adaptive method of representing fuzzy knowledge, b Y y logic app . . .
roblem. Guided by a theorem of maximum information

n attem mate fuzzy logic applications i im@ . \ a2t .
an attempt to ayto ate 1u y l0gic app cations Is a time xtraction, this algorithmic approach generates membership
response to an important subject.

An estimation model for fuzzy membership functions Wafur}[;tlons and fuzzy production rules from experienced sample

introduced using fuzzy ensemble membership apportionme . . . I
9 Y P app he automation of membership function derivation can

learning estimators [2]. However, this model estimates on . RN
membership functions and does not produce fuzzy ruIeBs/e. considered as an attempt to draw a structiliregliistic

) " . variable in which the fuzzy terms and their meanings can be
Recently, a “table-lookup” scheme for fuzzy rule generatlor]1 X ; )
characterized by an algorithm. One of the basic tools for fuzzy

logic is the linguistic variable, i.e., a variable whose values
Manuscript received March 8, 1994; revised March 26, 1997. ~ gre not numbers, but words in a natural or artificial language
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Suwon, Suwon, Kyung-Gi, 445743 Korea. ]. inguistic variable is characterized by a quintuple
Publisher Item Identifier S 1063-6706(97)07506-1. (r,T(r),U,G, M) where

Index Terms—Algorithms, clustering, entropy, fuzzy logic, in-
ference.

I. INTRODUCTION

1063-6706/97$10.001 1997 IEEE



586 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 5, NO. 4, NOVEMBER 1997

r name of the variable, its “label,” or sometimes its We first discuss the entropy concept relative to the clas-
value R; sification of two-class (“true” and “false”) samples. When
T(r) term set ofr; that is, the set of names in we look at the samples in the “true” class, for example, we
U range of T'(r); try to discover what it is that makes them “true.” In other
d a syntactic rule for generating, the values of;;  words, we try to find similarities among the parameters for
M a semantic rule for associating eaé¢h with its “true” cases, which distinguish them from samples which
meaning. are “false.” This means that we try to find attributes or

A particular R (that is, a name generated 1) is called a groups of attributes possessed by “true” samples and not by
term For example, if a linguistic variableis defined with the “false” samples. These attributes or groups of attributes then
label “age” inU = [0, 100], then the terms of this linguistic become part of the boundary separating the “true” samples
variable, generated by the rut(r), could be called “old,” from the “false” samples. To optimally separate “true” and
“middle,” “young,” and so on. Thereford;(r) defines the term “false” samples, we usually use a measure of information.
set of the variabler with 7(age = {old, middle, young. The quantity of information gain or loss is a basic element for
M(r) is the rule that assigns meanings to these terms. 6Atropy calculation for analog screening.
linguistic variabler is calledstructuredif the term setZ’'(») ~ The main purpose of entropy minimization analysis in infor-
and the meaninM(T) can be characterized a|gorithmica||y_mati0n theory is to determine the gain or loss of information
For a structured Variab|dM(7v) and T(7) can be regarded in a given data set. This information quantity compares the
as algorithms, which generates the terms and the meanifg8tents of available data to some prior state of expectation.
associated with them. The higher one’s prior estimate of the probability for an

The above description of a linguistic variable can bgutcome, the lower the information gained by observing its
rephrased as follows(r) determines the fuzzy terms fromoccurrence. In general, on the basis of what we already know,
a variable and/(r) determines the membership functions ofhe more probable the event is, the lesser the information
the fuzzy terms. Once the number of fuzzy terms is decideg@ntent is if and when the event occurs. In other words, when
the only unknown item in the linguistic variable is the rulénformation gain is minimized, we reach (at an optimal point)
M(r). The algorithmic approach in this paper will decide thér predicting the occurrence. A quantity of information is
rule for membership function formation; in a theoretical sens@efined as proportional to the negative of the logarithm of
therefore, this paper attempts to draw a structured linguisBEobability [9].
variable. If we assume that the probability that thla samplez; is

In industrial control application of fuzzy logic, a set of termdrue is P(z;) and if we actually observe the samplgin the
drawn from linguistic variables have been used to describgure and discover that it is true, then we gain the following
the states of the process. In particular, the error value and tA@rmation:
change in error vaIL_Je are quantized into a number_of points I(z:) = —k1n P(x;).
covering the range i/ and the values are then assigned as
grades of membership in seven subsets [7], [8]. The followinfyjwe discover that it is false, on the other hand, we still gain
seven-term set seems to be an industry standard for fuzkg following information:
logic applications: positive big (PB); positive medium (PM);
positive small (PS); zero (ZE); negative small (NS); negative I(~w:) = —kln[l — P(z)].
medium (NM); and negative big (NB). Therefore, if we devisgntropy is defined as the expected value of information. The
an algorithm for assigning membership grades to the standailropy of a set of possible outcomes of a trial in which one
terms, we can apply our scheme to any application area {d only one outcome is true is expressed as the summation of
fuzzy logic. In addition, this approach provides an automatie products of all probabilities and their logarithms. Thus, the
mechanism for generating fuzzy production rules from thgpected value of the information to be gained by observing
term set7’(r) and the meaning!/(r). x; can be expressed as follows (with = P(x;)):

S(zi,~zi) = —k[P;In P, + (1 — P)In(1 — P,)].
I1l. ENTROPY PRINCIPLE IN CLASSIFICATION

The entropy of all the sampldsV) is expressed b
The main idea behind the automatic generation of member- Py plesy) P y

ship functions and production rules is the concept of analog N
value screening. Using the entropy principle, the analog values S=-k Z[Pi InF; + (1 = F;)In(1 - F)]. 1)
of a parameter in the sample data can be clustered. Optimal =1

division of the analog space will yield fuzzy terms for eacfihis entropy is smallest when the amount of information
parameter; the partition point (the entropy minimum point) withat we can expect to gain from further observation is least.
decide the range of the membership functions. Using the safiteerefore, given all available information, it is possible to
screening method, but with binary parameter values, fuzejuster using the minimum entropy principle. In entropy min-
production rules can be drawn. Because the rule extractiomum state, all of the information has been extracted from
process is performed over each individual fuzzy term, the fintle available sample data. This observation is very important
production rule will consist of the integration of independernib the algorithmic approach: when samples are the only
rules. source of information, maximum extraction of information is
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O where

Class 1 Samples
ny(xz) number of Clasg: samples located in the regign
n(x) total number of samples located in the regjgn

n total number of samples in theandq regions.
%ﬁ O (% ‘ g o0 00 ﬁ The variablesw andv area priori weights; both are set to
| |
X |

. Class 2 Samples

one, which permits the simplification

min xmi z) = M
X region q " Ful) = n(z) +1 (7)
region p Plz) = % (8)

Fig. 1. lllustration of threshold value calculation. Equations foqu(a:) andq(a:) can be derived similarly. Using

the estimates and the entropy equation, we calculate the
essential for an automated process. Therefore, in classificatfriropy for each value of. A value of z whose entropy is
problems, the entropy principle is a useful tool for optimahe minimum,X = Spin(min, Tmax) 1S the optimal threshold
clustering. In the next section, we will discuss the basis faglue in the range ofzuin, Tmax|-
this algorithmic approach, viz., analog screening. Along with the entropy calculation, there is the problem
of assigning a probability in cases where only one digit (or
variable) has been observed “true” erof n occasions. What

makes it difficult to assign a probability is the feeling that what

The clustering point in samples is called a threshold valyg gpserved is more likely than what is not and that what is
between classes. If we divide once-clustered samples, aggiRerved more often is more likely than what is observed less

using the same entropy principle, we can subcluster thgen This probability can be expressed as
samples. The thresholds optimally divide the sample space; B

the divided regions will yield the fuzzy terms. Membership P=lim =.
functions are shaped from the thresholds. To draw fuzzy neen

production rules, minimum entropy clustering with change&s n becomes larger and larger/n comes closer and closer
in the entropy equation can be applied. To begin, we consider”. But it is not clear in what sense/» is approaching a
the entropy equation for sample clustering. limit, which we presume to exist and calt. In such cases,

Assume that we are seeking a threshold value for sampiess possible to use the mean probabilify to representP.

in the ranger ,,;, to ..., for a two-class problem (see Fig. 1).Mean probability in the class separation is defined by [10]
By moving an imaginary threshold valuebetweenz,,;, and

IV. ANALOG SCREENING WITH ENTROPY PRINCIPLE

— z4+t
Tmax W€ can calculate the entropy for each valuezofor P= mttr f 9)
region p[min, ] and regiong(z, £max], Which is [10] ntttf
where
S(x) = p(x)Sp() + a(2)5 (2) @ 4 humber of distinguishable “true” states;

where / number of distinguishable “false” states.

p(x) fraction of all samples in the region; This mean probability when there are only two classes

q(z) fraction of all samples in the region; (t =1andf = 1) becomes

p(z) + qlz) = 1. P—Z+1 10

Entropies of thep and ¢ regionsS,(z) and S, (z) can be S on+2 (10)

expressed by [cf. (1)] The mean probability is used in the entropy equation for

Sp(z) = —(p1(z) Inp1(z) + pa(z) In pa()) (3 production rule derivation and in rule weight calculation.
S,(2) = —(qu(2) Inqu (2) + go(2) In ga () @) The process for the analog screening of threshold values for
a « @ © © membership functions and the production rule derivation will

where be explored in detail in the next section.

pr(z) probability that the Class sample is in the regiop;

qx(z) corresponding conditional probability for the regign V. MEMBERSHIP FUNCTION AND

We calculate the entropies of (3) and (4) using relatively PRODUCTION RULE GENERATION
unbiased estimates ofx(x), qu(z), p(x), and ¢(x). The ) ) _
relatively unbiased estimates fp(z) andp(x) are A. Membership Function Generation

Using the entropy equations (3) and (4) with the estimates

(5) given by (7) and (8), we calculate the entropy for all #is.
n(w) + w(z) The value ofz, which yields the minimum entropy, is taken to
) +v(z) (6) be the threshold valugX) of the two partitions. We call this

n +v(x) the first threshold and indicate hy,;. This threshold value

Puay = ")+ ()

P(x) =
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is calculated in the range af.;, andz.,ax. If we replace the

NG

PO
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variablesz ,;;, andx ..« by Xo; and Xg2, respectively, then
we can indicateXy; by X171 = Spin(Xo1, Xo2). With only one
threshold value, there can be two nonoverlapping fuzzy terms

1.0
@)

with rectangular-shaped membership functions [see Fig. 2(a)]

[Xo1,X11]: NG (negative)
[X11, Xo2]: PO (positive)

We can draw another threshold line to subdivide each side
more precisely. Using the same procedure for entropy calcu-

lation, we can compute secondary threshold values from the x,,

positive and negative sides (as shown below)

X1 = Smin(Xo1, X11)
X992 = Smin(X11, Xo2).

Assuming trapezoid shapes at the both ends with threshol
values calculated above, we now have three terms: PO, ZE
(zero), and NG [see Fig. 2(b)]

0

X
X 21 Xﬂ X 22 %
N8B NM NS ZE PSS  PM PB
10
(c)
! ! ! l ! | 00
X X X X, X, X X X

3

21

34

02

[X()l, Xll]: NG

Fig. 2. Repeated partitions and corresponding fuzzy terms. (a) The first
partition. (b) The second partition. (c) The third partition.

[Xgl,XQQ]I ZE

[X11, Xo2]: PO NB NM PS PM PB
NS
To generate the seven fuzzy terms (the final partition), we neqd ZE
one more level of thresholds. We can calculate four tertiary
threshold values; each of them separates the three terms more
precisely. The third level threshold values are
X31 = Smin(Xo1, Xo1)
X32 = Spin(Xo1, X11) | ] | | |
X33 = Smin(XIb X22) Xo1 Xa1 X1 X=X, X3 Xp Xy Xoz
X34 = Smin(Xo2, Xo2). (@)
Again, assuming trapezoidal shapes at both ends, we have a tohB NM NS PM PB
tal of seven membership functions arrived at by mechanically ZE Ps
connecting the threshold positions, as shown in Fig. 2(c). We
label them (from the left) NB, NM, NS, ZE, PS, PM, and PB.
These relationships, up to the fourth level, are illustrated in
Fig. 3.
Therefore, up to the fourth level we can draw the followin
general threshold formula for thigh threshold in the:th level l ] ] I [
=1.....9(n=2).
X"k Fork = 1, '2 ) Xo1 X Xy X3 X=Xy X2 X X
o if k= 1(7 Xn;x = Smin(X017X(n—l)k); (b)
o | = n—2 .= - . -
it k=2 Xk Smm(X("_l)(k/Q)’ Xll)' Fig. 3. lllustration of membership functions when two threshold values are

* otherwise,X,x = Smin(X(n—1)1s X(n—1)m ), Wherek =
I+ m.

Fork =22 4 1 ... 200=1 with . > 1:

o if k= 2(n—2) =+ 17Xnk = Smin(XllaX(n—l)(k—l));

o if k= 2(n_1)7Xnk = Smin(X(n—l)(k/Q)vXOQ);

+ otherwise, X,k = Suwin(X(n—1)1; X(n—2)m), Wherek =
l+m+ 1.

where

L number of fuzzy terms;
n threshold level (primary, secondary, tertiary, etc.).

To generate the “universal” seven fuzzy terms, we always go

identical. (a)X; = X3z case. (b)X;; = X33 case.

Also, we may draw the following relationship between th‘gown to the third threshold level. However, for well-separated
threshold level and the number of fuzzy terms (and memb&@mples, three levels of threshold calculation may cause an

ship functions):

over partition of the sample space. With our algorithmic

generation of membership functions, it is possible for two

L=2"-1 (n>1) (11)

thresholds to share the same value. In this case, samples are
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derivation is perfqrmed'for eaqh term and, for. each term, 'each

— step of the rule is derived with an association rule weight,
membership which gives the reliability of the rule.

grade for fuzzy term The rules for each fuzzy term resemble a decision tree in

[ which the branch points indicate the divided search route. The
rule for each fuzzy term has the form “If ., else if- . -, else if
..., end if.” Therefore, a general production rule from sample
data will appear as the one shown in Appendix F. There is
a rule for each fuzzy term and each rule of the -“if , else
Yes if ..., ..., end” form allows only one fuzzy term. This rule
formation is somewhat different from the conventional one,
which may include as many fuzzy terms as chosen (seven in
our case) in a single rule.

Membership function generation is a result of a repeated
calculation of thresholds for optimal separation and production
rule generation will also choose an optimal rule from numerous
No candidates. The entropy of a production rule for a fuzzy term,
using the mean probability of (9) and (10), is

binary sample

# of sample
=07

sub-sample

digit index
calculation

maximum index
eliminate samples
which meet the

m
step of rule _ _
a step of rule S=-k Z YiDi In bi (12)
formation =1
, where
production rule ‘ . .
store stop m total number of steps, i.e., the total number of separating
points in the decision rule;
Fig. 4. Flow chart for production rule derivation. y; number of samples covered by stemf all possible
samples;

well classified with the primary and secondary thresholds alone® @ constant.
and further clustering is redundant for separation purposesTheoretically, therefore, we check all possible rules and
However, this situation does not cause a problem, as illustragaiculate their entropy to select a rule whose entropy is
in Fig. 4. The fuzzy membership functions are drawn amallest. As can be seen from (12), however, there are simply
before, but with a slight change in their shape. The thick linégo many combinations of variables or rules to check. For an
in Fig. 4(a) cover NS and ZE in the case &f; = X3, and, n digit binary number, there ar2® combinations; if we have,
in Fig. 4(b), ZE and PS fofX;; = X33. for example, 15 digit binary numbers, there afé = 32768
These membership functions are not realistic and mugdifferent ways. Even allowing that we usually do not have
be interpreted with care. In other words, the membershipat many samples, we still have too many combinations
functions do not give a true picture of the real situation. ZEQ investigate. If we have 68 samples of 15 digit binary
for instance, does not correspond to the true zero value of thigmbers (the same number of samples used in the example
input; reality and expert opinion are totally ignored for thé Section VII), for instance, the actual number of ways is
determination of the membership functions. This artificiality(68)> = 4624. A practical way to apply the entropy principle
however, does not lead to any problem for rule generatié® production rule derivation is obviously needed.
or inference. In reality, membership functions are meaningful To simplify the evaluation production rules, we tried to find
only when they accurately represent the sample data fr@@me easily derivable relations among the entropy equations.
which the production rules are derived. From (12), we can see that the clogeiis to one or zero,
the smaller the entropy is. Also, from (9) and (10), it is
) _ apparent that the biggeris, the biggers is. Therefore, if we
B. Fuzzy Production Rule Generation can find the biggest, we can find the rule with minimum
Fuzzy production rules relate input and output variables. Tleatropy; to do this, we will use the conceptdiit index The
production rules for two class problems will be generated frodigit index is defined as the ratio of correct separation of two
the acquired seven fuzzy terms using the entropy principldasses using only a single digit (or feature). In other words,
Since the entropy minimization principle has been provehe index is a measure which locates the digit that assures the
effective for decision rule derivation with binary values [9]minimum number of wrong classifications.
we will transform the analog values of the samples into For digit index determination, we first calculate a quantity
binary values. This binary transformation will be performedalled thedigit count We count the number of one’s in the
separately for each fuzzy term from NB to PB. If the analoGlass 1 samples and the number of zero’s in the Class 2
value has the highest membership grade in a term, it will lsamples, or vice versa. Then we divide each number by the
assigned value one; if not, it will be assigned value zero. Thistal number of samples in each class. The result is the so-
procedure produces, therefore, seven sets of binary data. Rudked digit countd. If we haven digits (or features), then,
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f, f, TABLE I
"————"”*—’——_"1 BINARY TABLE For THE Fuzzy TeErRm PS
sample # D1 D2 D3 class
1, f, 1 1 0 0 1
¢ e > 2 1 0 1 1
3 1 0 1 1
| | | 4 0 0 1 1
f i K ! 5 1 0 0 1
40 l 0 10 6 1 0 1 1
7 0 1 0 2
1 8 0 0 1 2
9 0 1 1 2
w, w, 10 1 1 0 2
11 1 1 1 2
12 0 0 1 2
3 13 0 1 0 2
PP 14 0 1 0 2
Fig. 5. lllustration of the pivot and balance defuzzification. 15 0 1 1 2
TABLE | TABLE 11l
PRODUCTION RULE SAMPLE DATA PrROCESS OFDRAWING THE DIGIT INDEX
sample # variable 1  variable 2  variable 3 class 1 D1 D2 D3
1 0.210 1.477 2.420 1 Classl Class2 Classl Class2 Classl Class2
2 0.180 1.435 5.012 1 # of 1/0 5 7 0 2 4 4
3 0.203 1.184 5.245 1 digit 5/6 + 7/9 0/6+ 2/9 416+ 419
4 0.106 1.154 6.012 1 count
5 0.202 1.057 7.034 1 digit 061 0.78 0.11
6 0.185 -0.673 4.992 1 index
7 -0.170 4.628 3.420 2
8 0.724 1.114 5.940 2 TABLE IV
9 0.035 3.944 5.120 2
10 0.167 4.262 3.420 2 sample # D1 D2 D3 Class
11 0.169 4.000 6.011 2 1 1 0 0 1
12 0.045 1.251 5.093 2 2 1 0 1 1
13 0.017 3.904 9.024 2 3 1 0 1 1
14 -0.001 4.703 4.062 2 4 0 0 1 1
15 -0.118 4.640 5.872 2 5 1 0 0 1
6 1 0 1 1
. . . o L 8 0 0 1 2
by this calculation, we can havedigit counts;d,, is the digit 12 0 0 1 5

count for the digitn. Next, we add all the digit counts of each
class. If this value is close to 1.0, that digit (or feature) is not
important for separation: the one’s and zero’s have the saffhtered on the change of the shape of membership functions
weight in both classes. If the value is not close to 1.0, the@ the determination of rule weights [11]. The determination
are less one’s or zero's in a class. We formalize this idea BY rule weights will be discussed below in conjunction with a

defining d|g|t (Or feature index as follows: discussion of production rule derivation.
The production rule generated by the simplified procedure
I, = ‘Z dy — 1-0‘- (13) from sample data is optimal but not perfect; the rule inevitably

) o yields incorrect separation at each step. At each step, therefore,
To generate production rules, we use the digit (or featurgl, .aiculate the reliability or weight using the mean probabil-

whose index is _th? maximum. Then, we aF_’p'y th? rule to ﬂ?@/ of the two-case problem given by (10). As an illustration,
samples and gllmlnate those samples which satisfy the ryl&, yiscuss an example adopted from [9] and changed to
For examPIe, ,'f we Shose the rule asx'x for Class 17 & gimylate an imaginary fault identification situation. We have
indicates “don’t care”), then We_delet_e _aI_I the samples (of boke e, three-variable samples to be classified into two classes.
classes) whose value for the first digit is one. We repeat twe will derive a production rule for fuzzy term PS and the
following sequence until all the samples are accounted fc?Egion of the terms PS is assumed to[b65,0.212] for the
digit index calculation; formation of the rule; elimination ofg & variable,[3.877, 4.774] for the second, ar71{i1.890 6.036]
the samples which satisfy the rule. Fig. 5 shows a flow chag .o third. The éample data are shown in Table 1.
of this simplified generation procedure. For binary conversion, the samples in each variable are
. i translated into binary values (D’s) depending whether they are
C. Production Rule and Rule Weight the members of the term PS. If the sample values are within
Procedures which include a mix of fuzzy logic and neurdhe range of the PS, they are translated to 1, otherwise, O.
networks have been developed to provide adaptability to fuzZius, the following binary table for the fuzzy term PS will be
logic applications. A crucial aspect of adaptive fuzzy logic isesulted as indicated in Table II.
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Now, we follow the steps to produce rules for the fuzzy TABLE V
term PS. D1 D2 D3
Step 1: First, we find the digit count and the digit index. Classl Class2 Classl Class2 Classl Class2
For the samples of each digit (D1, D2, and D3), we count the # of 1/0 5 2 0 2 4 0
number of 1's in the Class 1 samples and the number of 0's digit count 56+ 2/2 0/6 + 2/2 46+ 072
in the Class 2 samples. Then we divide the number of 1's by digit index 0.83 0.00 033
the number of samples in Class 1, and the number of 0's by
the number of samples in Class 2. The process of drawing the TABLE VI
digit index is shown in Table III. REMAINING SAMPLES
From the above process, the second digit has the largest___sample # D1 D2 D3 Class
digit index, so we start the separation process with the second g 8 g i ;
digit. Therefore, we have X1x for Class 2" as the first 12 0 0 1 2
step of the rule. Ther; = 7 (from Class 2) andh; = 7
(from both classes) and the mean probability, using (10), is
P, = (1 +1)/(n1 +2) = 8/9 = 0.89. This value is taken TABLE VI
to be the weight of the first rule step. Eliminating the samples D1 D2 D3
having 1 for their second variable, we have Table IV. 4 of 10 C"?ﬂ Clgssz c'agﬂ C"";ssz ClafSI Claossz
Step 2: The process of drawing the digit index is shown gt count 0+ 2/2 01+ 2/2 11+ 0/2
in Table V. digit index 0.00 0.00 0.00

We see that the digit index is biggest for the first variable

so “1xx for Class 1" becomes the second step of the rule. ) )
Thenz, = 5 andny = 5 and, therefore, the weight of the stegProduction rules. The values of the membership grades are

2 of the rule isP; = 6/7 = 0.86. The remaining samples aredetermined by the degrees of membership in the conditional

shown in Table VI. part of the rules [6]. If OR is used to form the conditional
Step 3: The process of drawing the digit index is shown ifart, the grade value is determined by the maximum of the
Table VII. membership grades; if AND is used, it is determined by the

As we see that all the digit indexes are same, we can chodR@imum of the grades. However, this inference method does
“x x1 for Class 2.” Thenzz = 2 andns = 3 and, therefore, not take into consideration cases where the rules are assigned
the rule weight for step 3 of the rule & = 3/5 = 0.6. weights; to accommodate production rules with rule weights,

After the third step, rule derivation stops. The productiotherefore, a new inference method is required.
rule for fuzzy term PS consists of three steps. This fuzzy Two methods of inference will be described. Either method
production rule can be written as shown at the bottom of tlig applied to each of the seven sets of production rules—one
page. for each fuzzy term. The following explanation applies to all

The above procedure must be performed for each of thee fuzzy terms and corresponding production rules. The first
other six fuzzy terms; the final production rule will be a sanethod is to check for a matched (honzero) premise from a
of seven independent production rules. first fuzzy term, for example, PB. If a step (each step has the
fuzzy term PB in the conditional part) of the rule is matched,
then the firing strength, the corresponding weight, and the
class identification for the fuzzy term P8&%pg, Wrp, Crp)

. o are recorded. Then, we move to the next fuzzy term, PM,
So far, we have discussed the algorithmic procedure fpfy example. The process is applied to all the fuzzy terms.

membership function and production rule generation. HOWygretore, this method yields seven set of firing strength,
ever, this algorithmic approach is not complete unless suitalgesnonding weights, and class identification represented

inference and defuzzification methods can also be provideq)y ((f1,W;,C,), j = PB,PM, PS, ZE, NS, NM, NB}. This
7 7 VAl - 7 7 7 7 7 7 *
method is called the “overall match” method and is illustrated

A. Inference in Fig. 6(a).

Inference is a mechanism by means of which a conclusionThe other inference method is called the “round match”
is drawn from sample data and production rules. It is designatethod because it is based on a “round” which checks each
to evaluate the rules whose conditional parts are satisfistep of each fuzzy term rule. Unlike the “overall match”
A popular inference method is “max” in which the finalmethod, this method does not check all the steps of a fuzzy
membership grade for an output is the union of the fuzzgrm rule. Instead, this method checks the first step of the first
membership grades which are the outputs of the individugrm rule, and then the first step of the second fuzzy term

VI. INFERENCE AND DEFUZZIFICATION
FOR ALGORITHMIC APPROACH

IF variable 2 is PS, THEN Class 2 (weight0.89) (step 1)

ELSE IF variable 1 is PS, THEN Class 1 (weight0.86) (step 2)

ELSE IF variable 3 is PS, THEN Class 2  (weight0.60) (step 3)
ENDIF
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TABLE VIl
@\ (9\ CD\ TesT ResuLTs (pp WiITH Two METHODS)

PB Rh‘ﬁ PB Ryle PBku!e

no. class by overall-match by round-match rounds

w1 C\ w1 'C\ W\C1 2 fault -0.179 1.000 1

W2.C2 L_ w2 cz\ W2\i2 3 fault 0.401 0.687 1

' ) ' 5 fault 0.699 0.642 1

al wacs ol wacat{] ee o2 Ws'ck 8 fault -0.196 0.373 1

% % % 9 fault 0.4160 0.670 1

\ 10 fault 0.229 0.691 1

11 fault 0.605 0.681 1

12 fault 0.299 0.178 1

Wn.Cn Wn.Cn Wn.Cn 11 fault -0.316 -0.092 1

15 fault 0.361 0.281 1

16 fault 0.187 0.148 1

(feB, Wpe, CPB)  (fPm, WM, CPM) Stop 20 fault 0.473 0.319 1

@) 21 fault 0.165 0.282 1

28 not-{ault -0.621 -0.390 1

31 not-fault -0.613 -0.350 1

PB Rule PB Rule PB Rule 35 not-fault -0.676 -0.467 1

W1.C1 Wi1.C1 W1.C1 38 not-fault -0.810 -(.482 1

1 1 not-fault -0.608 -0.37 1

wW2,c2 W2,C2 wac2 |Stop 15 not-fault -0.674 -0.451 1

16 not-fault -0.810 ~0.482 1

§ w3.c3 § W3C3 | |eee & ‘é w3.c3 47 not-fault -0.327 -0.169 1

® @ @ 5 not-fault ~0.600 -0.237 1

56 not-fault -0.728 -0.187 1

58 not—{ault -0.533 -0.298 1

9 not-fault -0.701 -0.4187 1

Wn,Cn Wn.Cn Wn,Cn 60 not-fault -0.761 -0.485 1

61 not-{ault -0.707 -0.482 1

62 not-fauit -0.701 -0.293 1

(fes, Wes, Ces) (fom, Wew, Ceu) 63 not-fault  -0.361 -0.169 1

(b) 61 not-fault -0.417 -0.169 1

Fig. 6. Match and fire process for (a) overall match and (b) round match(f‘r’ not-fault -0.473 ~0.169 1

method. 66 not-fault  -0.446 -0.183 1

67 not-fault -0.347 -0.286 1

68 not-fault -0.714 -0.275 1

rule, and then the first step of the third fuzzy term rule, and

so on. Depending upon the result of the match at each step,
the round will either continue or stop. This means that if,

for example, the first steps of any one or more fuzzy ruldé1ere

(for example PB rule and PM rule) are matched, the process m number of quantized levels of variable;
stops. Again, the firing strength, the corresponding weight, the z; value of a variable at the quantized level
class identificatior{ fpg, Wps, Cpg), and (fra, Wea, Cea) (¥

for term PB and PM, respectively, will result. If we do not fre(@i) membership degree of fuzzy terinat
have any matched set in the first round of the fuzzy term the valuex;;

rules, we move to the second round. This process will go on Tq fuzzified value.

until there is a matched set or all rounds are finished. TheThe other popular method is the mean of the maximum
process is illustrated in Fig. 6(b). method which can be represented by

B. Defuzzification

l
za=d 0 (15)
Usually, more than one fuzzy rule may be matched and = l
fired at one time, so there should be a conflict resolution
measure. This output decoding method is called defuzzifiosherel is the number of quantized values which reach their
tion. Defuzzification is the process of converting the result ehaximum membership degrees.
the inference into a nonfuzzy value which best represents thd~or classification problems and for systems with rule
membership function of an inferred fuzzy classification actoweights, however, the conventional defuzzification method
One of the most famous method of defuzzification is center isf not appropriate. Due to the nature of the problem, the
area method which can be represented by output of the classification process should not be an analog
m value but a binary value, i.e., the output is not a quantity
Ty = M (14) but a discrete status [13], [14]. This unique characteristic of
> iz Jr(i) classification problem and the introduction of rule weights,
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w pp(fault) APPENDIX A
t x pp(non-fault) THE 15 VARIABLES
- — avg.pp(fauit)
. - avg.pp(not-fault) no variable Remarks
[ . u. 1 m(odd) mean of odd harmonic current
" . 0.27 2 m(odd) mean of absolute odd harmonic current
3 s(odd) standard deviation of odd harmonic current
a 01 4 m{eve) mean of even harmonic current
u » 5 m(eve) mean of absolute even harmonic current
xu x x X 6 s(eve) standard deviation of even harmonic current
" X x 7 m(sub) mean of sub-harmonic current
S IVNE SV L -0.60 8 m(sub) mean of absolute sub-harmonic current
x x x X xX x 9 s(sub) standard deviation of sub-harmonic current
10 m(3rd) mean of third harmonic current
-1 ) To 20 30 11 m(3rd) mean of absqlute third harmonic current
samples 12 s(3rd) standard dewviation of third harmonic current
13 m(2nd) mean of second harmonic current
(@ 14 m(2nd) mean of absolute second harmonic current
15 s(2nd) standard deviation of second harmonic current
1. » pp(fault)
x pp(non-fault)
", aus — avg.pp(fault) where
. ---- avg.pp(not-fauit) o
- . 0.47 fr firing strength of the matched rule of the teimk =
.t PB,PM,--.,NB;
o o- W;, weight of the matched step of the fuzzy rule of the term
= x X X X x kkIPB,PM,---,NB;
T kX XX a4 Cy class identification of the fuzzy rule of the tetil for
Xx Xx  x xxX Class 1 and 2 for Class 2.
VII. SAMPLE EXECUTION OF THE ALGORITHMIC APPROACH
T b T B This example, which uses actual sample data, serves two
samples purposes: 1) to test the algorithm’s overall functionality rel-
ative to membership function and rule generation and 2) to
(b)

test if the derived production rules are appropriate for the
actual problem. The sample data consists of 27 samples of
fault and 41 samples of normal event, which appear faulty; the
data is taken from electric power distribution networks [15].
Fhese data were collected for discrimination studies of low
current and high impedance faults from normal events such as
itching, big motor-load connection, capacitor bank switch-
g, and so on [16]. As the time-domain amplitude change of
e fault current are low, feature parameters are chosen from
equency-domain variables. Harmonic parameters are selected
om 0 to 640 Hz range excluding the driving frequency of 60

. To find statistical measures (or feature) of the parameters,
ean, standard deviation, and mean of the absolute value are
. . X 'S B3iculated. The length of data for measuring these statistical
a measuring weight. We place the weights on the left side fMeasures is limited to 30 cycles of 60-Hz waveform. Fifteen

thg Ie_;/gr |f_the (I:]lass |den|t|f|f[:rz]1t|olﬁ7k =2 atlr?dt (_)tn_the ”?ht (iariables of the statistical measures of the harmonic contents
side if C;, = 1. If we scale the lever so that it is centere re shown in Appendix A.

on zero, Class 1 includes _aII points on t_he right side of _theWe arranged fault data and normal data to form a training
pivot pointpp, and Class 2 includes all points on the negativVet and a testing set; this was accomplished using diagonal

side. Therefore, the sign of the final defuzzified output, tl}ﬁjmbers from a table of random units [17]. If we meet an
pivot point pp, decides the class of the sample: Class fipif even number in the table, starting from the first sample, we

IS positive and plass 2 if negative. ut the sample into the training set; otherwise, we put it in
The pivot point pp fqr defuzzification, therefore, can b e testing set. We stop the process once we have half of
expressed by the following: the fault samples in the training set. A similar procedure is
S faWo = S W, performed for normal event samples. Appendix B shows the
p==CGt " Cg 77 m overall sample data with 15 variables; the truing set and the
2y, Wi testing set are shown in Appendix C and D, respectively.

Fig. 7. Comparison of two match methods.

therefore, require the development of a new defuzzificati
method, which we shall call the “lever and pivot” method.
The lever and pivot concept finds solutions in the uniq
environment of the classification problem: binary output a
multiple sets of firing strength, weight, and class identificatiog.I
The basic idea of this method is to place the “weights” in t
location designated by the firing “length” and then to mov
the pivot to the position which balances the lever (see Fig.
A firing strength determines the distance from the center
the lever and the weight of the step of the fired rule acts

(16)
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APPENDIX B
SampLE Data (A)

A vl vZ vl vi vh v v7 v& vl  vi0 vil v

T

2 v13 vl4 v1l5 class

1 -0.170 9.304 19.114 0.026 2.008 4.393 -0.140 3.271 6.660 -0.074 4.181 8.537 -0.049 0.980 1.975 F
3

2 0.215 29.866 34.525 -0.197 7.288 9.267 0.262 10.630 13.892 0.071 13.657 15.691 0.095 3.652 4.642 F
3 0.106 24.667 30.498 -0.089 5.720 7.411 O0.167 10.649 14.381 0.060 11.200 13.758 0.026 2.831 3.543 F
4 0.037 12.703 18,046 0.060 3.500 4.957 0.127 6.849 12.536 0.028 5.729 8.195 -0.034 1.829 2.469 F
5 0.024 27.285 32.204 -0.008 6.463 7.965 0.223 10.861 13.954 -0.005 12.481 11.683 0.025 3.063 3.786 F
6 0.024 21.807 27.810 -0.084 4.505 5.835 0.201 7.169 9.275 -0.0i4 9.320 12.580 0.050 2.020 2.530 F
7 0.233 14.640 20.383 0.166 3.395 4.609 0.152 6.164 9.033 -0.096 6.629 9.153 -0.074 1.579 2.095 F
8 0.1R0 6.101 7.874 -0.162 3.121 4.106 O0.11&8 3.998 5.753 0.080 2.737 3.530 0.048 1.711 2.169 F
9 0.015 6.457 R.075 -0.022 2.843 3.764 0.004 5.419 8.268 0.017 2.916 3.647 0.018 1.462 1.903 F
10 0.125 5.771 9.247 -0.130 2.248 3.261 0.170 3.297 5.121 0.051 2.611 4.170 0.054 1.285 1.839 F
11 0.038 2.506 2.942 -0.037 1.362 1.801 0.02% 1.914 3.078 0.020 1.128 1.321 0.014 0.678 0.883 F
12 0.078 2.303 2.746 -0.066 1.292 1.784 0.104 1.937 3.248 0.034 1.028 1.225 0.035 0.700 0.938 F
13 0.035 3.589 4.960 -0.043 1.985 2.853 0.033 2.747 4.541 0.016 1.596 2.215 0.012 1.120 1.562 F
14 0.004 1.251 1.477 -0.001 0.306 0.377 0.005 0.365 0.419 0.003 0.532 0.597 -0.004 0.144 0.194 F
15 -0.001 2.816 3.946 0.004 1.291 2.020 0.008 2.245 4.384 0.002 1.25) 1.729 0.004 0.699 1.092 F
16 0.017 2,323 3.694 -0.021 0.698 1.242 0.028 1.465 3.331 0.007 1.026 1.615 0.010 0.378 0.698 F
17 0.045 1.382 1.744 -0.046 0.624 0.941 0.050 1.020 1.878 0.020 0.606 0.760 0.017 0.335 0.510 F
19 0.128 4.623 7.126 -0.128 1.796 2.700 0.142 2.582 4.245 0.053 2.071 3.184 0.045 0.958 1.441 F
20 0.047 5.774 8.134 -0.023 2.157 3.138 0.032 3.540 5.688 0.023 2.605 3.647 0.010 1.217 1.722 F
21 0.004 14.352 17.208 0.017 4.264 5.565 -0.064 7.425 11.357 0.007 6.507 7.785 -0.016 2.204 2.792 F
22 0.072 21.133 25.265 -0.039 4.904 6.279 -0.008 7.887 10.004 0.027 9.590 11.340 0.022 2.542 3.157 F
23 -0.105 12.539 16.741 0.036 3.767 5.016 -0.103 6.390 9.620 -0.049 5.703 7.574 0.007 1.998 2.523 F
24 0,133 4.242 7.379 0.134 Z2.1RY 2,877 0.302 3.030 5.536 0.057 1.834 3.305 0.041 1.230 1.624 F
256 0.031 2.725 3.394 -0.034 1.699 2.211 0.078 2.325 3.622 0.015 1.207 1.504 0.024 0.944 1.237 F
26 0.112 7.644 10.628 -0.131 2.676 3.647 0.075 5.051 7.978 0.046 3.455 4.771 0.047 1.435 1.931 F
27 0.000 7.907 11.275 -0.006 2.339 3.232 0.005 3.747 5.833 0.001 3.542 4.962 -0.009 1.305 1.758 F
28 0.703 1.231 1.435-0.719 0.782 0.505 O0.822 0.994 0.931 0.303 0.505 0.539 0.282 0.327 0.272 NF
29 0.672 3.365 4.011 -0.682 0.743 0.571 0.803 0.985 0.975 0.292 0.968 1.066 0.274 0.325 0.311 NF
30 0.645 3.308 3.937 -0.667 0.669 0.394 0.774 0.845 0.644 0.282 0.944 1.038 0.264 0.286 0.222 NF
31 0.637 3.230 3.829 -0.653 0.6556 0.368 0.758 O0.817 0.603 0.276 0.871 0.955 0.259 0.281 0.217 NF
32 0.639 3.203 3.759 -0.651 0.652 0.346 0.755 0.802 0.564 0.274 0.802 0.877 0.259 0.284 0.219 NF
33 0.640 2,171 2.776 -0.653 0.699 0.441 0.760 0.990 0.980 0.279 0.626 0.700 0.259 0.297 0.233 NF
34 0.649 1.114 1.184 -0.662 0.662 0.222 0.766 0.766 0.349 0.280 0.493 0.510 0.262 0.262 0.098 NF
35 0.647 1.089 1.154 -0.660 0.660 0.218 0.767 0.767 0.336 0.280 0.475 0.489 0.263 0.263 0.099 NF
36 0.653 1.021 1.057 -0.671 0.671 0.201 0.780 0.780 0.319 0.283 0.437 0.441 0.266 0.266 0.097 NF
37 0.657 0.878 0.845 -0.673 0.673 0.180 0.781 0.781 0.268 0.284 0.357 0.335 0.268 0.268 0.093 NF
38 0.667 O0.886 0.853 -0.679 0.679 0.172 0.788 0.788 0.270 0.288 0.358 0.334 0.269 0.269 0.091 NF
39 0.654 2.464 3118 -0.674 0.718 0.528 0.783 0.989 1.031 0.285 0.694 0.782 0.267 0.312 0.285 NF
40 0.665 J3.258 3.816 -0.672 0.673 0.346 0.780 0.824 0.576 0.285 O.8&17 0.892 0.267 0.285 0.221 NF
41 0.659 3.275 3.868 .0 673 0.676 0.367 0.782 0.832 0.600 0.287 O0.871 0.956 0.267 0.289 0.227 NF
42 0.655 3.379 4.019 -0.670 0.676 0.394 0.779 0.851 0.650 0.285 0.953 1.047 0.266 0.291 0.232 NF
43 0.653 3.346 3.992 -0.668 0.672 0.401 0.777 0.850 0.660 0.284 0.977 1.074 0.265 0.292 0.230 NF
44 0.658 3.310 3.940 -0.670 0.672 0.397 0.776 0.847 0.650 0.282 0.954 1.049 0.266 0.290 0.227 NF
45 0.646 2.492 3.172 -0.669 0.688 0.461 0.779 0.983 0.998 0.281 0.714 0.820 0.266 0.296 0.247 NF
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SampLE Data (B)

46 0.655 1.007 1.060 -0.667 0.667 0.183 0.771 0.774 0.326 0.283 0.435 0.438 0.265 0.265 0.092 NF
A7 1.931 2,003 1.375 -1.977 1.977 0.336 2.297 2.297 0.444 0.835 0.835 0.499 0.785 0.785 0.147 NF
48 1.095 1.343 1.196 ~1.118 1.11& 0.298 1.297 1.297 0.389 0.473 0.495 0.390 0.444 0.444 0.133 NF
49 0.415 0.943 1.070 -0.423 0.426 0.241 0.491 0.502 0.313 0.179 0.293 0.308 0.168 0.177 0.121 NF
50 0.007 0.86 1.066 -0.006 0.152 0.189 0.010 0.230 0.284 0.003 0.267 0.306 0.004 0.081 0.101 NF
51 O0.118 0.713 O0.871 0.122 0.1&83 0.1&2 0.143 0.285 0.326 -0.051 0.285 0.318 0.049 0.087 0.097 NF
5 0.031 0.822 0.974 0.033 0.170 0.198 0.038 0.254 0.306 0.014 0.357 0.400 -0.012 0.073 0.092 NF
53 0.182 0.924 1.063 0.i88 0.230 0.214 0.218 0.321 0.331 0.079 0.409 0.454 0.075 0.101 0.098 NF
54 0,424 1.047 1.183 0.436 0.426 0.221 0.506 0.51& 0.344 0.184 0.454 0.490 0.172 0.176 0.098 NF
55 0.635 1.022 1.077 0.650 0.650 0.203 0.756 0.757 0.323 0.275 0.433 0.439 0.258 0.258 0.096 NF
56 0.774 1.029 0.985 0.788 0.78&8 0.196 0.914 0.914 0.305 0.334 0.422 0.397 0.313 0.313 0.097 NF
57 0.835 1.003 0.877 0.861 0.851 0.172 0.987 0.987 0.271 0.361 0.394 0.331 0.337 0.337 0.091 NF
58 0.833 0.936 0.739 0.850 0.850 0.159 0.987 0.987 0.237 0.361 0.370 0.269 0.337 0.337 0.090 NF
59 0.787 1.055 1.019 0.805 0.805 0.236 0.93% 0.954 0.444 0.340 0.371 0.297 0.319 0.319 0.114 NF
60 0.728 1.121 1.160 0.745 0.745 0.181 0.867 0.867 0.273 0.315 0.380 0.349 0.296 0.296 0.095 NF
61 0.677 1.145 1.231 0.695 0.695 0.191 0.806 0.806 0.289 0.294 0.405 0.396 0.275 0.275 0.100 NF
62 0.608 0.882 0.891 0.621 0.626 0.333 0.71& 0.733 0.431 0.262 0.383 0.386 0.246 0.250 0.139 NF
63 1.351 1.399 0.962 1.380 1.380 0.249 1.602 1.602 0.354 0.585 0.595 0.415 0.548 0.548 0.108 NF
64 1.653 1.655 0.893 1.68& 1.688 0.185 1.959 1.959 0.288 0.715 0.715 0.386 0.670 0.670 0.089 NF
65 1.575 1.575 0.769 1.60R 1.608 0.175 1.&67 1.867 0.272 0.682 0.682 0.318 0.639 0.639 0.093 NF
66 1.253 1.263 0.650 1.287 1.287 0.187 1.495 1.495 0.263 0.541 0.541 0.257 0.511 0.511 0.096 NF
67 0.875 0.935 0.680 0.806 0.896 0.190 1.042 1.042 0.273 0.379 0.387 0.273 0.356 0.356 0.095 NF
68 0.551 0.817 0.834 0.568 O0.568 0.189 0.659 0.661 0.298 0.240 0.354 0.353 0.226 0.226 0.092 NF

Once training and testing samples are arranged, we deritie fuzzy membership functions of the seven terms. Then,
membership functions and production rules from the trainingsing the derived rules, two inference methods are applied
samples. The testing samples are used to check the perfimultaneously to compare results. We apply pivot balance
mance of the production rules. For each of the 15 variablakfuzzification to the output fuzzy sets. Table VIII shows the
three levels of thresholds are calculated for eight fuzzy termesults of the test. Using the “round match” method, the first
using the entropy minimization process; the seven threshoftlnd was matched and fired for every sample and, thus, the
values of each variable are shown in Appendix E. We thenatch stopped after the first round. A minus sign after a result
proceed to locate left edge points, center points, and righticates that the sample was assigned to the normal (nonfault)
edge points of the membership functions. For convenience, @llent class by the method.
the membership functions are assigned triangular shape exceptor fault class samples, we have three incorrect classifica-
for the sets at the end points, which are assigned trapezoitiahs with the “overall match” method and only one incorrect
shape. For the triangular sets, the degree of membershipclafssification with the “step match” method. Samples in the
the element at the center point is 1.0 and the degrees“oferall match” method differ more between classed with
membership at the right and left edge points are 0.0. respect topp values; this may have implications for the

For production rule generation, training samples are cofsecurity” of the classification. This is illustrated in Fig. 7.
verted into binary values for each of the fuzzy terms. Eadthe fault samples and normal samples in the “overall match”
sample value is assigned the value “1” for the fuzzy setre placed farther away from the reference than those in the
in which it has highest membership degree. Digit inde%tound match” method: the distance between phis of fault
calculation finds which variable is most important and hoand normal samples is 0.87 in the “overall match” and 0.81 in
many steps should be covered to construct fuzzy term ruléise “round match” method. The “overall match” method may
All the mean probabilities (rule weights) are also calculatetie used, therefore, for more sensitive fault identification, while
Appendix F shows the production rules of the training samplee “round match” method may be better for greater security
data. Each fuzzy term has a rule (fuzzy term rule) with a withgainst false identification.

a few or more steps (or branches) of the decision process. The significance of this example is not that this algorithmic
The final step of the example is to test the producticepproach works well in classification problem, but that the
rule (which contains seven fuzzy term rules) with the testirmjgorithm appropriately generates membership functions and
sample data. The testing sample data are first fuzzified usprgpduction rules. Our example is sufficient to show that that
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APPENDIX C
TRAINING DATA

4 vl v2 v3 v4 v5 vB v7 v8 vy v1i0 vil vi2 vi3 vi4d v15 class
1 -0.170 9.304 19.114 0.026 2.008 4.393 -0.140 3.271 6.660 -0.074 4.181 8.537 -0.049 0.980 1.975 F
4 0.037 12.703 18.098 0.060 3.500 4.957 0.127 6.849 12.536 0.028 5.729 8.195 -0.034 1.829 2.463 F
6 ~0.024 21.807 27.810 -0.084 4.505 5.835 0.201 7.163 9.275 -0.014 9.920 12.580 0.050 2.020 2.530 F
7 -0.233 14.540 20.383 0.166 3.395 4.609 0.152 6.164 9.033 -0.096 6.629 9.153 -0.074 1.579 2.095 F

13 0.035 3.589 4.960 -0.043 1.985 2,853 0.033 2.747 4.541 0.016 1.596 2.215 0.012 1.120 1.562 F
17 0.045 1.382 1.744 0.046 0.624 0.941 0.050 1.020 1.878 0.020 0.606 0.760 0.017 0.335 0.510 F
19 0.128 4.623 7.126 0.128 1.796 2.700 0.142 2.582 4,245 0.053 2.071 3.184 0.045 0.958 1.441 F
22 0.072 21.133 25.265 0.039 4.904 6.279 0.008 7.887 10.004 0.027 9.590 11.340 0.022 2.542 3.157 F
231 0.105 12.539 16.741 0.036 3.767 5.016 0.103 6.300 9.620 -0.049 5.703 7.574 0.007 1.998 2.523 F
24 0.133 4.242 7.379 0.134 2,189 2.877 0.302 3.030 5.536 0.057 1.834 3.305 0.041 1.230 1.624 F
25 0.031 2.725 3.394 0.034 1.699 2.211 0.07% 2.325 3.622 0.015 1.207 1.504 0.024 0.944 1.237 F
26 0.112 7.641 10.628 0.131 2.676 3.647 0.075 5.051 7.978 0.046 3.455 4.771 0.047 1.435 1.931 F
27 0.000 7.907 11.275 -0.006 2.339 3.232 0.005 3.747 5.833 0.001 3.542 4.962 -0.009 1.305 1.758 F
29 0.672 3.365 4.011 -0.682 0.743 0.571 0.803 0.985 0.975 0.292 0.968 1.066 0.274 0.325 0.311 NF
30 0.645 3.308 3.937 0.667 0.669 0.394 0.774 0.845 0.Hh44 0.282 0.944 1.038 0.264 0.286 0.222 NF
32 0.639 3.203 3.759 -0.651 0.652 0.346 0.755 0.802 0.564 0.274 0.802 0.877 0.259 0.284 0.219 NF
33 0.640 2.171 2.776 -0.653 0.699 0.441 0.760 0.990 0.980 0.279 0.626 0.700 0.259 0.297 0.233 NF
31 0.649 1.114 1.184 0.662 0.662 0.222 0.766 0.766 0.349 0.280 0.493 0.510 0.262 0.262 0.098 NF
36 0.653 1.021 1.057 -0.671 0.671 0.201 0.7RO 0.780 0.319 0.283 0.437 0.441 0.266 0.266 0.087 NF
37 0.657 0.878 0.845 -0.673 0.673 0.180 0.7R1 0.781 0.268 0.284 0.357 0.335 0.268 0.268 0.093 NF
40 0.665 3.258 3.816 -0.672 0.673 0.346 0.780 0.824 0.576 0.285 0.817 0.892 0.267 0.285 0.221 NF
41 0.659 3.275 3.R6R -0.673 0.676 0.367 0.782 0.R32 0.600 0.287 0.871 0.956 0.267 0.289 0.227 NF
42 0.655 3.379 4.019 -0.670 0.676 0.394 0.779 0.851 0.650 0.285 0.953 1.047 0.266 0.291 0.232 NF
43 0.653 3.346 3.992 -0.668 0.672 0.401 0.777 0.850 0.660 0.284 0.977 1.074 0.265 0.292 0.230 NF
48 1.095 1.343 1.196 -1.118 1.118 0.298 1.297 1.297 0.389 0.473 0.495 0.390 0.444 0.444 0.133 NF
49 0.415 0.943 1.070 -0.423 0.426 0.241 0.491 0.502 0.313 0.179 0.293 0.308 0.168 0.177 0.121 NF
50 0.007 0.866 1.056 -0.006 0.152 0.189 0.010 0.230 0.284 0.003 0.267 0.306 0.004 0.081 0.101 NF
51 -0.118 0.713 0.871 0.122 0.183 0.182 -0.143 0.285 0.326 -0.051 0.285 0.318 -0.049 0.087 0.097 NF
52 -0.031 0.822 0.974 0.033 0.170 0.198 0.038 0.254 0.306 -0.014 0.357 0.400 -0.012 0.073 0.092 NF
53 0.182 0.924 1.063 0.18%8 0.230 0.214 0.218 0.321 0.331 0.079 0.409 0.454 0.075 0.101 0.098 NF
55 0.635 1.022 1.077 0.650 0.650 0.203 0.756 0.757 0.323 0.275 0.433 0.439 0.258 0.258 0.096 NF
57 0.835 1.003 0.877 0.851 0.851 0.172 0.987 0.987 0.271 0.361 0.394 0.331 0.337 0.337 0.081 NF
59 0.787 1.055 1.019 0.805 0.805 0.236 0.934 0.954 0.444 0.340 0.371 0.297 0.319 0.319 0.114 NF

the generated production rules with rule weights based tire detailed example. In the future, an advanced algorithmic

the fuzzy membership functions are relevant to real worldethod may be evolved for generic fuzzy logic applications.
situations.
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APPENDIX D
TeST DATA
4 vl v2 v vi v5 vl V7 v& v vi0 vll vi2 v13 vid vl5 class
2 0.215 29.866 34,535 -0.197 T.288 9.267 0.262 10.630 13.892 0.071 13.657 15.691 0.095 3.652 4.642 F
3 0.106 24.667 30.498 0.0RY 5.720 7.411 0.167 10.649 14.381 0.060 11.200 13.758 0.026 2.831 3.543 F
5 0.024 27.285 32,204 -0.008 6.469 7.965 0.223 10.861 13.954 0.005 12.481 14.683 0.025 3.063 3.786 F
& 0.180 6.101 7.874 -0.162 3.121 4.106 O.118 3.998 5.753 O0.0B0 2.737 3.530 0.048 1.711 2.169 F
9 0.045 6.457 R.075 -0.022 2.843 3.764 0.004 5.419 &.268 0.017 2.916 3.647 0.018 1.462 1.903 F
10 0.125 5.771 9.247 -0.130 2.248 3.261 0.170 3.297 5.121 0.051 2.611 4.170 0.054 1.285 1.839 F
11 0.038 2.506 2.942 -0.037 1.362 1.801 0.024 1.914 3.078 0.020 1.i28 1.321 0.014 0.678 0.883 F
12 0.078 2.303 2.746 -0.066 1.292 1.784 0.104 1.937 3.248 0.034 1.028 1.225 0.035 0.700 0.938 F
14 0.004 1.251 1.477 -0.001 0.306 0.377 -0.005 0.365 0.449 0.003 0.532 0.587 -0.004 0.144 0.194 F
15 -0.001 2.816 3.946 0.001 1.291 2.020 0.008 2.245 4.384 -0.002 1.251 1.729 0.004 0.699 1.092 F
16 0.017 2.323 3.694 -0.021 O0.69& 1.242 0.028 1.465 3.331 0.007 1.026 1.615 0.010 0.378 0.698 F
20 0.047 5.774 &.134 -0.023 2.157 3.138 0.032 3.540 5.688 0.023 2.605 3.647 0.010 1.217 1.722 F
21 0.004 14.352 17.298 0.017 4.264 5.565 0.064 7.425 11.357 0.007 6.507 7.785 -0.016 2.204 2.792 F
28 0.703 1.231 1.435 -0.719 0.782 0.505 0.822 0.994 0.931 0.303 0.505 0.539 0.282 0.327 0.272 NF
31 0.637 3.230 3.829 0.653 0.6565 0.368 0.759 0.817 0.603 0.276 0.871 0.955 0.259 0.281 0.217 NF
35 0.647 1.089 1.15% 0.660 0.660 0.218 0.767 0.767 0.336 0.280 0.475 0.489 0.263 0.263 0.099 NF
38 0.667 0.886 0.853 0.679Y 0.679 0.172 0.788 O0.788 0.270 0.288 0.358 0.334 0.269 0.269 0.091 NF
44 0.658 3.310 3.940 -0.670 0.672 0.397 0.776 0.847 0.650 0.282 0.954 1.0439 0.266 0.290 0.227 NF
45 0.646 2.492 3.172 -0.669 0.688 0.461 0.779 0.983 0.998 0.281 0.714 0.820 0.266 0.296 0.247 NF
46 0.655 1.007 1.050 -0.667 0.667 0.193 0.774 0.774 0.326 0.283 0.435 0.438 0.265 0.265 0.092 NF
A7 1.931 2.003 1.3756 1.977 1.977 0.336 2.297 2.297 0.444 0.835 0.835 0.499 0.785 0.785 0.147 NF
54 0.424 1.047 1.183 -0.436 0.436 0.221 0.506 0.518 0.344 0.184 0.454 0.490 0.172 0.176 0.098 NF
56 0.774 1.029 0.985 -0.788 0.788 0.196 0.914 0.914 0.305 0.334 0.422 0.397 0.313 0.313 0.097 NF
53 0.787 1.055 1.019 -0.805 0.805 0.236 0.931 0.954 0.444 0.340 0.371 0.297 0.319 0.319 0.114 NF
60 0.728 1.121 1.160 -0.745 0.745 O0.181 0.867 0.867 0.273 0.315 0.380 0.349 0.296 0.296 0.095 NF
61 0.677 1.145 1.231 -0.695 0.695 0.191 0.806 0.806 0.289 0.294 0.405 0.396 0.275 0.275 0.100 NF
62 0.608 0.882 0.891 -0.621 0.626 0.333 0.71&8 0.733 0.431 0.262 0.383 0.386 0.246 0.250 0.139 NF
63 1.351 1.399 0.962 -1.380 1.380 0.249 1.602 1.602 0.354 0.585 0.595 0.415 0.548 0.548 0.108 NF
64 1.653 1.655 0.893 - 1.688 1.68B8 0.185 1.959 1.959 0.288 0.715 0.715 0.386 0.670 0.670 0.089 NF
65 1.575 1.575 0.769 -1.608 1.608 0.175 1.867 1.867 0.272 0.682 0.682 0.318 0.639 0.639 0.093 NF
66 1.259 1.263 0.650 -1.287 1.287 0.187 1.495 1.495 0.263 0.544 0.544 0.257 0.511 0.511 0.096 NF
67 0.875 0.935 0.680 -0.896 0.896 0.190 1.042 1.042 0.273 0.379 0.387 0.273 0.356 0.356 0.095 NF
68 0.554 0.817 0.834 -0.568 0.568 0.189 0.659 0.661 0.298 0.240 0.354 0.353 0.225 0.226 0.092 NF

[3] L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability
Analysis Englewood Cliffs, NJ: Prentice-Hall, 1994.

[4] C.T.Linand C.S. Lee, “Neural network-based fuzzy logic control and APPENDIX E
decision system,IEEE Trans. Computvol. 40, no. 2, pp. 1320-1336, THRESHOLD VALUES
Feb. 1991.

[5] E. Sanchez, “Fuzzy logic knowledge systems and artificial neuralvm_iab](‘ o %, X, X X % X X
networks in medicine and biology,” iAn Introduction to Fuzzy Logic . 3 # % t % = s
Application in Intelligent System®. R. Yager and L. A. Zadeh, Eds. 1 0.000  0.026 0.033 0.165 0.168 0.212 0.256
Boston, MA: Kluwer, 1992, pp. 235-251. o 2 1116 3.402 3426 3.877  3.922 A714 5.625

[6] H.-J. Zimmermann,Fuzzy Set Theory and Its Applicationgnd ed. 3 0.865  1.249 3434 4.890 4.947  6.036 7.124
Boston,'MA: Kluwer, 1991. ) o 1 116 -1.070 -1.024  -0.165 -0.149  -0.027 0.127

[7] P. J. King and E. H. Mamdani, “The application of fuzzy control 5 0437 0.627  0.663 1.340  1.30 1.518  1.687
systems to industrial processes,”"Rmc. Workshop Discrete Syst. Fuzzy 6 0.174 0,203 0.232  0.783  0.796  1.058  1.319
Reasoning Queen Mary College, Univ. London, U.K., Jan. 1976, pp. 7 -0.001  0.026 0.207  0.355  0.355  0.402  0.447
235-243. 8 0.232  0.268  0.305 0.996  1.030 1.340 1.668

[8] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis 9 0.271  0.329  0.388  1.495 1.522 2.047  2.571
with a fuzzy |Ogic Control|ery”|nt_ J. Man Mach. Stud|ewo| 7, pp. 10 0.001 0.006 0.010 0.075 0.076 0.095 0.114
1-13, 1975. it 0.520  0.991 1,003 1.232 1.254 1.667 2.079

[9] R. ChristensenFundamentals of Inductive Reasonind.incoln, MA: 12 0.705  1.104 11256 1533 1.533  2.086  2.610
Entropy Ltd., 1980. 13 -0.070  0.010  0.012 0.056 0.056 0.075  0.093

[10] . Entropy Minimax Sourcebook Lincoln, MA: Entropy Ltd., 14 0.085 0.320 0.332  0.567 0.567 0.666 0.750
1980, vol. -1V 15 0.092 0,106 0.121 0.398  0.404  0.536  0.667
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APPENDIX F
GENERATED RULES

Term _ Step# digit  binary class r Steps of the Production Rule
PB 1 15 1 1 0933 1F s(2nd) is PB, THEN fault.
2 13 1 2 0944 ELSE IF m(2nd) is PB, THEN not-fault.
3 4 I 2 0.667 ELSE IF m(eve) is PB, THEN not-fault.
4 15 0 2 0.667 ELSE IF s(2nd) is not PB, THEN not-fault.
ENDIF
PM 1 4 1 1 0.769 IF m(eve) is PM, THEN fault.
2 11 1 1 0.667 ELSE IF m(3rd) is PM, THEN fault.
3 2 1 1 0.667 ELSE IF m(odd) is PM, THEN fault.
4 13 i 2 0.667 ELSE IF m(2nd) is PM, THEN non-fauit.
5 8 1 2 0.667 ELSE IF m(sub) is PM, THEN non-fault.
6 15 0 2 0.810 ELSE IF s(2nd) is not PM, THEN not-fauit.
ENDIF
PS 1 4 1 1 0800 IF m(eve) is PS, THEN fault.
2 8 1 i 0.667 ELSE IF m(sub) is PS, THEN fault.
3 3 1 1 0.667 ELSE IF s(odd) is PS, THEN fault.
4 10 1 2 0.667 ELSE IF m(3rd) is PS, THEN not-fault.
5 15 0 2 0.667 ELSE IF s(2nd) is not PS, THEN not-fault.
ENDIF
ZE 1 8 1 2 0.938 IF m(sub) is ZE, THEN not-fault.
2 4 1 2 0.750  ELSE IF m(eve) is ZE, THEN not-fault.
3 10 1 1 0.800 ELSE IF m(3rd) is ZE, THEN fault.
4 11 1 1 0.667 ELSE IF m(3rd) is ZE, THEN fault.
5 15 0 1 0.688 ELSE IF s(2nd) is not ZE, THEN fault.
ENDIF
NS 1 5 1 1 0.941 IF m(eve) is NS, THEN fault.
2 13 1 1 0900 ELSE IF m(2nd) is NS, THEN fault.
3 8 1 2 0.750 ELSE IF m(sub) is NS, THEN not-fault.
4 10 1 1 0667 ELSE IF m(3rd) is NS, THEN fault.
5 15 0 1 0.600 ELSE IF s(2nd) is not NS, THEN fault.
ENDIF
NM 1 14 1 2 0.933 IF m(2nd) is NM, THEN not-fault.
2 9 1 2 0.833  ELSE IF s(sub) is NM, THEN not-fault
3 7 1 1 0.857 ELSE IF m(sun) is NM, THEN fault.
4 15 1 2 0.667 ELSE IF s(2nd) is NM, THEN not-fault.
5 3 1 2 0.667 ELSE IF s(odd) is NM, THEN not-fault.
6 13 1 1 0.750  ELSE IF m(2nd) is NM, THEN fault.
7 15 0 1 0800 ELSE IF s(2nd) is not NM, THEN fault.
ENDIF
NB 1 12 1 2 0.889 IF s(3rd) is NB, THEN not-fault.
2 10 1 1 0.875 ELSE IF m(3rd) is NB, THEN fauit.
3 13 1 1 0.667 ELSE IF m(2nd) is NB, THEN fault.
4 7 1 1 0.667 ELSE IF m(sub) is NB, THEN fault.
5 15 0 2 0.500 ELSE IF s(2nd) is not NB, THEN not-fault.

ENDIF
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