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Abstract: An adaptive-element model approach
for high impedance fault detection is presented.
The system employs multiple detection algorithms
using different frequency parameters. To obtain a
final fault/nonfault classification for a power dis-
tribution feeder, a revised adaptive-element model
is applied using expert weights associated with
each algorithm-parameter pair. The adjustment of
the weight, assigned by experts, is performed by
an elliptic formula. This revised adaptive-element
model is different from the original adaptive-
element scheme in two components: the com-
bination method for multiple inputs and the
learning algorithm for weight correction. This
system when tested using examples shows good
performance, especially in terms of security

against false identification.

1 Introduction

The clearing of distribution line faults is usually accom-
plished by devices which can sense the overcurrent pro-
duced by a fault and react to disconnect the faulted
section of the feeder from the healthy section. However,
high-impedance faults do not draw sufficient fault current
to be detected by such a conventional protective scheme.
Such faults may be cause by a downed conductor on the
ground or in contact with a grounded object. Arcing is
often associated with these faults, which may result in a
fire hazard or damage to the publics.

The behaviour of an arc has been studied by many
scientists and for a power system can be summarised as
follows. If two conductors are separated by a small gap
and have a small potential difference between them, the
air acts as an insulator. As the potential difference is
increased, the resistance of the air gap decreases and the
current flows between the conductors. Rapid ionisation
accounts for the sudden ability of the air to conduct
current [1]. However, because of the varying conditions
of the gap distance, loading level, and surface types, it is
nCost difficult to formalise an arc model to calculate the
arcing current. Therefore, almost universally, researchers
in the detection of high-impedance faults concentrate on
the harmonic and noise currents generated by the arc.
Current harmonics generated by arcing have their origin
in the nonlinear voltage—current characteristics of the arc.
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The harmonic current characterised by an arc is variable
and odd, even, and subharmonic components are present.
Many techniques have been proposed for dealing with
the long standing problem of undetected downed dis-
tribution conductors. Some of the detection techniques
proposed are: energy algorithm [2], randomness algo-
rithm [3], phase relationship algorithm [4], sequnce
component algorithm [5], and amplitude ratio algorithm
[6]. Some involve the use of only standard substation
relaying inputs; others require the addition of special
equipment, either at the substation or at distributed loca-
tions on the feeder. Several of these techniques have been
implemented, either at the prototype level or at the pro-
duction level; others have only been suggested. The dis-
cussion on each detection technique and of its
performance can be found in References 7 and 8.

It is relatively easy to detect the presence of any fault,
including a high-impedance fault, on a distribution
feeder. However, it is a most difficult task to distinguish
high-impedance faults from many normal system events
and activity. In addition to the characteristic of very low
fault currents, high-impedance faults behave differently
under different fault situations and, in many cases,
emulate the current signatures of normal switching
events. The discrimination of faults from these normal
events determines to a large extent the balance between
security and dependability for a distribution protection
system. Research over the past few years has led to the
development of several different detection methods which
have shown good individual performance [9-12].
However, it has become apparent to these researchers
that no single algorithm will offer a sensitive and dis-
criminatory fault detection. Given our knowledge of the

. behaviour of low current faults and the satisfactory

detection performance of several algorithms, we decided
to use multiple algorithms with several different electrical
parameters in the construction of a detection system
[13].

Because of the different performance of each algo-
rithm, when we design a detection system we consider the
performance index of each detection algorithm. The per-
formance of each detection algorithm is expressed in
terms of experts’ confidence (or basic weight). One of the
many difficulties associated with the development of a
detection system is the fact that the information from
each detection algorithm contains a considerable degree
of uncertainty. Therefore, the output indication from
each algorithm is converted, by experts’ confidence on its
performance, into the level of weight expressed by a
number between 0 and 1. To accommodate these multi-
ple weights of the algorithms, an intelligent combination
of multiple pieces of evidence is needed.

The evidence of a status can be derived from the
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experts’ basic weights and the algorithm’s input to the
detection system. The supportive and nonsupportive
evidence of fault are combined into a final combined
evidence for fault identification. In addition, we show
how basic weights can be adjusted using expérts’ experi-
ence combined with an adaptive classification feature for
online adaptation to changing feeder situations. The
principal technology in this practice is very much similar
to a neural network model: the adaptive element or filter-
ing approach. However, the components of the overall
system are not the same. Our detection system is based
on the combination of the weights (confidence or beliefs)
on each detection algorithm and the calibration of these
weights with known patterns of events. The combination
of the weights is accomplished with the evidence com-
bination formula proposed by Dempster and Shafer [14].
For learning algorithm, we used a scoring rule instead of
well known LMS (least mean square) algorithm. The
revised adaptive-element model is good especially when
the input vector X, which is produced by the detection
algorithms, contains uncertain information.

2 Adaptive filtering network

The adaptive filtering network is said to originate from B.
Widrow and M.E. Hoff’s adaptive linear element. As the
name implies, the idea behind this network is to make a
system so that it can adjust filtering noise from a signal.
The significance of the adaptive filtering approach is that
this network learns through an iteration procedure. This
significance is well reflected in the frequent use of this
network as a neural network model. This adaptive linear
element also introduced a learning law, the LMS algo-
rithm. More on the history and basic introduction of this
network can be obtained from the book written by
Caudill and Butler [15].

In a two-input adaptive linear element (Adaline), we
separate input patterns into two categories depending on
the values of the weights. A critical threshold condition
occurs when the linear output S equals zero:

S=XW,+X,W,+W,;=0
therefore,

xoo Wiy, o
W, W,
where W, indicates the kth weight and X, the kth input
element, and W, is a bias weight connected to a constant
input X, = 1. This bias weight is to effectively control the
threshold level. This relation forms a graph of a line
having slope of — W,/W, and intercept — W,/W,.
The LMS algorithm of a single Adeline follows the
minimal disturbance principle. The weight update equa-
tion for the original form of the algorithm is

1

& X
Wiy =W +a 25 2
| Xl

The present error g is defined to be the difference
between the desired response d, and the linear output
S, = WTX, before adaptation:

g =d, — WIX, (3
In accordance with the LMS rule of equation, the weight
change is
& X,
| X1

AW =Wy —Wi=a “

154

Therefore, the error is reduced by a factor of a as the
weights are changed while holding the input pattern fixed
(¢-LMS rule) [16]. A single Adaline with n binary inputs
and one binary output, is depicted in Fig. 1. This Adaline
system has been applied to weather forecasting with a
single neuronal model, speech recognition with real-time
base, noise cancelling, and echo cancelling [17].

Xok=1 Wy
weight vector

Xk X Woxk
inpu
vector ___.__S_kp
Wik
X1k
Wak > il >
X2k i —]=
X Wak binary
3k output
.
. W,
L
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L AW, €k Y dk
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Fig. 1  Single Adaline with n binary inputs and one binary output

This adaptive element seems to hold promise for an
adaptive detection of high impedance faults. However,
with uncertainty inputs, we cannot use the original
adaptive element model without changes. When the input
vector contains some degree of uncertainty expressed by
experts’ beliefs or confidence levels, the combination
method of the adaptive element is not appropriate. The
reasoning method for detection with multiple algorithms
requires a method for combining the support for a
hypothesis (i.e. fault status), or for its negation. Two com-
ponents are revised: the combination method and the
weight correction learning algorithm. We used an uncer-
tainty reasoning method for input combination and the
performance maximising scoring rule for weight correc-
tion.

The Dempster—Shafer model recognises the require-
ments for the combination of the uncertainty information
and also provides a formal proposal for its management
[14]. The proposed scoring rule for a learning algorithm
is very different in- principle: while LMS is to minimise
the disturbance, the scoring rule is to maximise the
overall performance of the detection system [18].

3 Fault detection with adaptive element model

In our detection system, we have multiple pieces of infor-
mation from the algorithms. And each algorithm pro-
duces, as its attribute, the number of fault indication
during a certain time interval. From the weights of the
algorithms and the number of fault indications, the
adjusted weights are obtained. Then, with these adjusted
weights and the fault or nonfault indicating information
from the detection algorithms, we calculate the support-
ive evidence and nonsupportive evidence. The com-
bination of the multiple information is actually the
combination of the two pieces of evidence: supportive
and nonsupportive evidence about the fault.

The variables used in the revised adaptive-element
model are three column vectors: the input vector (X)
which consists of the information from muitiple algo-
rithms, the basic weight vector (W,) which is originally
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assigned to each algorithm, and adjusted weight vector
(W,) derived by an elliptic formula using the basic weight
and the number of fault indications of the algorithms.
The function units are the weight adjustment unit, the
evidence calculation and combination unit which calcu-
lates the supportive and nonsupportive evidence based
on the adjusted weights, and the score calculation and
calibration unit which derives the performance score with
given weights and, if necessary, corrects the weights into
the calibrated weights. Fig. 2 sketches the structure of the
detection system with four inputs. The detailed explana-
tion of the system follows.

3.2 Basic weight vector
The output indications of each detection algorithm have
different uncertainty levels, so experts assign basic
weights on the detection algorithms. A basic weight
indicates expert’s confidence level on the detection algo-
rithm in the assumed situation where only one detection
algorithm was employed to detect a fault. Therefore, a
basic weight is independent of other basic weights simi-
larly derived from corresponding detection algorithms.
These basic weights form a basic weight vector {W, | Wy,,
Wy, ..., Wy} of n detection algorithms.

One unique aspect of this basic weight vector W, is

basic weight vector
Wy
Wiy Wap Wap Wip
input vector adjusted
weight
vector Wq
X1 Xy X
¥ X16) VV:“‘ X1y Xaf Xaf Xaf
XoXams X2f) weight 2 evidence
" adjustment W3iq calculation —
X3(X3m X31) unit W and combined
“a combination evidence
X0,z Xat) anit
l desired
t
score calculation and calibration unit ‘_Zﬁ;?ﬁs

Fig. 2  Structure of adaptive detection system

3.1 Input vector

This individual input has two components: the maximum
indication number (X,,) and the number of fault indica-
tions (X ). To explain these two input components, we
need to mention about decision time window. In the
detection of high impedance faults, we do not want to
make a quick and wrong decision based on only one set
of indications from detection algorithms, for the reason
of security (against false indication of fault). Utilities rep-
resentatives have stressed that one of their main concerns
is the minimisation of false detections. The reason for this
position is that, while energised downed conductors are a
public safety hazard, frequent unnecessary service inter-
ruptions can pose safety problems of their own: traffic
signals off, lighting lost in homes and businesses, the
interruption of factory processes, and so on. Certain
normal events like switching might invoke detection
algorithms to indicate a fault [19]. So we may have a
long (when we compare with an overcurrent relaying
situation) decision time window of, for example, 30
seconds. However, we generate a final decision of classi-
fication every second based on the matrix of the set of the
fault/nonfault indications of the detection algorithms, by
adding the newest indication and removing the oldest
indication.

Because each detection algorithm has different pro-
cessing time for its indication, in the long decision time
window, there are multiple numbers of fault/nonfault
indications. Within this decision time window, theoretic-
ally, we have the maximum indication number of each
detection algorithm and the number of fault indications.
Therefore, each algorithm input (X;) in the input vector
{X|X;, X,, -.., X,} holds two pieces of information: the
maximum indication number X,, and the number of
fault indications X, where i = [1, n].
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that, admitting that this scheme is not perfect, the same
basic weight is used to express our confidence on both
classes of status: one’s confidence of a fault when X, > 0
and one’s confidence of nonfault when X, =0. This
seems illogical. It may be ideal to have the second weight
which tells only of nonfault confidence. However, this
kind of weight is not easily derivable when we consider
the environment that, during overall running time of a
certain detection algorithm, the indication of the detec-
tion algorithm will be nonfault most of the time. In other
words, normal status is dominant; fault events do not
frequently happen. When we map this situation into
experiments, we find ourselves asking how many experi-
ments are enough to get a reasonable weight on nonfault.
Experts do not agree. This kind of information is simply
not obtainable.

Using the same weight on both classes of status does
not cause practical difficulty. When we have a certain
basic weight, say 0.75, used on fault confidence, we work
with this number to calculate only supportive (on fault)
evidence. This means that we have 0.75 confidence of
fault: this does not mean we have 0.25 confidence of non-
fault. Similarly, if we use 0.75 on nonfault confidence, we
say that we have 0.75 confidence of nonfault and use this
number to calculate only nonsupportive (on fault) evid-
ence: this does not mean 0.25 confidence of fault. They
are quite independently used.

3.3 Adjusted weight vector

The reason we have ‘adjusted weight’ is the fact that
when X, > 1 during a decision time window, the weight
set based on the original scheme of each detection algo-
rithm with just one fault indication (ie. X, = 1) is not
appropriate. We need to adjust our basic weights. The
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adjustment of basic weights is not easy. Literature is
silent on this subject. So we decided to follow our intu-
ition. Actually we want to have our detection system
resemble human behaviour on this matter. It seems to
work correctly when tested at our Downed Conductor
Test Facility and applied in a substation computer which
monitors feeder current.

With a certain value of basic weight, say 0.60, derived
in an assumed conditions of X, =1 or X; = 0, how will
our confidence on any detection algorithm be changed
when X, = X, ? Experts say that, no matter what the
basic weight is, they strongly believe that fault actually
occurred about 0.99 or 1.0 confidence. However, when
X, is between 2 and X,,, the situation is so fuzzy that
our experts are hesitant to give any exact number on
their confidence. In a sense, this is a situation of measur-
ing a fuzzy environment quantitatively.

For quantification of this fuzzy ‘beliefs of experts’,
quite intuitively we could agree that those adjusted
weights are on the approximate line of an exponential
curve w increasing along the x-axis (the axis of actual
number of fault indications, X ;). Therefore, we have the
following requirements for a hypothetical curve for
weight adjustments:

(i) a discrete curve w which has a value of basic weight
at x = 1 and has an exact value, say 1.0 or 0.999, at x =
X
(i) a discrete curve w which resembles a exponential
curve or parabola.

A true exponential or parabola is not an adequate candi-
date because it converges to a certain value (ie. 1.0) at
x = o0. We found a better curve which has a form of
exponent and maximum value at a fixed value of x:
ellipse. By changing the eccentricity, while setting the
minor axis to a certain value, say 0.999, and changing the
length of the major axis, we could put the centre of it x
equal to the maximum possible number of fault indica-
tions, X .. Then we have the elliptic formula given below.
We set 0.999 as our maximum confidence at X , = X,,.

(x — Xm)2 + Wz _
a? 0.9992

1.0 (5)

where q is half of a sum of distances from any point on
the ellipse to the foci. The variable x indicates the actual
number of fault indications, X .

When we apply the other condition that when x = 1.0
the curve w has a value of basic weight, we have the fol-
lowing weight adjustment formula. In the formula, w,
indicates a basic weight. This relationship is well illus-
trated in Fig. 3.

w= \/ [0.9992 - (—()-(fﬁ_—TX';—zi (0.9992 — w%)] (6)

An example is shown for the weight adjustment. Assume

" that an algorithm—parameter has a basic weight of 0.60

and X, = 4. Then the adjusted weights on each case of
actual fault indication (X ) is

Xy Wdw)
1 0600
2 0845
30963
4 0999

Conclusively speaking, the adjusted weight vector W, (w)
is made by both the basic weight vector W,(w,) and two
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elements of the input vector X (ie. X, and X,). The
adjusted weight is hereafter called just weight, W.

w

" A
ellipse for a ﬂo
formula =

ellipse for

______________ W for another algorithm
another formula :

Sahy SARRRLLELELELE W for an algorithm

Fig. 3  Illustration of ellipses for weight adjustment formula

3.4 Weight combination

To calculate the combined evidence we need to find sup-
portive evidence from fault indicating detection algo-
rithms which meet the condition that X,>0, and
nonsupportive evidence from all nonfault indicating
detection algorithms which hold the condition of X, = 0.
The combinaton of these two pieces of evidence is done
by a revised and easily computable version of the
Dempster—Shafer theory [20].

A belief function assigns a measure of our total belief
in the proportion represented by the subset of the frame
of discernment. The frame of discernment is a set of pro-
positions about exclusive and exhaustive possibilities in a
domain, and is represented by the symbol @. In our
problem of simple proportions of fault and nonfault as
our ®, we represent our belief in terms of degree of
support like

Bel,(fault) = S, Bel,(fault) = S,

These are simple support functions with respective
degrees of support S, and S,. Then our overall support-
ive evidence can be expressed by 1 — (1 — S,)1 — S,).
Therefore, general supportive evidence of a fault SE(f)
and nonsupportive evidence of a fault NE(f) can be
expressed by the following formulas

k=Ny
SE(f)=1- kl;[l (1- W) , Q)

where W,,, is the adjusted weight of the kth algorithm and
N, indicates the total counts of the case where the actual
number of fault indication is greater than or equal to 1,
and

Jj=Nn
NE(f)=1- Dl(l—WGa) ®

where N, indicates the total counts of the case where the
actual number of fault indication is equal to zero. Then a
combined evidence on fault CE(f) and a combined
evidence on nonfault CE(n) can be expressed by the fol-
lowing formulas [14]

SE(fX1 — NE(f))
1 — SE(f) * NE(f)

NE(f)A — SE(f))
1 — SE(f) * NE(f)
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CE(f) = ©

CE(n) =

(10)




A very simple example is shown following this idea. If the
following data is collected during a decision time
window,

Algorithms W,

Xim X f
AP1 0.60 9 2
AP2 0.80 9 1
AP3 075 9 0
AP4 0.75 4 0
APS 085 4 1
AP6 0.65 4 2

then according to the previous discussion on weight
adjustments, supportive evidence, and nonsupportive
evidence.

Algorithms W, Supportive/nonsupportive

AP1 0.71 supportive
AP2 0.80 supportive
AP3 0.75 nonsupportive
AP4 0.75 nonsupportive
APS 0.85 supportive
AP6 0.86 supportive

From this data, supportive evidence is
SE(f)=1—(1—0.71)(1 — 0.80)1 — 0.85)(1 — 0.86)
= 0999

an idea of scoring rule. Suppose we reward each detec-
tion algorithm an amount of U(r, w) when it has guessed
on an event with a weight of w, and r = 1.0 if its guess is
right, and r = 0, otherwise. This function U(r, w) is called
a scoring rule [18], and is defined by

U(r, w) = 1.0 — (r — w)? oy

We calculate the score from the basic weights. With this
score, we calibrate the basic weights backward. When
there is a large enough number of events with actual
status confirmed, we calculate the score of each detection
algorithm. If the score calculated is very close to about
0.90, the highest calculated score with a chosen weight,
we keep the original basic weight. Otherwise, a basic
weight is changed to the value which will earn the highest
calculated score.

For example, the following hypothetical experimental
results demonstrate score calculation. The number of
total experiments is N = 20. The algorithm pair we use is
the AP1 with maximum indication number X,, = 4. And
we assume its basic weight is wy = 0.75. Each experimen-
tal datum is classified according to the output X, of this
algorithm and the number of correct guesses recorded by
this algorithm in each output X, case. Each number of
correct guesses by this algorithm corresponding to the
value of X ; is shown below.

Weight vector

Basic weight Adjusted weight

Wy

Wo W, w3 Wy
0.75 0.75 0.94 0.98 0.99

X,=0 X,=1 X,=2 X,=3 X,=X,
Total case (NT;), i = [0, 4] 6 8 4 1 1
Number of correct guess (NC)), i =[0,4] 4 3 1 0 0

and nonsupportive evidence is
NE(f)=1—(1 —0.75K1 — 0.75) = 0.938
Then, a combined evidence of fault is
CE(f) = 0.0624/0.0636 = 0.981
This says our combined final evidence of fault is 0.981 or
98.1%. This very strongly indicates that there is a fault.

3.5 Weight calibration
The basic weights asigned to detection algorithms sum-
marise the experts’ personal, subjective, and experienced

beliefs. Though experts have good experience and good.

sense of assigning weights on the detection algorithms,
we need to assess their subjective beliefs. In other words,
we want to see whether experts’ weights are well cali-
brated.

However, unfortunately, not all well-calibrated weights
give a useful indication. This is well shown in the
example of the comparison of weathermen’s forecast per-
formance [18). Suppose a certain weatherman always
says there is a 50% chance of rain next day. Even when
this belief comes out as a well-calibrated one, this fore-
cast is next to useless: more like flipping a coin for a head
or tail guess. Therefore, we need to calibrate basic
weights so that detection algorithms are realistic about
their abilities to identify the status. To measure a detec-
tion algorithm’s ability given a basic weight, we adopted
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Then the total score can be calculated using the score
formula using the following practical equation. The
maximum total score in this example, with given basic
weights, is

Upe =145 (1 — (1 — 0753 + 4 x (1 — (1 — 0.94))
+(1—(1—098)?%) + (1 —(1 —099)?
=19.1101

The total score U is calculated with the following
formula

U= 3 NC{1 — (1 - w)?)
+ Y (VT = NC)(1 — (0 w)?) (1)

In the right-hand part of the equation, the first term is
the score for the correct guess and the second term for
incorrect guess with this algorithm AP1. Then we have
the score of U = 11.2534, about 59% of the U,,,. Since
this score is not satisfactory, we change the basic weight
w, to give the highest possible score with the experiment.
By changing the basic weight, and with corresponding
w;, i = [2, 4] using the elliptic formula for adjustment, we
calculated scores and compared them to find the highest
score. The score was 12.585 and the corresponding basic
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weight w, was 0.45. With this new basic weight, the
detection performance will be increased by 7%.

4 Example test of the detection system

We tested our detection system using staged fault test
experiments and feeder monitoring experiences from the
same site. The fault data was collected from staged fault
tests done in January 1991 and the rest, normal data, was
collected during January and February 1991 from the
normal monitoring data which invoked algorithm-
parameter pairs and caused at least one fault indication.
Data number 1 through 5 belong to a downed conductor
on a concrete surface and the rest of the fault data 6
through 20 are the case of the downed conductor on the
sod surface. We used six algorithm-parameter pairs
during this time. They are the combinations of two algo-
rithms, energy algorithm [2] and randomness algorithm
[3], and three parameters. The parameters we chose are a
composite even harmonic, a composite odd harmonic,
and a composite subharmonic (or called ‘nonharmonic’)
in an interested frequency band of 0-480 Hz with the
60 Hz component eliminated.

Table 1 shows the result of the test. Fault status indic-
ates the event of stages faults performed in our Downed
Conductor Test Facility in the remote campus of Texas
A&M University. No-fault status shows the data of non-

Table 1: Test result of performance comparison between
the original weight (W,) and the calibrated weight (W,)

No Number of fault indication CE(f) CE(f) Correct
with  with  status
AP1 AP2 AP3 AP4 AP5 AP6 W, w,

10 0 0 1 0 0 0.00 0.00 fault

2 0 0 0 1 0 0 0.00 0.00 fault

3 1 0 0 0 0 0 0.01 0.00 fault

4 0 0 0 1 0 0 0.00 0.00 fault

5 0 0 0 1 0 0 0.00 0.00 fault

6 1 0 0 1 0 4] 0.05 0.02 fault

7 0 0 1 0 0 1 0.36 0.96 fault

8 0 0 1 0 0 1 0.36 096 fault

9 0 0 3 0 0 1 0.82 099 fault
10 0 0 3 0 0 1 0.82 099 (fault
1 0 0 1 0 0 2 0.59 096 fault
12 0 0 2 0 0 1 0.53 0.98 fault
13 0 0 2 0 0 1 053 098 fault
14 3 0 0 2 0 0 079 091 fault
15 2 0 3 3 0 3 099 0.99 fault
16 2 0 3 3 0 3 0.99 099 (fault
17 0 0 2 2 0 2 0.98 099 fault
18 0 0 1 2 0 1 0.92 099 fault
19 0 0 1 1 1 1 090 0.99 fault
20 1 0 1 3 0 1 099 099 fault
21 0 0 1 0 0 0 0.02 0.00 nonfault
22 0 0 0 1 0 0 0.02 0.00 nonfault
23 0 0 0 1 0 0 0.02 0.00 nonfault
24 0 0 0 1 0 0 0.02 0.00 nonfault
25 0 0 0 1 0 0 0.02 0.00 nonfault
26 0 0 0 1 0 0 0.02 0.00 nonfault
27 1 0 0 2 0 0 0.23 0.04 nonfault
28 0 0 0 1 0 0 0.02 0.00 nonfault
29 0 0 [¢] 1 0 0 0.02 0.00 nonfauit
30 0 0 0 0 2 0 0.01 0.00 nonfault
31 0 0 0 1 0 0 0.02 0.00 nonfault
32 0 0 0 1 0 0 0.02 0.00 nonfault
33 0 0 0 1 0 0 0.02 0.00 nonfault
34 0 0 0 1 0 0 0.02 0.00 nonfault
35 0 0 0 1 0 0 0.02 0.00 nonfault
36 O 0 0 0 0 1 0.02 0.00 nonfault
37 0 0 0 1 0 0 0.02 0.00 nonfault
38 0 0 0 1 0 0 0.02 0.00 nonfault
39 1 0 2 0 0 0 0.43 0.00 nonfault
40 O 0 1 0 o] 0 0.02 0.00 nonfault

1-5 = concrete, 6-20 = sod
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fault which invokes at least one detection algorithms to
falsely indicate a fault. We used six detection algorithms
in this example. Each digit of the six-digit numbers in the
second column indicates each detection algorithm’s X .

Each number in the second column indicates the
number of fault indication (X,) of APi, the ith
algorithm—parameter pair, where i = [1, 6]. The corres-
ponding pair of the algorithm—parameter is

i = 1, AP1: randomness algorithm—even harmonics
i = 2, AP2: randomness algorithm—odd harmonics
i = 3, AP3: randomness algorithm-sub harmonics
i = 4, AP4: energy algorithm—even harmonics

i =5, APS: energy algorithm—odd harmonics

i = 6, AP6: energy algorithm-sub harmonics

For the maximum indication number X, , the energy
algorithm has a maximum possible indication of 4 (i.e.
X;, = 4, i = [4, 6]) and the randomness algorithm, 9 (i.e.
Xim=9, i=[1, 3]), during a chosen decision time
window of 30 seconds. In this example, the original basic
weight vector of {W,]0.7, 0.6, 0.8, 0.5, 0.5, 0.75} is used.
To test the performance, we used our internal threshold
level for fault indication as 0.90 or above the combined
evidence. In other words, if the combined evidence is 0.90
or above, the detection systems indicates the fault status
as its final decision.

From the second column of Table 1, the range of the
rate for each individual algorithm is 5-65% for the
correct indication rate, and 5-70% for the false indica-
tion. (We excluded the rates of AP2, because the AP2 is
of 0% correct and false indication rates. Actually this pair
is of no use). The third column shows the combined evid-
ence with the original weights. The correct indication of
fault is only six out of 20 (30% correct indication rate)
and the false indication is zero out of 20 (0% false indica-
tion rate). Conclusively, the detection with the original
weights is of low dependability and high security. Even
though six cases of faults have the same pattern of
normal case, and the first five faults data are from the
concrete surface (the difficulties of the detection of the
downed conductor on the surface of concrete or asphalt
are well known: see Reference 10, we have to improve
our correct indication of faults.

Then with a total of 40 events of experience, we calcu-
late a score and find a new set of calibrated basic
weights: {W,|0.34, 0.10, 0.98, 0.98, 0.16, 0.88}. The same
procedure was performed with this set of calibrated
weights. The result is shown in the fourth column. With
the calibrated weights, the correct indication moves up to
70%, while keeping the false indication rate 0%. This is
quite a dramatic increase in the performance without
jeopardising the 0% rate of false indication of fault.

With the set of calibrated basic weights in this
example, our adaptive detection system may not guar-
antee good performance at other sites, because the train-
ing data and the testing data we used are from the same
site (see Reference 10 for the dependency of the detection
algorithms on the different sites). However, this example
sufficiently shows the detection system’s adaptability to
other situations.

The calibration scheme can be applied in two stages.
In the first stage, we tune the detection system with train-
ing data before we install it in the field. This will provide
a better start for a higher score with calibrated basic
weights. These calibrated weights are most appropriate
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whether they are coincidental or contradictory to those
of the experts. In the other stage, while in the operation
process, we calibrate basic weights if the performance is
unacceptable. The information we use for calibration in
the second stage is the detection system’s outputs and the
operator’s responses. The operator’s response can be
drawn only when the detection system’s output is fault
and when a fault actually occurred, therefore, this system
will gradually improve security and dependability in a
supervised adaptive manner.

5 Conclusions

We have discussed a perplexing situation in the detection
of high impedance faults. To overcome the problem, we
used multiple algorithms with several different electrical
parameters. To accommodate these multiple different
beliefs of the same event, we devised an adaptive detec-
tion system using our revised adaptive element model.
The detection system derives supportive evidence and
nonsupportive evidence and combines them for a final
evidence about a distribution feeder status. An uncer-
tainty reasoning method is adopted for evidence com-
bination and a performance scoring rule was employed to
correct the weights as a learning algorithm. The adaptive
detection system evolved, securing higher performance,
into new situations with calibrated weights. We expect
this overall system to give flexibility, dependability, and
security in the classification and detection of high imped-
ance faults.
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