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ABSTRACT
An Intelligent Decision Making System
for Detecting High Impedance Faults. (December 1989)

Chair of Advisory Committee: Dr. B. Don Russell

The clearing of distribution line faults is usuallys accomplished by devices
which can sense the overcurrent produced by a fault and react to disconnect the
faulted section of the feeder from the healthy section. However, high impedance
faults do not draw sufficient fault current to be detected by such a conventional
protection scheme. Such faults may be caused by a conductor on the ground.
Arcing is usually associated with these faults, which may result in a fire hazard.

The harmonic currents characterized by an arc are variable, transitory, and
random in their behavior. The relative amplitude increase of harmonic currents is
very large in some high impedance faults, but sometimes it is very low, and other
times very similar to the level of the normal state.

While a few techniques to detect high impedance faults have been
proposed, and some progress has been made, a complete solution has not been
found. This research concentrates on designing an intelligent decision making
system which uses multiple detection techniques incorporated with an appropriate
detection reasoning method and a learning ability to provide a more effective
solution for high impedance fault detection.

Major parts of this system are a technique selection, a technique

combination, and an induction process. The method of decision making under



incomplete knowledge is used to select appropriate techniques because the
information on the performance of techniques are available but not complete.
With these selected techniques, the Dempster-Shafer theory is adopted to find a
final belief about the system status by combining the belief from each technique.
Inductive reasoning with minimum entropy is applied to find decision rules and
thus to adjust the technique selection process.

A learning detection system which combines all three major parts is
proposed to realize this intelligent decision making system. The learning
detection system synthesizes the final belief of the combined techniques, the
status output of a decision tree from the inductive reasoning process, and an event
detector output to detect and identify the system status. The intelligent decision
making system makes a smart decision on an example execution with a complex

test set of sample data.
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CHAPTER I

INTRODUCTION

There is a problem which currently exists in the electric utility industry with
the detection of high impedance faults. High impedance faults can be described
as those distribution feeder faults that do not draw sufficient fault current to
be detected by conventional protective devices such as overcurrent relays. Such
faults may be caused by a downed conductor on the ground or in contact with a
grounded object. Arcing is often associated with these faults, which may result
in a fire hazard.

The harmonic current characterized by an arc is variable, transitory, and
random in its behavior. The relative amplitude increase of harmonic currents
is very large in some high impedance faults, but sometimes it is very low, and
other times very similar to the level of the normal state.

The behavior of high impedance faults can be characterized by a large
relative amplitude increase in harmonic current through the duration of the
arcing burst. However, the behavior of various high impedance faults is not
consistent. Under similar conditions, faults show different characteristics in
behavior and may draw less harmonic current than other faults on the same soil
surfaces. On surface types such as grass, asphalt, and concrete, the behavior of
faults can be very similar to the phenomenon of switching events. Hence, the
detection and classification of high impedance faults, switching events, and the
normal state is a complex problem.

While a few techniques to detect high impedance faults have been proposed,
and some progress has been made, a complete solution has not been found. This

research concentrates on an intelligent detection system which uses multiple

Journal Model is IEEE Transactions on Power Delivery.



detection techniques. It is expected that appropriate decision making methods
incorporated with a learning ability will provide a more effective solution for
high impedance fault detection. |

The primary research objective is to find an intelligent detection system
which combines multiple detection techniques. This system employs a decision
making method for tethnique selection, a technique combination, and a learning
ability, to detect/classify high impedance faults and discriminating them from
switching events and normal states. Adaptability to outside factors will also be
considered.

Existing fault detection techniques have considered and focused only on one
parameter for the detection of a high impedance fault under given conditions.
However, the behavior of high impedance faults is affected by many outside
factors such as feeder configuration, surface conditions, weather conditions, and
so on. Therefore, a single technique cannot provide effective fault detection. It
is proposed that the use of a combination of detection techniques can improve
overall detection and discrimination under a wide variety of conditions. If
adaptability is added to this scheme, it is felt that most high impedance fault
cases can be detected and classified.

An intelligent decision making system for high impedance fault detection
will be delivered with logical structures, methodologies, implementation meth-
ods, programs, and application examples. Major parts of this system are a deci-
sion making method for a technique selection, a technique combination method
which handles multiple pieces of information with uncertainty, and an automatic
knowledge acquisition (or learning) method. In a time when utility companies
are wanting to implement a high impedance fault detection system and to add

intelligence to existing conventional techniques, this research appears to have



the potential of achieving that very goal.

The following examines the characteristics of high impedance fault and
switching events and how they are affected by environmental parameters. The
statistical analysis was performed with staged fault data. Chapter III examines
the existing detection techniques. Even though the purpose of this work is not
to compare the performance of each technique, the advantages and weaknesses
of each technique are investigated. Chapter IV explains the intelligent system in
general and the system structure of an intelligent decision making system which
consists of a technique selection, a technique combination, and an inauction
process for adaptability. Chapter V presents the details of the technique
selection process which include an initialization stage, a technique selection
stage, and a technique selection update stage. In Chapter VI, the technique
combination process using the Dempster-Shafer theory with selected detection
techniques is discussed. The combination of basic beliefs is illustrated with
many examples. The data classification with inductive reasoning is discussed
in Chapter VII. Pattern classification and threshold value calculation are also
discussed. In Chapter VIII, the total and final intelligent decision making system
which is realized as a learning detection system, is discussed. Its realization,
implementation, and an example execution are discussed. In Chapter IX, the

summary and conclusions about the final results are discussed.



CHAPTER 1II

HIGH IMPEDANCE FAULTS

A. Introduction

High impedance faults typically occur on distribution circuits at voltage
levels below 15 KV. Faults on a higher voltage circuit usually exhibit sufficient
fault current to be detected by overcurrent protective devices. High impedance
faults are usually caused by broken conductors on the ground. Arcing is often
associated with these faults and they can cause fires and personnel hazard.
The behavior of an arc has been studied by many scientists and, for a power
system, can be summarized as follows. If two conductors are separated by a
small gap and have a small potential difference between them, the air acts as
an insulator. As the potential difference is increased, the resistance of the air
gap decreases and the current flows between the conductors. Rapid ionization
accounts for the sudden ability of the air to conduct current. Typically, a stable
arc can be formed after several strikes and restrikes occur within a short period
of time. In general, for the case of arcing in AC systems, stable arcs will form
and be extinguished every half cycle[1].

Current harmonics generated by arcing have their origin in the nonlinear
voltage-current characteristics of the arc voltage. The effect results in typical
wave shapes and thus harmonics, sub-harmonics, and almost all frequency
components. The harmonic current characterized by an arc is variable and
although odd harmonic frequencies dominate, all harmonic and non-harmonic
frequency components are produced at times. Figure 1(a) shows a differenced
Waveform, which comes from the fault current waveform after subtracting the

normal current waveform. This differenced waveform starts at every quarter
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point of a cycle and remains for a quarter cycle; it is zero at the other
portion of the cycle. Figure 1(b) shows the periodogram (squared amplitude
of each frequency) of the differenced waveform. For this particular waveform
analysis, the TIMESLAB software package was used to see which frequency
components are present[2]. All orders of harmonics are present in the differenced
waveform. Some harmonics show large magnitude increase, others small. The
characteristics of the behavior of high impedance faults were investigated in the

frequency domain.

B. Statistical Analysis

Utility statistics for broken and fallen conductor faults are usually poor
and in many instances no formal records maintained. In order to understand
the nature of high impedance faults and characterize their behavior, Texas
A&M conducted a series of staged fault tests in collaboration with several
utility companies in the country. These tests were staged under a variety of
conditions of loading, soil condition, surface condition, and feeder configuration.
In addition, measurements were taken during various switching operations
like capacitor bank and air switch operation. Normal feeder conditions were
monitored to determine feeder background characteristics. The data was
recorded in analog form on a high-quality instrumentation recorder so that fault
waveforms could be reproduced easily in the laboratory.

Texas A&M began research on the high impedance fault problem in early
1977. Initial research concentrated on understanding high impedance faults,
developing models to describe them and performing laboratory simulation of
faults. This research was based primarily on the high frequency (above 2.0 KHz)

changes in current associated with arcing high impedance faults[3, 4]. Later,
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behavior of low frequency spectra during high impedance faults and normal
events were investigated for odd, even, and sub-harmonics up to 360 Hz on
different surface conditions[5]. The harmonic béha.vior of high impedance faults
with and without a capacitor bank on the feeder line was also investigated while
concentrating on even harmonics and the ratio of odd to even harmonics up to
1200 Hz (medium frequency components)[6].

To measure each frequency component variation during high impedance
fault, a method for determining the “energy” contained in the normal system
signal was needed. Individual spikes of noise were not of interest, but rather
an indicator of the cumulative effect of many spikes over a short period of time -
was desired. “Energy” is defined as the summation of squared sample values of

current over a cycle of 60 Hz.
High Frequency Components

For the purpose of data recording for the investigation of the behavior
of high impedance faults, several utilities staged fault tests. A total of 86
separate faults were staged in a variety of locations with different soil conditions
(including faults on concrete and asphalt), varying degrees of soil moisture,
and a wide range of available fault currents. From preliminary research, the
key characteristic identified for high impedance faults were the arcing normally
associated with these faults. It was believed that arcing produced high frequency
transients which could be used for fault detection.

The field tests showed that high impedance faults do exhibit a marked
increase in high frequency current components over normal system conditions,
and they persist for the duration of the arcing. The exceptions are due to fhe
presence of grounded wye capacitor banks on the feeder. In this case most of the

high frequency signal is shunted to ground by the capacitor bank. Figure 2 shows
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the increase of the high frequency current components during high impedance
fault. Where total current has “notches,” the high frequency current shows
a dynamic transient of spikes. To neglect the harmonics, which vary widely
under different loads, signals above 2 KHz are selected. Due to deteriorating
signal levels at higher frequencies, 10 KHz was chosen as the upper bandlimit of

interest[7].
Medium Frequency Components

With the recorded staged fault data, a frequency domain investigation has
been done for the fundamental to 20th harmonic (1200 Hz) range concentrating
especially on high impedance faults with and without a capacitor bank on the
feeder. The analysis is focused on a differenced waveform, which is obtained from
the fault waveform after subtracting the normal waveform. Odd harmonics, such
as the 3rd and 5th, are predominant, but some even harmonics, such as 2nd,
4th, 6th, 8th, and 10th, have significant amplitudes; some even harmonics are
greater than some odd harmonics in magnitude.

‘When a capacitor bank is present on a distribution feeder, some harmonics
are increased in some cases and eliminated in other cases. A normal current
waveform of a distribution feeder, when a capacitor bank is present, shows no
significant changes in phase current in the amplitude or in the wave shape. Odd
harmonics (especially 3rd, 5t11, and 7th) dominate and the overall shapes of the
frequency components are quite similar to that of the normal current waveform
without a capacitor bank.

Figure 3 shows the relative magnitude increase of the medium frequency
spectra during a high impedance fault with and without a capacitor bank.
When a capacitor bank is present, the odd harmonics are predominant, but even

harmonics can be seen to some extent. However, the relative increase (compared
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to the normal status) of the even harmonics, from the 8th to the 16th, is much
greater than that of the odd harmonics. Without a capacitor bank, the odd
harmonics are still predominant, but the relative increase of the even harmonics
is much greater than that of the odd harmonics. In addition, the increases in
magnitude of all the harmonics without a capacitor bank are larger than those
with a capacitor bank.

It is concluded that, up to the 8th harmonic, a comparison of the relative
increase of the even harmonics with those of the odd harmonics, or simply the
relative increase of the even harmonics, can discriminate a high impedance fault

condition from the normal state.
Low Frequency Components

It has been observed that the arcing phenomenon associated with high
impedance faults causes certain low frequency spectra to change in magnitude
and phase from pre-fault conditions. The frequency spectra selected for investi-
gation were:

1. Odd harmonics (60, 180, 300 Hz)

2. Even Harmonics (120, 240, 360 Hz)

" 3. Sub-Harmonics (30, 90, 150, 210, 270, 330 Hz).

This investigation was done on the recorded staged fault data. All the
fréquencies studied show an increase of at least 3 times in magnitude under high
impedance fault conditions. For the statistical analysis, a frequency domain
analysis was performed on the individual events in a cluster to determine the
relative change in magnitude of the various spectra from pre-fault to fault
conditions. Next, mean and standard deviation of the magnitude change was
determined for each frequency spectrum by averaging all the 30 different events

in the cluster and determining variation about the mean. Figure 4 shows the
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average relative magnitude increase of low frequency spectra during a high
impedance fault on dry soil. As is seen from the figure, sub-harmonics indicate
a large dynamic change in magnitude (5 - 20 times the pre-fault level) under
fault conditions. However, this change is very random as indicated by a large
standard deviation. This means that even though the sub-harmonics show a
large percentage increase in magnitude, the dispersion about the mean is also
large, thereby indicating the precise amount of increase is unpredictable. The
harmonic frequencies show a reliable change in average magnitude, however.
This suggests that the relative change in magnitude is consistent for the different
events comprising the cluster. The distributions of the magnitude increase of
the several frequencies with different soil conditions are shown in Figure 5. As
this graph shows, the relative magnitude increase becomes larger, as the soil
moisture level becomes higher.

The dependency of the burst duration was also investigated with respect to
soil conditions. It was seen that a large percentage of the events were comprised
of short bursts, typically 2 or 3 cycles in duration, on wet soil. On dry soil,
the arcing usually lasted for 4 to 20 cycles. On sandy soil, it was observed
that the arcing persists longer, usually greater than 20 cycles in duration. The
distributions of the arcing duration on three different soil conditions show similar

exponential distribution with different mean values.

C. Switching Events

Switching events are investigated mainly in the low frequency range and
in the high frequency range. Capacitor bank operations, air switch operations,
and LTC (load tap changer) operations were performed. These events were also

investigated in the frequency domain.
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High Frequency Components

Switching operations generate high frequency components which are defi-
nitely time-limited. Capacitor bank operations show a large magnitude of high
frequency components. An increase in the high frequency current component
which lasts much longer than the duration of a switching event provides an in-
dicator of a fault. Figure 6 shows the energy variation of high frequency current
component during a capacitor bank operation. When a switching event occurs,

there is an impulse-like spike with large energy increase.
Low Frequency Components

With the same frequency spectra selected for the high impedance fault in-
Vestigation,.air switch operations and capacitor operations were investigated.
For the behavior of the spectra during a capacitor bank operation, it is observed
that the sub-harmonic frequencies remain fairly constant during the switching
operation whereas the harmonic frequencies show a substantial change in mag-
nitude. The odd harmonic energy shows a step increase in magnitude which
persists the entire time the capacitor bank is energized. On the other hand, sub-
harmonics magnitude change is more of an impulse lasting for a short duration
of time due to the transitions of the switching operation itself. Figures 7(a) and
7(b) show odd harmonic energy variation and sub-harmonic energy variation
during a capacitor bank operation. In the case of an air switch operation, all
the harmonics show an impulse lasting for a short duration with a significant
magnitude increase. Figures 8(a) and 8(b) show the odd and even harmonic

energy variation during an air switch operation.

D. Environmental Parameters

From several investigations to see the behavior of high impedance fault, it
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is found that there are some factors or parameters which change the behavior of
the magnitude increase and burst duration. Here are examples of the changed
behavior of the magnitude increase and burst duration.

Several investigations were performed to study the behavior of high
impedance fault on unusual surface such as asphalt, grass, concrete, and so on.
The behavior of these faults were examined with several harmonic currents at
the frequency range up to 1000 Hz. Figure 9(a) shows an odd harmonic energy
variation during high impedance fault on wet grass. The energy change during
the fault shows a large energy increase with a short burst duration. Figure 9(b)
shows an odd harmonic energy variation during a high impedance fault on con-
crete. The energy change also shows a large energy increase which lasts only a
few cycles. There are some similarities between these faults on unusual surfaces
and the switching events with respect to the'magnitude increase and the burst
duration.

In addition, the presence of a capacitor bank will depress the activity of
high frequency components during fault conditions. The behavior of several
sub-harmonics during a high impedance fault will show very different behavior
in magnitude (or energy) and burst duration in the same situation. The surface
condition will change the characteristics of the harmonics in the burst duration.
The factors which are called “environmental parameters” are parameters or
environment which changes the behavior of high impedance faults and thus will
affect the detection techniques which use those frequency components vulnerable
to the outside environments. Four environmental parameters are chosen and the
reasons of their choice are mentioned as follows:

1. System Unbalance: load level is changing slowly and rapidly, which will

cause misoperation of certain techniques which monitor the magnitude
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variation for detecting high impedance faults.

2. Feeder Configuration: the presence of capacitor banks attenuates high
frequency components.

3. Load Types: certain loads produce some harmonics which have somewhat
similar behavior to high impedance faults, which might lead certain tech-
niques to make wrong decisions.

4. Surface Conditions: the surface conditions affect the behavior of the high
impedance faults in magnitude and burst duration of harmonic and sub-

harmonic fault currents.

E. Summary

Statistical analysis was performed in the frequency domain to investigate
the behavior of high impedance faults in several frequency ranges. It was
observed that the magnitude or energy of high frequency components shows -
a large increase. The magnitude increase and burst duration of harmonics
and sub-harmonics in the low frequency range depends on the soil condition.
Certain switching events show very distinctive behavior, but other switching
events, such as an air switch operations, shows very similar behavior to that of
high impedance faults on grass or concrete. Environmental parameters which
affect the behavior of high impedance faults were suggested to measure the

performance of various detection techniques under different situations.
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CHAPTER III

EXISTING DETECTION TECHNIQUES

A. Introduction

The clearing of distribution line faults is usually accomplished by devices
that can sense the ;)vercurrent produced by a fault and quickly react to
disconnect the faulted section of the feeder from the healthy section. Such
devices usually include overcurrent relay and circuit breaker combinations,
reclosers, and fuses. In addition to providing overcurrent protection, these
devices must be capable of carrying an acceptable increase in the level of load
current and transient overcurrents. They must not trip on inrush‘ and surge
currents resulting from transformer energization and feeder switching activity. In
order to maintain reliability of service, the threshold of operation must therefore
be set at a relatively high current level.

The current which flows during a fault depends on a number of variables,
one of which is the fault impedance. A high impedance at the fault point can
limit the fault current to levels that are well below the threshold of operation
of conventional fault clearing devices. In such circumstances, the existence of
a fault cannot be detected by overcurrent devices and will persist until some
external event clears it. In this chapter, a brief summary of the proposed
detection techniques, and their limitations and weaknesses with respect to

environmental parameters are examined.

B. Energy Technique

This technique was proposed by Texas A&M researchers. The term

“energy” refers to the summation of the squared sample values of current over
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one 60 Hz cycle. An early energy technique used the amplitude increase of the
high frequency (2 - 10 KHz) current to detect high impedance faults[4]. Later, a
revised energy technique was developed, which used a low frequency component
as a parameter along with some fixed amount of cycles as a test window in a
hierarchical detection scheme[8].

The energy technique determines the energy contained at any time in the
current signal. A typical distribution system exhibits a periodic load cycle.
Hence the detection technique must be adaptive to these changes in the load
and at the same tiﬁe avoid a complicated procedure for calibrating arbitrary
pickup levels for fault detection.

A hierarchical nature is bred into the technique by making use of three
levels in the detection process before signaling a fault. The system starts by
recognizing a “disturbance” and on the occurrence of a disturbance, the system
devotes its attention to trying to verify if the disturbance qualifies as an “event.”
An event recognition is followed by an attempt to classify the episode as either
a “fault” or a normal occurrence.

Disturbance: A cycle of data showing a certain percent increase of energy over
the average energy per cycle, the average being calculated over some previous
period of time, constitutes a disturbance. Thus, if a cycle shows a certain
percentage in(;,rease in energy over the previous average, a disturbance is said to
have occurred. If the energy present in the present cycle is reasonably equal to
the previous average, then a new average is calculated and disturbance detection
is begun again.

Event: Once a disturbance is detected, a preselected series of cycles of data are
tested. If a set percentage of these cycles show a certain percentage increase in

energy per cycle over the average energy per cycle (the average being calculated
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over some previous period of time), then an event is said to have occurred.
Typically, five cycles could be tested where 3 of 5 showing the requisite increase
might dictate a necessity to proceed on the next hierarchical level of fault
detection. By varying the number of test cycles, the sensitivity of detection
can be varied.

Fault: Once an event is recognized, control is transferred to the fault identifi-
cation routine in the detection technique. The average is frozen in the fault
identification routine. This action is necessary because percentage (relative)
change in the signal magnitude is used to detect faults as opposed to absolute
changes from predefined fixed thresholds. One choice involved is the number
of cycles after an event that must show an increase in activity before a fault is
specified. The compromise is between correct identification of intermittent or
very low grade faults and the possibility of identifying a normal event as a fault.
Thus, an important parameter involved is the choice of the length of time after
an event that is allowed for evaluating the low frequency current to make the

trip/notrip decision.

The energy technique utilizes a hierarchical detection strategy in which a
disturbance is classified as either a normal feeder event or a fault based on
a discriminatory time window. A drawback in using such arbitrarily chosen
windows is that a sporadic fault with short burst duration and regular intervals
of inactivity between successive bursts may go undetected, again due to an
inflation of the threshold. This technique’s logic incorporates a threshold based
on a set percentage of the average energy calculated from a moving time window.
It is perceived that this percentage may have to be retuned depending on the
load, surface condition, and the system configuration. Another factor to prevent

use of this technique with high frequency components is its inability to detect
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high impedance fault when grounded capacitor banks intervene between the fault

location and the substation.

C. Randomness Technique

The sporadic nature of high impedance faults causes problems for many
proposed techniques which rely on an increase in magnitude over some prede-
termined period of time. Texas A&M researchers developed a technique which
would not be adversely affected by this randomness, and would in fz;‘ct use this
randomness as an indicator of an high impedance fault.

The difference between an increase in harmonic fault current activity caused
by high impedance fault and an increase caused by the energization of a “noisy”
load lies in the cycle-to-cycle-variations in the increase. The noise generated
by a noisy load will be repetitive from one cycle to the next, while the noise
generated by a high impedance fault will be quite sporadic, varying greatly from
one cycle to the next (or even from one half-cycle to the next). During a fault,
violent bursts will be present during some cycles, while no fault current will be
drawn during other cycles; still other cycles will display a lével of burst between
the two extremes.

Thus, a technique which looks for several arcing bursts (periods of arcing
followed by normal cycles) can discriminate step increases in noise levels from the
sporadic increase caused by a high impedance fault. Also, by requiring several
of these bursts in some short period of time, switching events can be recognized
as such. For larger, more persistent faults, a fault can be distinguished from a
step increase in noise by looking for large variations from one cycle to the next.
For these reasons, a technique was developed to look for several bursts in a short

period of time or for wild variations in cycle-to-cycle noise, and signal a fault if
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either or both are present[9].

Two separate indicators are used to detect the random, sporadic nature
of arcing during a high impedance fault. The first of these is called “jumps.”
Jumps are meant to count the number of times that the high frequency current
makes a step increase or a step decrease in a pre-determined amount of time
(30 cycles). By keeping an average energy value, an abnormal increase can be
detected, an event flagged, the average frozen, and the next 30 cycles checked
for “jumps.” It was determined that an increase in energy of ten times the
calculated average indicates an event. Following this event identification, the
technique checks the next 30 cycles for “jumps.” A jump counter is incremented
when the energy level of a cycle makes a transition from greater than ten times
the average to less than three times the average or a transition from less three
times the average to greater than ten times the average. An energy less than
three times the average indicates an “off-cycle” in which there is no arcing. At
the end of the 30 cycle decision time, if the jump counter has reached a value
of five or more, a fault is indicated. If three or four jumps have been counted,
the technique checks the next 30 cycles. If, however, only one or two jumps are
counted, it is assumed that the event was a switching transient of some sort and
the technique returns to normal system monitoring.

Some faults do not display “off-cycles.” However, there always is a large
difference between the fault current energy levels of consecutive cycles. To take
advantage of this, the absolute difference in energy levels is calculated while the
number of “jumps”. are being counted. If this difference is greater than 20 times
(for high frequency components of fault current) the average unfaulted energy
value, a difference counter is incremented. At the end of the 30 cycle decision

time, if the difference counter has reached 15, a fault is signaled. This runs in
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parallel to the “jump” detection portion of the technique, with a fault being

indicated if the jump counter reaches 5 and/or the difference counter reaches 15.

This technique is mainly based on the behavior of the high frequency
components of the fault current; therefore, the presence of a large capacitor
bank may mislead this technique. Extremely noisy feeders, that is, feeders
which display a high ievel of normal energy may prevent the detection of high
impedance faults by the technique in its present form. In other words, this large
normal noise level will tend to produce a large static average value which might

make the parameter multiples inappropriate.

D. Phase Relationship Technique

High impedance fault current has a “notch” on the leading edge of each
half-cycle when no fault current flows, due to the finite voltage necessary to
break down the airgap between the conductor and ground at the fault point.
This “notch” ensures that the current will be rich in odd harmonics. With this
in mind, a fault detector based on third harmonic current was developed. This
technique monitors the relative third harmonic phase angles between each of the
three phases with respect to either the fundamental frequency current[10] or the
fundamental frequency voltage[11].

If the phase of one line changes by at least 15°, the phase value before
the change is held and compared against each succeeding sample for the next
5 seconds. This technique also monitors the 60 Hz line current for the rapid
change indicative of normal system switching, and if a rapid change is detected,
an “inhibit” signal is produced. If a relative phase change of at least 15° persists
for at least 5 seconds concurrent with an increase in 60 Hz current of at least 15

amperes and no inhibit signal has been generated, a fault is indicated.
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This technique monitors the relative phase changes in the third harmonic
fault signal; however, third harmonic current can exist due to certain load
imbalances. This technique requires at least 15 amperes of 60 Hz fault current
for a duration of 5 seconds for its operation. Low grade faults that do not cause
a substantial change in the fundamental component can therefore go undetected.
Unbalanced capacitor bank operations result in an increase in the level of odd

harmonic frequencies and may cause false operation.

E. Harmonic Sequence Component Technique

Under normal operating conditions on a balanced three-phase system, the
fundamental 60 Hz current component theoretically consists of only a positive
sequence component . Similarly, the third harr;lonic current has only a zero
sequence component and the fifth harmonic current consists of only a negative
sequence component. It is assumed that the degree of normal unbalance is small,
and that this unbalance will increase due to any single phase fault. Thus, the
non-characteristic sequence current components of the fundamental, third, and
fifth harmonics can be monitored and a high impedance fault can be recognized
by noting a sudden change in these components. Also, since it was seen from test
data that the phase angle of each of these components often changes considerably
during a high impedance fault, each component was divided into its real and
imaginary parts. This technique monitors all of these quantities collectively[12].i

To detect a sudden increase in the non-characteristic components, a test
statistic was formed. It was assumed that each of the sequence components
follows a normal distribution, and that the test statistic has a Chi-square
distribution with 12 degrees of freedom and its value will increase under high

impedance fault conditions.
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Initial work showed that occasional “spikes” could occur in the test statistic
due to such events as the energization of a large single phase load. Because of
these spikes, the threshold above which a fault was detected would have to be
so high that many low-grade faults would be undetectable. Thus, a modified
test statistic was developed which was a smoothed version of the original test
statistic. By using this modified statistic, the threshold of detection could be

set lower without increasing the probability of a false detection.

The problems seen in using this detection scheme can be divided into two
main categories. The first of these categories consists of true high impedance
faults which are not detected. The second category, which is seen as the more
serious of the two problems, consists of false detections under normal system
conditions.

One of the basic assumptions made by this technique is that the detection
parameters (i.e. the non-characteristic components of the first, third, and
fifth harmonic current components) will be generated con’:inuously by the fault.
However, it has been shown that a grounded high impedance fault will draw fault
current intermittently; a high impedance fault typically will arc for a period of
time (on the order of a few cycles to a few tens of cycles); then, there will be
no activity generated by the fault for a similar period of time[5]. Because of
the snapshot delay time built into the detection scheme, it seems quite unlikely
that the detector will happen to sample a “faulted” cycle for four consecutive
snapshots.

Due to the design of the detection scheme and to the nature of high
impedance faults, a common scenario which would produces false trips is seen.
It has been observed that the activation of a capacitor bank is accompanied by

a large increase in the level of odd harmonics[5]. This increased level persists
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until the bank is removed from the line. Since the addition of capacitor to one
or two of the three phases will greatly increase the unbalance of the third and
fifth harmonics, the activation of such a bank would look like a high impedance

fault to a detection scheme such as this one.

F. Amplitude Ratio Technique

The even harmonic currents are very small in a system under normal
condition. During a high impedance fault, with an activated arc, even harmonic
currents increases due to the unsymmetrical characteristics of the arc current.
Therefore a detection technique based on sensing a ratio of the phase even
harmonic current to an odd phase harmonic current can be used for high
impedance fault detection. A technique which monitors the ratio of the even
to odd harmonic currents at the range of the first to seventh harmonic has
been proposed[6]. Another technique senses the ratio of the second harmonic to

fundamental current[13].

The limitation of this techniques is that the stability of this technique
may not be good if the amplitude of the chosen even harmonic current is very

unstable.

G. Other Techniques

The Ratio Ground Relay which is intended to detect broken conductors
at the power distribution level was developed[14]. This relay is an electro-
mechanical device whose operating characteristic is based solely on system
unbalance. The operating torque is derived from the 313 summation of currents
wound on an E-type magnetic element. The basic idea behind the proper

operation of the relay is that under balanced conditions the 3I; summation
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of current will be approximately zero. Furthermore, the positive sequence
current will dominate. The great weakness of this technique is its fundamental
dependency on system balance for proper operation. Most power distribution
systems are operated unbalanced.

A sequence Component Phase Selection Technique was developed as a
broken conductor detector based on changes in the symmetrical components

as measured at the substation [15]. It is fairly simple to show that

Al
Al

= (1,a,a?)

for a broken conductor on phase a, b, or ¢, respectively. While this correctly
will identify the faulted phase, it is felt that the phase must be identifiable by
simple looking é,t which phase experiences a loss of current, without calculating
the symmetrical components. This is necessarily true, since the symmetrical
components are calculated from the raw phase currents; thus, for the change to
be significant enough to be seen in the symmetrical components, it must also be
large enough to be seen by other methods. If, however, the symmetrical com-

ponents are already available because of some other technique being executed,

this formulation does provide an easy way to make the phase selection decision.

H. Summary

Several detection technique are examined. Their principles and their
weaknesses are also discussed. The comparison of each technique is shown in
Table I. Considering the environmental parameters, which were discussed in the
Chapter II, the weakness of each technique is summarized. It is noted that while
each technique may offer a solution to some degree, none to date has proven to

be a powerful technique. This chapter is summarized as follows:



Table I. Comparison of Detection Techniques.

Techniques Parameter Attribute Weakness
Energy Harmonics Energy Surface
Technique Sub-Harmonics Burst Condition

Duration
Randomness High-Freq. Jump Feeder
Technique Component Difference Configuration
Phase Relation 3rd Phase System
Technique Harmonics Angle Unbalance
Load Type
Harmonic 1st, 3rd Amplitude Sys. Unbal.
Seq. Comp. and 5th Load Type
Technique Harmonics Feeder Config.
Amplitude Even and odd Amplitude Surface
Ratio Harmonics Energy Condition
Technique Feeder Config.
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No single technique covers all the cases of high impedance faults.

Each technique is very well formulated and based on theory and experi-
ments, but it might work only under specific and well-defined conditions.
Each technique uses only a parameter to sense its attributes. The behavior
of parameters of high impedance faults is very random and, in some cases,
unpredictable; therefore the result of each technique is not always certain.
Each technique has at least one weakness with respect to the environmental
parameters.

Each technique, even though it has at least one weakness with respect to
environmental parameters, does not give any means to provide adaptability

to the environment.
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CHAPTER IV

AN INTELLIGENT DECISION MAKING SYSTEM

A. Introduction

A system that possesses and acquires knowledge and reasons with that
knowledge, like a human, seems the most desirable intelligent system. An in-
telligent system is characterized by an effective analysis and synthesis of infor-
mation, and a learning ability which makes the system’s reactions appropriate
to each situation [16]. Existing techniques have considered and focused only
on one parameter for the detection of a high impedance fault under given con-
ditions. However, the behavior of a high impedance fault is affected by many
environmental parameters such as feeder configuration, surface condition, system
unbalance, and load type. Therefore, a single technique cannot provide effective
fault detection. Moreover, as was discussed in Chapter III, each technique has
at least one weakness. To improve the analysis and synthesis of information
from a distribution system, and thus to improve overall detection and discrimi-
nation under a wide variety of conditions, a combination of detection techniques
is proposed. If adaptability is added to this scheme, it is felt that most high
impedance fault cases can be detected and classified. Conclusively, an intelligent
decision making system consists of multiple detection techniques and a learning

system for adaptability.

B. Intelligent Systems

Considering an intelligent system, the term “intelligent” gives rise to

confusions in its interpretation. There are many interpretations of “Someone
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is intelligent.” However, the most satisfactory interpretation is “Someone’s
actions are appropriate to each situation.”

Two of the ways that a person demonstrates his intelligence are by effective
analysis and synthesis of a knowledge from outside, and by acquiring new
knowledge through experience using learning ability. With respect to the
detection of high impedance faults, an intelligent system means a system which
can receive information effectively and synthesize it to detect reliably using
various detection techniques. It also acquire new knowledge about each status of
the power distribution system through experience, and then makes the detection
adaptive by the learned knowledge.

A typical learning system consists of four major components: Critic,
Learner, Rules, and Performer[17]. The Critic compares the actual with the
desired output. In practice tilis may be a human expert, or teacher. The job
of the critic is known as ‘credit assignment’ or alternatively ‘blame assignment’.
The Learner is the heart of the system. This is the portion that has responsibility
for amending the knowledge base to correct erroneous performance. The Rules
are the data structure that encode the system’s current level of expertise. They
guide the activity of the performance module. The Performer is the part of the
system that carries out the task. This uses the rules in some way to guide its
activity. Thus when the rules are updated, the behavior of the system as a whole
changes.

An important part of learning is finding out what the basic descriptive
units are in a situation. For example, in the detection of high impedance fault,
a system must learn the information of each status with which descriptions of
experience can be formed. In learning to classify fault and non-fault status, the

system gradually becomes acquainted with such distinctive features as harmonic
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current amplitude variation (such as odd harmonic current increase and high
frequency current variation). Amplitude, mean value, standard deviation, and
distribution shape features of a power system current signal are gradually
acquired as tools with which to describe the classification experience.

However, the knowledge in the high impedance fault detection environment
is incomplete or inexact. In cases like these, the knowledge is inadequate to
support the desired decision making. However, humans have ways of drawing
inferences from incomplete, inexact or uncertain knowledge and information.
Some decision making methods allow a system to use incomplete or uncertain

knowledge in ways that take the incompleteness and uncertainty into account.

C.  Structure of an Intelligent Decision Making System

For an intelligent detection with multiple techniques, there are three stages
to consider. The first stage is to collect all the possible implementable techniques.
This stage was investigated and summarized in Chapter III. Five major
techniques were chosen for this stage. Another necessary step here is to
change each technique slightly so that each has a final output with a basic
belief instead of a decisive system status output. Because the behavior of high
impedance fault is transient, random, and uncertain, it is appropriate for the
output of each technique to have a certain belief level of the system status.
In addition, each detection technique relies on a threshold value for deteétion
which is arbitrarily chosen. This threshold value must be tuned depending on
the surrounding circumstances. It seems to be very difficult to tune the threshold
value appropriately. However, by using the threshold values of the variables in
an induction process, some techniques could tune their threshold values.

The second stage is to select some techniques which prove very effective
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in a given situation. This is called the technique selection process. For the
technique selection process, the environmental parameters are taken to be states
of nature in the method of decision making undér incomplete knowledge to make
a technique selection database. This technique selection database consists of
various important parameters and corresponding techniques. For a parameter,
a best and a second Best techniques are chosen using a decision making under
incomplete knowledge approach. When the most important parameters in a
given situation are chosen by a decision tree of an induction process, those
corresponding techniques are activated to be run.

The third stage is to combine multiple pieces of information (basic beliefs)
from selected techniques. This is called a technique combination process. For the
technique combination process, it is necessary to find a reasoning method which
can handle multiple pieces of information With uncertainty. The Dempster-
Shafer’s evidence theory was adopted for this reasoning process, which receives
multiple basic beliefs from techniques and combines them into a final belief.

Classifying and learning a concept by induction for each class (i.e., fault and
non-fault) by receiving knowledge, and using this knowledge is very important
to improve the technique selection process. In addition, combined with other
information such as a final belief output from combined techniques, an output
from event detector, and an operator interaction, learning a new concept for
each class of system status under surrounding environments and updating its
detection rule are most desirable for an intelligent and adaptive detection. The
technique selection process is advised by the decision tree which indicates the
active and indicative parameters for a high impedance fault. To classify system
status and add adaptability to its environments, an inductive reasoning with

minimum entropy technique is adopted for this induction process.
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As was mentioned above, an intelligent decision making system for detecting
high impedance faults consists of three major parts: a technique selection
process, a technique combination process, and an induction process. These all
three parts are interconnected to make a learning detection system. Figure
10 shows the block diagram of an intelligent decision making system which is
realized as a learning detection system.

The technique selection process examines all the possible implementable
techniques and selects some of them. The reason that a method of decision
under incomplete knéwledge is used is that the information and the performance
outcome of each technique is available but incomplete. It is very difficult
or impossible to numerate exactly each performance outcome under a given
condition. The environmental parameters are used as decision criteria to cover
all the surrounding environments. The electrical parameters are chosen by
experience. The chosen electrical parameters must positively identify high
impedance faults and at the same time, possess an ability to discriminate
transients associated with normal system events. Harmonic current components
are the major electrical parameters. For each electrical parameter, with the
method of decision under incomplete knowledge, the best and second best
techniques are obtained. Fi'om the technique selection database of a parameter,
the technique selection process starts. This will be explained thoroughly in
Chapter V.

The technique combination process starts with the selected multiple tech-
niques. It is assumed that each technique has its own basic belief about a system
status. With these basic beliefs, the combination is performed to obtain a final
belief. This will be fully investigated in Chapter VI.

The induction process will be accomplished using inductive reasoning with
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Figure 10. Block Diagram of an Intelligent Decision Making System.
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minimum entropy. From the induction process a decision tree is obtained. This
decision tree not only makes another detector but also indicates the most active
and indicative parameters. This information will adjust the technique selection
process. The induction process will be explained in Chapter VII.

All these three processes are combined into a decision control block. The
final status output from the decision tree from an induction process will be
combined to decide a system status, with the final belief of the combined
techniques, an operator interaction, and an event detector output. The detailed

structure of a learning detection system will be discussed in Chapter VIII.

D. Summary

Artificial Intelligence is a field of study that encompasses computational
techniques for performing tasks that apparently require intelligence when per-
formed by human. For an intelligent system for detecting high impedance faults,
effective analysis and synthesis, and learning concepts of each class through ex-
perience is required. For learning in high impedance fault detection, the ability
to be acquainted with such distinctive features as harmonic current energy vari-
ation is very important to describe the basic unit in each situation.

The structure of an intelligent decision making system is studied. It com-
bines the idea of an intelligent system and decision making methods. An intel-
ligent decision making system consists mainly of a technique selection process,
a technique combination process, and an induction process for adaptability. All
- these are interconnected into a learning detection system for an intelligent and
adaptive detector/learner. More detailed examination of each process will be

given in following chapters.
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CHAPTER V

TECHNIQUE SELECTION PROCESS

A. Introduction

One of the prin(fipa.l concerns of decision making is the development of
analytical method for guiding the choice of a single course of action from among
a series of alternatives. The classical decision model assumes that a decision
maker can select one of a number of strategies open to it. As the performance
of each technique under various situations is uncertain, the selected technique
must operate under one of a number of mutually exclusive and exhaustive states
of nature or environmental parameters. The eventual outcome of the selected
technique will depend on the state of nature which happens to arise. The classical

decision model with 3 techniques and 3 states of nature, for example, is shown

below[18]:
E, E, E;
T [ O11 O12 Ogs
Ty | Oy1 Ozy Os
T3 \Os1 Os2 Oss
where

T;: Technique
E;: Mutually exclusive and exhaustive states of nature.

O;;: Outcome of technique T; given state of nature E;.

Adopting the above classical decision making model and a decision tree
of an induction process, a technique selection process consists of three stages:

an initialization stage to provide a technique selection database, a technique
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selection stage, and a selection update stage. In the initialization stage, with
environmental parameters as states of nature for each parameter, a best and
a second techniques are obtained and stored in the database. The technique
selection stage is very simple: select techniques which are stored in the technique
selection database as best for given parameters which are indicated in the
decision tree of an induction process. The selection update stage begins when the
decision tree is changed and thus the important parameters are changed. After
a specific decision model is discussed, an investigation of each stage follows in

the following sections.

B. Decision Under Incomplete Knowledge

The framework of the decision problem forms a common starting point for
the three approaches to decision making, which are distinguished by the amount
of information they assure to be available about the probabilities with which the
states of nature are likely to occur.

The first approach assumes that the decision maker is working in conditions
of complete uncertainty about the future, i.e., that no information about the
probabilities is available to it. When it is unable to make any statement about
the vector of probabilities of the states of nature, this situation is referred to as
decision making under uncertainty.

The second approach takes the view that probabilities of the states of nature
can be specified uniquely, either by repeated experimentation or by eliciting
unique subjective probabilities from the decision maker. When it is able to
specify exactly values for all the vectors of probabilities of the states of nature,
it is referred to as decision making under conditions of risk.

The third approach attempts to strike a balance between two approaches.
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It assumes that in many decision problems some information is available about
the probabilities of the states of nature, but that it is not comprehensive enough
to enable exact specification of the probabilities. This is called decision making
under conditions of incomplete knowledge.

In decision under incomplete knowledge, it is assumed that the decision
maker was able to rank states of nature in terms of their importance such that
E, > E; > ... > E,. With two given techniques, Ty, Ty, each technique
may have to operate in one of j = 1,...,n environmental parameters and a
subjective a prior: ranking of the importance of the environmental parameters
exists, By > E3 > ... > E; > ... > E,,. Then this approach seeks to determine
under what circumstances the expected value (or performance) of T} will exceed
or equal that of T3, i.e., E[T}] > E[T5], so that the first technique could be said to
dominate the second, and vice versa. The conditions for statistical dominance
are determined indirectly. Exploiting summation identity, the below theorem
was derived[18].

If B, > Ey > ... > E,,, then E[T}] > E[T3], and

if (23;:1 Olk) > (‘_Ji=1 ng) forall j =1,...,n

The proof of this theorem is a useful step towards decision making in a
situation of incomplete knowledge about the probabilities of states of nature.
However, its principal practical drawback is clear. Only on a very small number
of occasions are the [O;;] in a decision problem likely to obey the very stringent
requirements of this theorem. It can easily happen that 7 performs better than
T, under the most likely environment, i.e., O1; > Os;, but Ty, may be greatly
preference to T; under the second mostly likely environment, i.e., O35 > Oqs.
If some practical decision making aid is to be developed, a more general result

than this is required, even if it may not be so unambiguous in its interpretation.
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Two practical methods are listed[18]:

Derivation of maximum and minimum expected values given weak ranking of
importance:  The extreme expected outcomes of any technique, given an a
prior: ranking of the importance of the environmental parameters, may be found

by computing n partial averages.

5. 1 ] .
= ;Z J=1,.4n (1)

k=1

The largest such partial average will be the maximum expected outcome and

the smallest will be the minimum expected outcome.

Derivation of maximum and minimum expected values given strict ranking of
importance: This case has more information about ranking of importance, i.e.,
E;-E;j1,>2K;,j7=12,..,n
where E,1; = 0, and K; are positive constants.
The optimum values of E(T') may be found by evaluating the below equation
for j = 1,2,...,n. The largest of these gives the maximum E(T') and the smallest

the minimum.

1 n ' n
E(T)=-Y;(1- ) jK;)+ Y K;Y; (2)
‘7 j=1 j:l
where

J
Y;=) O
k=1

Here is an example. As it is mentioned in Chapter III, even though each
technique has its own original parameter to monitor, many other parameters can

be used without any performance degradation. Therefore, for each parameter,
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it is necessary to find which technique is best and which is second. Below is an
example of how to calculate the outcome matrix and thus find the best technique

for a given parameter. The outcome matrix is shown below:

E, E, E; E,
T1 01 1 01 2 013 014 \
Ty | O21 Oz Oz3 Og4

T, \031 O3z O3z Ogq

T; indicates the i** technique, E; indicates the i** environmental parameter
as the state of nature, and O;; indicates the performance outcome of the
technique ¢ and the environmental parameter j. This O;; value in the matrix
indicates the subjective or a priori detection performance of the technique. From
the performance outcome of every situation, the average performance outcome
of each technique is obtained. After obtaining the performance outcome, a
technique is selected for a parameter with a certain reliability value without
regard to any outside environment conditions, ignoring whatever environment is
outside.

Quantifying the performance outcome is a subtle problem. While it is
possible to predict the performance variation in each environmental parameter,
it is a different matter to quantify it. Therefore the only way is to rely on the
previous experiments and the experts’ subjective or a priori ratings. Then, the

outcome matrix can be rated as below:
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E, E, E3 E,
T (80 10 10 80
T, 1 80 20 80 70
Ts | 80 50 40 80

T, \ 80 80 80 50/

This table shows that T; shows 80 percent performance when it is exposed
to the E; environmental condition, 10 percent for F,, and so on. It is
assumed that the order» of the importance of the environmental parameters is
E, > E, > E3 > E,, and this rating is weakly ordered. Then, the partial
average of each technique can be calculated as below in terms of environmental
parameters:

For T;:

O, =80/1 = 80,0, = (80 + 10)/2 = 45

O3 = (80 + 10+ 10)/3 = 33,0, = (80 + 10 + 10 + 80)/4 = 45

Therefore the maximum is 80 (for E;) and minimum is 33 (for E3).

For T5:

0, =80/1 =80,0, = (80 +20)/2 = 50

O3 = (80 +20 + 80)/3 = 60,04 = (80 + 20 + 80 + 70)/4 = 62

Therefore the maximum is 80 (for E) and minimum is 50 (for Es).

For T3:

0, =80/1 =80,0, = (80 + 50)/2 = 65

O3 = (80 + 50 + 40)/3 = 56,04 = (80 + 50 + 40 + 80)/4 = 62

Therefore the maximum is 80 (for F;) and minimum is 56 (for E3).

For T,:
0; = 80/1 = 80,0, = (80 + 80)/2 = 80
O3 = (80 + 80 + 80)/3 = 80,04 = (80 + 80 + 80 + 50)/4 = 72
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Therefore the maximum is 80 (for E;) and minimum is 72 (for Ej).

Therefore the maximum is 80 and the maximin is 72 at Ty, so the 4th

technique is chosen as best one for a given parameter.

C. Initialization

Initialization starts with the existing techniques. The existing techniques

are:

T1:
T2:
T3:
T4:
T5:

Energy Technique.

Randomness Technique.

Phase Relationship Technique.

Harmonic Sequence Component Technique.

Amplitude Ratio Technique.

The electrical parameters are not restricted, but the behavior of high

impedance faults is characterized and well indicated with harmonic currents.

The electrical parameters are:

P1:
P2:
P3:
P4:
P5:
P6:
PT:

Odd Harmonic Current.

Even Harmonic Current.
Sub-Harmonic Current.

High Frequency Current (2 - 10 KHz).
Third Harmonic Current.

Third and Fifth Harmonic Current.

Second Harmonic Current.

The activities of these electrical parameters are monitored and indicated

in terms of the mean, standard deviation, and the mean absolute value of each

parameter to be used as variables of an induction process.

The next step is to find a best technique for each parameter. To find a
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technique, a specific decision making method is used. While the information and
the performance of each technique is available but incomplete, it is not impossible
to rank the importance of the environmental parameters with experts’ knowledge
and subjective ratings. Therefore, the decision making method under incomplete
knowledge is adopted. For the states of nature, environmental parameters are
used, which are the factors affecting the performance of the techniques and the
behavior of high impedance faults. The environmental parameters as the states
of nature are:

E1l: System Unbalance.

E2: Surface Condition.

E3: Feeder Configuration.

E4: Load Type.

Each environmental parameter is important, but some are more important
than others. It is assumed that the environmental parameters above are listed
by the order of level of importance. From all these the outcome matrix is formed.

The next step is to find the outcome of each technique-environmental
parameter pair. This is done with respect to the advantages/disadvantages of
each technique which are investigated in Chapter III, using the decision making
method under incomplete knowledge.

Here is an example outcome calculation. For parameter P2, even harmonic
current, the energy technique is not substantially affected in its detection
performance by the system unbalance because the energy technique is based
on the arcing phenomenon characteristic of a high impedance fault. However,
because of this, the energy technique is affected by the surface condition, since
this surface condition determines the arcing behavior in terms of the amplitude

increase and the length of arc burst duration. In general, even harmonic current
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do not vary under changed feeder configurations such as presence/absence of
a capacitor bank. Usual load and some solid state devices generate only odd
harmonics, thus the energy technique using evlen harmonics is not affected by
the load type except in the case of arc welding process.

With these discussions and assumptions, and inevitably also by subjective

ratings, the outcomes of the energy technique for environmental parameters are:

El E2 E3 FE4

T1(90 60 90 70)

From this matrix, the partial average of the energy technique is derived
using Equation (1).

011 =90/1 = 90, 012 =(90+60)/2 =175

013 = (90 + 60 + 90)/3 = 80, 014 = (90 + 60 + 90 + 70)/4 =78

Therefor the maximum is 90 and the minimum is 75 for the energy
technique. The outcomes of other techniques for the parameter P2 can be
obtained similarly. The largest partial average gives the maximum performance
and the smallest the minimum. Selecting a technique with their own maximums
and minimums uses maximin partial average to indicate the best technique and
maximax for the second best in case of extreme optimism.

In its original form, each technique uses only one parameter to indicate the
system status.A Because the behavior of parameters vary situation to situation
it is desirable to use the most active parameter to indicate high impedance
faults. Therefore, one parameter can be replaced by another; however, every
technique cannot use all the parameters for detection. For example, the phase
relationship technique uses only a single odd harmonic current to detect high

impedance fault. Table II indicates the parameters and the usable techniques



Table II. Electrical Parameters and Usable Techniques.

] Techniques
Harmonics | __ .
Energy | Random Phase | Harmonic [Amplitude
-ness |Relation | Sequence | Ratio
0dd b d b'd b4 X
Harmonics
Even b'd b'd b q
Harmonics
Sub- b'd b'd
Harmonics
High Freq. X X
Component
3rd bd b4 b4
Harmonic
3rd and 5th b'd b4 b'e b4
Harmonics
2nd X b'd b'q
Harmonic

50
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for each parameter.

The partial averages of the technique for other parameters are obtained
similarly. Tables A(1) through A(7) of Appendix A show the outcome matrices
for parameters. Even though the matrices can be obtained, the matrix for each
parameter is not complete. It seems that there is no possible way to get a
complete outcome matrix. This outcome matrix needs many experiments and
tests for its refined form. This matrix will be changed and refined by several
real operation experiences. The changing and refining of the outcome matrix is
left unsolved in this research.

From Tables A(1) - A(7) of Appendix A, the technique selection database

is formed as shown in Table III.

D. Technique Selection

Technique selection is performed using the technique selection database and
a decision tree. The decision tree has the form of a tree whose branches have
important parameters which are very active in a given situation. Using the
branch information, technique selection will pick the best technique for each
parameter on the branch. If the number of selected techniques to be run is less
than two, the second best techniques may be picked. Therefore, at least two
different techniques are run at the same time. Figure 11 shows an example of a
decision tree, a technique selection database, and selected techniques to be run.

When field data comes into a data treatment block, the whole parameters
which are listed at the initialization set-up are generated through A /D converters
and various filters. With all the parameters arrived at the statistical measure cal-
culation block, statistical measures such as mean, absolute mean, and standard

deviation of each parameter are obtained. The statistical measures of chosen



Table III. A Technique Selection Database.

Parameters Best Technique Second Technique
0dd Randomness Energy
Harmonics Technique Technique
Even Energy Randomness
Harmonics Technique Technique
Sub- Randomness Energy
Harmnics Technique Technique
High Frequency Energy Randomness
Components Technique Technique
3rd Randomness Phase Relation
Harmonic Technique Technique
3rd and 5th Harmonic Seq. Energy
Harmonic Comp. Technique Technique
2nd Randomness Amplitude Ratio
Harmonic Technique Technique




DATA

DATA
TREATMENT

STATISTICAL DECISION
MEASURE TREE
CLACULATIO (P1 & P3)
PARAMETERS
TECHNIQUE | |
SELECTION SYSTEM
p1i| DATABASE STATUS
| BB1
T1 T2
P2
T4 T1
P3
| BB2
T2 T1
P4
T3 T1

Figure 11. An Example of Technique Selection Process.
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parameters are examined by a decision tree to identify a system status. The
statistical measures of all the parameters are forwarded to a learning detection
system to decide the class of the data. At thé same time, all the parameters
arrive at the technique selection block. At this block, the best and second best
techniques are connected to a corresponding parameter; for example, for even
harmonic current signal, a randomness technique and an energy technique are
directly connected.

Then, by a decision tree which has rules indicating important indicative
parameters for detection purpose, the parameter list will trigger and activate
techniques to be run with the parameters. In this example, the chosen parame-
ters are P1 and P3. The decision tree activates the techniques T1 and T2. T1
will be run with the parameter P1 and T2 with P3. Then, two basic beliefs come
out of these two techniques about the system status.

Selection is updated whenever a decision tree structure is changed and thus
the active parameter list is updated. Thereafter the list of techniques to be
run is changed. The other case in which the selection update occurs is when
the outcome matrices are changed by any means. This will force the selection

process to be updated.

E. Summary

Technique Selection is performed by an initialization, a technique selection,
and a selection update stage. When a decision tree is updated, technique
selection is also updated. With the assumptions and discussion made, the total

structure of technique selection was illustrated and explained.
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CHAPTER VI

TECHNIQUE COMBINATION PROCESS

A. Introduction

One of the many difficulties associated with the development of an intelligent
detection system is the fact that the information from each detection technique
contains a considerable amount of uncertainty. The behavior of various high
impedance faults is not consistent. Under similar conditions, faults show
different characteristics in behavior and may draw less harmonic current than
other faults under the same conditions. Sometimes the behavior of faults can be
very similar to the phenomenon of the switching events. Moreover, the behavior
of high impedance faults under various environmental conditions is so random
that it is nearly impossible to characterize it by probabilistic qualities.

To accommodate uncertainty, an intelligent detection system must have
some way of calculating its confidence in a conclusion in proportion to the
level of the evidence. The most widely used representation of uncertainty has
been in terms of a probability distribution which has a profound mathematical
basis. However, many situations do not lend themselves to such convenient
treatment and special approaches have to be utilized[19]. One approach Widely
used to tackle uncertain outcome, termed the engineering approach, is to avoid
explicit representation of uncertainty and substitute an uncertain system with
an equivalent certain system. The engineering approach to uncertainty is simply
to formulate one’s prdblem to avoid explicit representation of and reasoning with
uncertainty. Most Al programs engineer uncertainty out of the task domain to
some extent. The potential problem with this is that one may lose a valuable

source of constraints. This is especially the case when it is uncertain how to use
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available information, and so it is simply ignored|[20].

The evidence-gathering process in high impedance fault detection with
multiplé techniques requires a method of combining the support for a hypothesis,
or for its negation, based on multiple, accumulated observations. Dempster-
Shafer’s evidence theory provides a formal proposal for its management|[21].
Given two belief functions, based on two observations, Dempster’s combination
rule computes a new belief function that represents the impact of the combined

evidence.

B. Evidence and Basic Belief

The evidence theory (or Dempster-Shafer theory), like Bayesian theory,
relies on degrees of belief to represent uncertainty. Unlike Bayesian theory,
however, it permits one to assign degrees of belief to subsets of hypotheses. In
Bayesian theory, one constructs a probability distribution over all individual
singleton hypotheses, but in the evidence theory, a distribution is constructed
over all subsets of hypotheses. This is a great advantage.

For example, in a high impedance fault detection problem, there are three
different system status to be identified: Fault, Fvent, and Normal. Imagine
information from a power distribution system in a given time, and the hypothesis
about the system status. In addition to the three singleton hypotheses there
are two others: that the system is under Disturbance status which indicates
that system is under Fvent or Fault status, and that the system is under
Non— Fault status which indicates either Normal or Fvent status. Suppose the
evidence that the probability of Disturbance is 0.6 is obtained. In the evidence
theory it is possible to assign the probability 0.6 to the set {Event, Fault}

without committing any of that 0.6 to either member of the set. In the Bayesian
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approach it would be natural to artificially divide the 0.6 among Event and
Fault. Furthermore, in the Bayesian scheme, it seems to be forced to assign
the remaining 1 - 0.6 = 0.4 of the probability distribution to Normal. In
contrast, the evidence theory approach assigns the remaining 0.4 to the set
{Fault, Event, Normal}, that is, to the set that reflects ignorance about system
status.

The detection techniques introduced in Chapter III ignore all the uncer-
tainty in the high impedance fault environment. Therefore it is necessary to
change them slightly to have a probabilistic output such that the output shows
the form of certainty level on the system status. One example output is that,
based on the information for the high impedance fault detection monitoring
data, the output result of the technique A is Fault(0.6), or Event(0.7).

The Dempster-Shafer théory uses a number in the range[0,1] to indicate
belief in a hypothesis given a piece of evidence[21,22]. This number is the degree
to which the evidence supports the hypothesis. The impact of each distinct piece
of evidence on the subsets of frame of discernment, denoted ®, which are all the
cases of cause or status, is represented by a function called a basic belief. A basic
belief is a generalization of the traditional probability density function; the latter
assigns a number in the range [0,1] to every singleton of © such that the numbers
sum to 1. The quantity m(A) is a measure of that portion of the total belief
committed exactly to A, where A is an element of 2® and the total belief is 1.
This portion of belief cannot be further subdivided among the subsets of 4 and
does not include portions of belief committed to subsets of A. It would be useful
to define a function that computes a total amount of belief in A. This quantity
would include not only belief committed exactly to A but belief committed to

all subsets of A. Such a function is called a belief function.
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A belief function, denoted Bel, corresponding to a specific basic belief, m,
assigns to every subset A of © the sum of the beliefs committed exactly to every
subset of A by m. For example,

Bel(fault,event,normal) = m(fault, event,normal) + m(fault, event)

+m(event, normal) + m( fault,normal)

+m( fault) + m(event) + m(normal).
Thus, Bel(A) is a measure of the total amount of belief in A and not of the
amount committed precisely to A by the evidence giving rise to m. Bel(@) is

always equal to 1 since Bel(©) is the sum of the values of m for every subset of

0.

C. Combination of Belief Functions

As discussed earlier, the evidence-gathering process or reasoning process for
detection with multiple techniques requires a method for combining the support
for a hypothesis, or for its negation. The Dempster-Shafer model also recognizes
these requirements and provides a formal proposal for their management. Given
two belief functions with the same frame of discernment, Dempster’s combination
rule computes a new belief function that represents the impact of the combinéd
evidence.

Let Bel, and Bely and m; and m, denote two belief functions and their
respective basic beliefs. Dempster’s rule computes a new basic belief, denoted
my @my, which represents the combined effect of m; and m,. The corresponding
belief function, denoted Bel; @ Bel,, is then easily computed from m; & m, by
the definition of a belief function.

As an example, suppose that for a given system one technique supports a

disturbance or not-normal status to degree 0.6(m;) whereas another unconfirms
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the fault (i.e, confirms (event, normal) ) to degree 0.7(my). Then the net belief
based on both observations is given by m; @ my. For computational purposes,
an “intersection table” with values of m; and ;nz along the rows and columns,
respectively, is a helpful device. Table A(8) of Appendix A shows the intersection
table with values of m; and ms,.

In this example, 'a subset appears only once in the table and m; @ my is
easily computed for the status:

my @ my(event) = 0.42

my @ ma(fault,event) = 0.18

my1 @ my(event,normal) = 0.28

m; @ my(0) = 0.12

my @ ms is 0 for all other subsets of ©.

Since Bel; @ Bel, is fairly complex, only a few sample values are given:

Bel; @ Bely(fault,event) = my @ my(fault,event)
+ my ® ma(fault) + m; & my(event)
=0.18+0.04+0.42=0.60

Bel, @ Bely(event,normal) = m; @ my(event,normal)
+ my @ my(event) + m; @ my(normal)
=0.28+0.42=0.70

Bel, @ Bely(fault) = m; & my(fault) = 0.0

In this example, the table does not contain null entries because every two sets
with nonzero basic belief values always have at least one element in common.
In general, nonzero products of the form m;(X)my(Y) may be assigned
when X and Y have an empty intersection. The Dempster-Shafer theory deals
with this problem by normalizing the assigned values so that m; & my(0) = 0

and all values of the new basic belief lie between 0 and 1. This is accomplished



60

by defining x as the sum of all nonzero values assign to 0 in a given case. This
theory then assigns 0 to m; @ my(0) and divides all other values of m; & m, by
1-k.

As an another example to the above, suppose now that for the same system,
a third technique(mg) confirms the status of fault to the degree of 0.8. Now it
is necessary to compute ms @ mg4, where my4 = m; @ my of the above example.
The intersection table of 3 values is shown in Table A(9) of Appendix A.

In this example, there are two null entries in the table, one assigned the
value 0.336 and the éther 0.224. Thus

£=0.336+0.224=0.56 and 1 — k=0.44

mg ® my(fault) = (0.144 + 0.096)/0.44 = 0.545

ms @ my(event) = 0.084/0.44 = 0.191

mg @ my(fault, event) = 0.036/0.44 = 0.082

mg @ ma(event,normal) = 0.056/0.44 = 0.127

m3 @ me(0) = 0.024/0.44 = 0.055

mg @ my is 0 for all other subsets of ©.

Therefore the final belief function for fault status in this example is 0.545.

D. Technique Combination with Dempster-Shafer Theory

High impedance fault detection with multiple techniques is well suited for
implementation with the Dempster-Shafer theory. First, mutual exclusivity of
singletons in a frame of discernment is satisfied by the sets of hypotheses in the
detection scheme constituting the frames of discernment (Fault, Normal, Event).
Second, the belief functions that represent the evidence in the detection scheme
are of a particularly simple form. Moreover, the way the techniques indicate the

system status fits very well into the theory.
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The conceptual structure in the detection scheme is very simple, which has
the form of (status, basic belief). This double gives rise to a single hypothesis
of the form “the technique shows the status with a confidence of basic belief.” A
frame of discernment would then consist of all doubles with the same technique.
Thus the number of doubles, or hypotheses in @, will equal the number of
possible status that the technique may assume for the system in question. In
other words, the frame of discernment is either (Fault, Event, Normal) or (Fault,
Normal). The system status is fault, event, and normal; thus the representation
scheme is particularly well suited to the mutual exclusivity demand of the theory.
The simplified belief function, several types of evidence combination, and an

example of the evidence combination will be discussed in this section.

In the most general situation, a given piece of evidence supports many of the
subsets of ©, each to a varying degree. The simplest situation is that in which
the evidence supports only one subset to a certain degree and the remaining
belief is assigned to ©. Because of the characteristics of the detection technique,
this applies in the combination of the conclusion of detection techniques. If the
premise confirms the conclusion of a technique with degree s, where s is above
threshold value, then the technique’s effect on belief in the subsets of ® can
be represented by a basic belief. This basic belief assigns s to the singleton
corresponding to the hypothesis in the conclusion of the technique, call it A,
and assigns 1 — s to ©. If the premise unconfirms the conclusion with degree s,
then the basic belief assigns to the subset corresponding to the negation of the

conclusion, -4, and assigns 1 — s to ©[22].

There are three types of evidence combination in the high impedance fault
detection environment. They are explained below.

Type 1: Two techniques are both confirming or both unconfirming of the same
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conclusion. For example, both techniques confirm ( fault), one to degree 0.4 and
the other to degree 0.7. The effect of triggering these two is represented by basic
beliefs m; and m,, where m4(fault) = 0.4, m;(0©)=0.6, and my(fault) = 0.7,
m3(©)=0.3. The combined effect on the belief is given by m; @ ms.

Type 2: One technique is confirming and the other unconfirming of the same
singleton hypothesis. For example, one technique confirms ( fault) to degree 0.4,
and the other unconfirms (fault) to degree 0.8. The effect of triggering these
two techniques is represented by basic beliefs m; and mg, where m; is defined
in the example from Type 1 and mgs(—fault)=0.8, m3(0)=0.2. The combined
effect on belief is given by m; ® mj.

Type 3: Two techniques involve different hypotheses in the same frame of
discernment. For example, one technique confirms ( fault) to degree 0.4, and the
other unconfirms (normal) to hegree 0.7. The triggering of the second technique
gives rise to m4 defined by m4(—normal)=0.7, m4(©)=0.3. The combined effect

on belief is given by m; @ my.

An implementation in the detection scheme of the Dempster-Shafer methods
which minimizes computational complexity is discussed here. Combining the
functions in a simplifying order to reduce the computations[23] is adopted as is
well shown in the reference[22]. The steps for simplified evidence combination
are explained below.

First, for each singleton hypothesis, combine all basic beliefs representing
techniques confirming that hypothesis. If s;, s5, ..., 55 represent different degrees
of support derived from k techniques confirming a given singleton, then the
combined support is

1—(1—s1)(1—s2).(l —sg)

Similarly, for each singleton, combine all basic beliefs representing tech-
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niques unconfirming that singleton. Thus all evidence confirming a singleton
is pooled and represented by a basic belief, and all evidence unconfirming the
singleton is pooled and represented by another basic belief. Then there are 2n
basic beliefs, where n is the size of ©. In the high impedance fault detection
case, n = 3: fault, event, and normal. Secondly, combine the two basic beliefs
computed in the first step. Then there are n combined basic beliefs, which are
denoted CBB;,CBB,,...,CBB,. Thirdly, Combine the combined basic beliefs
computed in the second step in one computation, using simplified formulae, to
obtain a final belief function Bel.

The form of the required computation is shown below[23]. Let [¢] represent
the ith of n singleton hypotheses in ©, that is, i = 1 for fault, ¢ = 2 for event,
and + = 3 for normal. Then p; indicates the ¢th confirming basic belief of n
singleton hypotheses, ¢; the ith unconfirming basic belief, and r; the rest of the

basic belief as shown below.

CBB;[i] = p;
OBB,;[—li] = C;
CBB;[0] = r;

Since p; + ¢;+7r;, =1, 7, =1 —p; — ¢;. Let d; = ¢; + ;. Then it can be
shown that the function Bel resulting from combination of C BBy,...,C BB, is

given by

Bel([i]) = p,Hd +r,H

J#i J#i

For a subset =4 of O,

Bel(-A) = K(([[ 41> _ pi/d;] + IR I )

all jgA JEA  jgA allj



64

where

K7t =[]+ pi/di] -] 4

allj allj allj

as long as P; # 1 for all j.

As an example, consider the net effect of the following set of basic beliefs
from various techniques regarding the signal information of the system. Assume
that the final conclusion about the beliefs in the competing hypotheses from
detection techniques will be based on the following successful information:

T1 unconfirms (fault) to the degree 0.6

T2 unconfirms (fault) to the degree 0.2

T3 confirms (normal) to the degree 0.4

T4 unconfirms (event) to the degree 0.8

T5 confirms (normal) to the degree 0.3

T6 unconfirms (fault) to the degree 0.5

T7 confirms (fault) to the degree 0.3

T8 confirms (event) to the degree 0.7

Each step of belief combination follows.
Step 1:
Considering first confirming and then unconfirming basic belief for each

status, following is obtained:

a. (fault) confirmed to the degree s;=0.3, unconfirmed to the degree s} =1-
(1-0.6)(1-0.2)(1-0.5)=0.84.

b. (event) confirmed to the degree s;=0.7, unconfirmed to the degree s,=0.8.

c. (normal) confirmed to the degree s3=1-(1-0.4)(1-0.3)=0.58, unconfirmed to

the degree s3=0.
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Step 2:
Combining the conforming and unconfirming basic belief for each system

status:

0.3(1 — 0.84)
BB It) = = 0.064 =
CBBy(fault) = T G3y00.80) ~ 0084 =P
0.84(1 — 0.3)
BB (~fault) = =0.786 =
C BB (~fault) = (0.3)(0.84) 0.786 = ¢;
Thus 7;=0.15 and d,;=0.786+0.15=0.936.
C BB;(event) = w = 0.318 =
AV = T " (07)(0.8) TP
_08(1-07) .
CBB;(—event) = T (0.1(08) ~ 0.545 = ¢,

Thus 75=0.137 and d5=0.545+0.137=0.682.

CBB3(normal) = 0.58 = p3

CBBj3(—~normal) =0 = c3

Thus r3=0.42 and dy=0.42.

Step 3:
Assessing the effects of belief in the various system status on each other:
K™ =didyds(1 + p1/di + pa/dy + ps/ds) — cicacs
=(0.936)(0.682)(0.42)(1+0.064/0.936 +0.318/0.682 +0.58/0.42)
-(0.786)(0.545)(0)
=0.268(1+0.068+0.466+1.38)
=0.781
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Therefore, K=1.28

The final combined belief function of each status is calculated:
Bel(fault) = K(p1dads + r1c3¢3)=0.023

Bel(event) = K(padads + rac1c3)=0.160

Bel(normal) = K(psd;dy + r3c1¢2)=0.704

From above final belief functions, the only important belief is a belief of
fault. Therefore, if the belief of fault is larger than a preset threshold value, the
final system status will be output as a single form of (fault). In the above case,
the final status is (non-fault). Dempster-Shafer theory is particularly appealing
in its potential for handling evidence bearing on types of the status. However, the
representation of the system status needs to be studied more. Some techniques

make an output result of fault or event, but others fault but not event.

E. Summary

Technique combination‘ using the evidence theory is investigated in this
chapter. The basic belief and the combination of basic beliefs are illustrated
with examples of high impedance fault detection case. A detailed calculation
process for a final combined basic belief of a status is explained with a simplified

formula.
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CHAPTER VII

CLASSIFICATION WITH INDUCTIVE REASONING

A. Introduction

An intelligent device, including man, can be thought of as something
capable of adjusting to its environment. To make such adjustments the device
must continually be classifying slightly different status of the environment as
equivalent or not equivalent[24]. It has been shown that inductive reasoning
can improve the classification of faults and swivtching events and, combined with
other information such as a final belief from combined techniques and operator
interaction, can be used as a learning system to adapt a detection system to its
environments with induced rules[25].

For a learning process in an intelligent decision making system, inductive
reasoning for classification/recognition is adopted. Inductive reasoning for
pattern classification is based on entropy minimization. Entropy is a measure of
the disorder in classifying data. Entropy minimization is an ordering principle
by which it is determined which past events are more like future events in ways
that are sufficient for predicting the outcome. If one wishes to classify a set of
samples into a more ordered state, he attempts to lower the entropy. Therefore,
by minimizing entropy, rules for classification can be induced. By this rule, the
concept of each class, fault and non-fault, is learned from sample event. This

rule and decision tree indicate the knowledge of the classes of a given situation.

B. Induction Theory

The end of induction is to discover a law having objective validity and

universal application. However, the conclusions of a process of inductive
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reasoning need be no more general than merely annexation of one new particular

to those particulars taken in the beginning. Thus beginning with the particular

“all high impedance faults observed to date show high frequency current bursts,”

it might be concluded with the universal “all high impedance faults show high

frequency current bursts” or with the less general “all high impedance faults
observed to date show high frequency current bursts and it is highly probable
that the next high impedance fault to be observed shows high frequency current
bursts.”

The essential principles of induction have been known for centuries. Three
laws of induction are summarized below[26]:

1) Given a set of irreducible outcomes of a trial, the induced probabilities are
those probabilities consistent with all available information which maximize
the entropy of the set. |

2) The induced probability of a set of independent observations is proportional
to the probability density of the induced probability of a single observation.

3) The induced rule is that rule consistent with all available information for

which the entropy is minimum.

It is not necessary to assign probability factors if the separation of two
classes can be done easily and formally. The third law is appropriate for
classification and the second law for calculating the reliability of the rule and
mean probability of each step of separation. From the second law, the following

is derived[26].

where

< p > is a mean probability,
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t is the number of distinguishable True states,
f is the number of distinguishable False states,
n is the number of observations,

and z is the number of observations classified as True.

When there are only two classes, the mean probability becomes,

The classical problem of the third law of induction is the problem of pattern
recognition, that is, classification. In classification the probability aspects of the
problem is completely disregarded; it is simply asked whether it is True or False.

Using this, a description of two classes are obtained.

C. Pattern Classification

Information consists of statements as to the values of probabilities. A key
goal of entropy minimax analysis is to determine the quantity of information in
a given data set. A quantity of information is defined as proportional to the
negative of the logarithm of probability.

I=—klogP.
where P = 1/m in the equi-probability case.

This information measure compares the contents of data one receives to
prior state of expectation. The higher was one’s prior estimate of the probability
for an outcome to occur, the lower will be the information one gains by observing
it to occur.

The entropy on a set of possible outcomes of a trial where one and only one

outcome is True is defined as
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N
S=-k Zpi In p;
=1

In other words, the entropy is the expected value of the information. On the

other hdnd, the entropy of a rule is defined as below:

S=-k f: z;p; In p;
i=1

where,

m is the number of total steps,

1 is the step,

z; is the number of samples of either True or False at step ¢,

p; is a mean probability of the it* step for either True or False,

and k is a constant.

The third law of induction which is typical in pattern recognition says
that the entropy of a rule should be minimized to have a simple and reliable
rule. To find the minimum entropy and its corresponding rule, all the possible
combinations of steps and of rules must be investigated. The number of possible
n digit numbers is N = 2™. A rule which separates these N numbers into two
classes is desired. There are N2 ways of separating N numbers into two classes.
If there are only m samples, then the number of available patterns are 2™. This
means, if there are 7-digit numbers and only 31 sample patterns, then there are
23! ways of separation.

For simplifying the steps in rule induction, some easily derivable relations
and tips for entropy minimization are derived.

1) The closer p; to 1 or 0 is, the smaller § is.

2) The bigger z; is, the higher p; is.
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3) The bigger the digit index of digit n is, the bigger z,, is.
In addition, the digit indez is defined as the rating of separation into two

classes in each digit for both True and False classes. For example, suppose there

are two classes of True and False and each class has four, 3-digit numbers as

below:
TRUE FALSE
101 001
010 110
011 111
000 100

If the first digit index is considered, and choose 0xx as True (x means don’t
care), then there is one wrong separation in True and another one in False. For
the second digit, if either x0x as True or x1x as True was chosen, there are two
wrong separations at both classes. So, apparently using the first digit is better
than using the second digit.

The following are steps to find a digit index to determine which digit is most
important to separate numbers into two classes. First, count the number of 1’s
under True and count the number of 0’s under False, and divide each number

by the number of samples in each class. Then the digit counts, d,’s, are as given

below:
TRUE FALSE
d; dy ds d; dy . ds
025 0.5 0.5 0.25 0.5 0.5

Then, adding together digit by digit, the result is
dy dy ds
0.5 1.0 1.0
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If the value of d,, is closer to 1, that digit is not important to separate. That
is, 1’s and 0’s have the same weight (number, frequency, or importance) on both
sides. If the value of d, is away from 1, there are less 1’s or 0’s in one class, so
the digit index of digit n, I,, is defined here using d,. The maximum value of
I,is 1.

I, =|d, — 1]

Therefore, from the above example,

I, = 0.5, I=0.0, and I3 =0.0, so the first digit has the maximum digit
index. This digit can be used to separate two classes if only one digit is used to
classify. The following is the simplified version of entropy minimization.

1) Find the maximum digit index. Then separate two classes using the digit
index by either 1 for True or 0 for False.

2) Eliminate those samples v\vhich are subsets of the above step.

3) Find the maximum digit index from remainders.

4) Do steps 1) - 3) until the two classes are empty.

D. Threshold Value

In a pattern classification problem, a rule derivation assumes the values of
interests are 1’s and 0’s. In a discrete system, it is easy to assign 1’s and 0’s,
but in a continuous system, certain values must be set to divide the sample
events into 1’s and 0’s. This is called a threshold value. If the threshold value
is changed, the 1/0 table, which is a converted sample list of binary form, is
changed and so are the entropy values and rules. How to set a threshold value
to separate two classes efficiently and simply is the point of the next discussion.

The idea is simple: find a threshold value for each variable which results

in minimum entropy for that variable. In this case, the problem is still a
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classification system. The only difference is that this case deals with only a
variable, but the previous one (rule induction) is classification with all the
variables. Therefore, the idea of minimum entropy of the induced rule is similarly
used here in threshold value calculation. Thus, finding a threshold value is
finding a rule for a variable. Assume that a threshold value for a variable in
the range of X1 to X2 is being sought. Then for this variable only, the entropy

equations are written as below([26]:

- S(z) = p(x)Sp(x) + g(2)S4(2)

Sp(z) = = D p(z) Inpi(e)

k=1
Se(z) == qi(z)In ge(2)
k=1

where,
S(z) is the entropy of a variable value z,
Sp(z) is the entropy of a variable in the region X1 to X1 +z,
Sq(z) is the entropy of a variable in the region X1 + z to X2,
pr(z) is the probability of the k*® outcome class given that the variable
value is in the region X1 to X1 + z,
and qx(z) is the probability of the k** outcome class given that the variable
value is in the region X1 + z to X2.

m is the number of outcome classes,

In addition, relatively unbiased estimates for pi(z) and p(z) are defined

below.
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p(z) =
where,
ni(z) is the number of samples located between X1 and X1 + z in the kt*
outcome class,
n(z) is the total number in this region in all the classes,

and n is the total number of samples.

Now z can be chosen by various manipulations. This ¢ can be any value
between X1 and X2. Here steps are made in the value of z, i.e., z;’s. If S(z;) is
minimum, then X1 + z; is the threshold value. So if each digit has its minimum
entropy at the threshold value, then the total entropy for rule is also minimized.

The following is a simplified and coarse example for finding a threshold
value. Here there are only two classes, so k in the above equations has values 1
and 2 or T (for Non-Fault) and F (for Fault). Therefore m equals 2. The sample

data for each class is shown below.

T: 10 20 16 18 24 33 47 74
F: 76 83 45 90 66 33 72 84

From the above list, X1=10 and X2=90. By following the procedure of
calculating a threshold value, it is easily found that the minimum occurs at z,
i.e. at 26. A detailed calculation example will be shown with staged fault data
in Chapter IX. Thus, 36 (this value comes from X1+ z,) can be used as a good
threshold value. Now, 36 is a border line for 1 and 0 logic, so the 1/0 table is:

T:00000011

F:11111011

Assuming that only this digit is used for separation, the rule is:

00— T,orl—F.
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Here there are two wrong decisions in T and one wrong decision in F. This
result can be compared with that of the median. If the border line is chosen as
the median, i.e., 47, there are two wrong decisions in T and another two wrong
decisions in F.  The 1/0 table is omitted for the case of the median. Here it
is shown that the threshold value is better than any arbitrarily chosen value in
this simple example. However, the more important point is that it has a basis
for finding a border line for 1 and 0 that leads into a better position in rule
induction. Thus the induced rule will be simpler and more reliable with this
threshold value. Theée threshold values which minimize entropy can be adopted
by an induction process in its threshold value calculation for the variable. In
the technique selection process, by using these threshold values, each technique
adjusts and tunes its threshold value appropriately. A variable value, in T (Non-
Fault) class, which is greater than a threshold value may become a detection

threshold for a technique.

E. Rule Induction and Decision Tree

Induction with entropy minimization is basically for pattern recognition,
that is to classify two classes. However, this tool for detection can be applied
to a learning process. How this induction is combined with other processes to
become a learning system is explained below.

1) Initialize the induction process with the variables’ sample data. The
variables are given by historical data as an initial setting. The class of the
sample is also given by a human expert or historical data with experience
of actual operation or staged fault tests.

2) Start the induction process calculating the threshold values of each variable.

With threshold values the variables of each sample data are converted into
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binary values. From these binary values, the simplified minimum entropy
process follows. The final decision rule will be derived with an induction
process that indicates which parameters are most active in a given situation
and, if this rule is applied as a detector, it is combined with the final belief
of the combined techniques, an output from event detector, and an operator
interaction to find the final status about a distribution feeder.

3) A decision rule or decision tree is updated when experimental sample data
are provided as operational experiences. This process is realized by a
learning detection system. The same induction process resumes to obtain a

new decision rule and decision tree.

For inductive reasoning, sample data with a corresponding class is essential.
Historical staged fault data or actual operation data can be used for initial set-
up. With induction as many variables as possible are used to better describe
each class effectively. As discussed in Chapter V, harmonic currents are used as
parameters. These are listed below:

Odd Harmonic Current

Even Harmonic Current

Sub-Harmonic Current

High Frequency Current

Third Harmonic Current

Third and Fifth Harmonic Current

Second Harmonic Current

With these parameters, it is necessary to find any statistical measure which
can indicate the activities of each parameter for each class, and thus indicate
the high impedance fault. Mean, standard deviation, and mean absolute value

are chosen for this purpose. Then, the variables which can be used for the
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induction process are the combination of parameters and statistical measures as
shown in Table IV. Therefore, there are 21 variables to be used in the induction
process. The length of data for measuring these variable values are limited to,
for convenience, 30 cycles.

The induction process is used to draw a decision rule or tree from the sample
data. With the sample data, threshold values are calculated as the first step.
With calculated threshold value for each variable, the 1/0 binary table is formed.
With this 1/0 binary table, a simplified formula for deriving a rule applies. The
final rule and decision tree result. The ruleis based on no more than the available
information, and on all of the available information. Therefore, the detection
rule might be changed in different cases. An investigation was done to find how
the detection rule changes as the high impedance fault case changes.

As was mentioned in Chapter II, the behavior of high impedance faults
is random and transitory. However, it is possible to categorize its behavior in
terms of the fault current amplitude increase and the arc burst duration. Five
different cases were studied. The first and second cases are high impedance
faults and non-faults on wet soil. The third, fourth, and fifth cases are on dry
soil. The result of this study is summarized in Table V. Detailed rule derivation
is explained in Chapter VIII and Appendix B. From Table V, the following are
fognd.

1. No one general rule is found, therefore, different rules are necessary at
different sites.

2. Even harmonics and sub-harmonics are generally important parameters to
classify the activities of high impedance faults and non-faults.

3. If amplitude increase is small and arc burst duration is short, then the

sub-harmonic is the best parameter for classification.



Table IV. The Variables for an Induction Process.

MEAN OF ODD HARMONIC CURRENT (mnodd)

MEAN ABSOLUTE OF ODD HARMONIC CURRENT (amodd)
STANDARD DEVIATION OF ODD HARMONIC CURRENT (sdodd)
MEAN OF EVEN HARMONIC CURRENT (mneve)

MEAN ABSOLUTE OF EVEN HARMONIC CURRENT (ameve)
STANDARD DEVIATION OF EVEN HARMONIC CURRENT (sdeve)
MEAN OF SUB-HARMONIC CURRENT (mnsub)

MEAN ABSOLUTE OF SUB-HARMONIC CURRENT (amsub)
STANDARD DEVIATION OF SUB-HARMONIC CURRENT (sdsub)
MEAN OF HIGH FREQUENCY CURRENT (mnhgh)

MEAN ABSOLUTE OF HIGH FREQUENCY CURRENT (amhgh)
STANDARD DEVIATION OF HIGH FREQUENCY CURRENT (sdhgh)
MEAN OF 3RD HARMONIC CURRENT (mn3rd)

MEAN ABSOLUTE OF 3RD HARMONIC CURRENT (am3rd)
STANDARD DEVIATION OF 3RD HARMONIC CURRENT (sd3rd)
MEAN OF 3RD AND 5TH HARMONIC CURRENT (mn35)

MEAN ABSOLUTE OF 3RD AND 5TH HARMONIC CURRENT (am35)

STANDARD DEVIATION OF 3RD AND 5TH HARMONIC CURRENT (sd35)

MEAN OF 2ND HARMONIC CURRENT (mn2nd)
MEAN ABSOLUTE OF 2ND HARMONIC CURRENT (am2nd)

STANDARD DEVIATION OF 2ND HARMONIC CURRENT (sd2nd)
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Table V. Rules for Different Fault Cases.

Faulted Signa]

Harmonic Parameters

Examples L. Remarks
Description
Mag. | Burst |Rule 1|Rule 2|Rule 3|Rule 4
1 (site 1)| Large | Long | Even | ANY Even
Medium|Medium
Short
2 (site 1)| Medium|Medium | Sub ANY Sub
Small | Short EXCEPT
EVEN
3 (site 2)| Medium| Long Sub Sub Sub
Medium 3rd
4 (site 2)| Large | Long ANY ANY
5 (site 2)| Medium|Medium | Sub 0dd Sub
Small | Short 3rd 0dd
1+ 2 Large Long | Even | Even Even
(site 1) | Medium|Medium
Small | Short
3 + 4+ 5 Large | Long Sudb 0dd Sub
(site 2) | Medium|Medium 3rd 0dd
Small | Short
1+2+3+4+5 | Large | Long Even | Even 2nd Sub Even
(site 1+2)| Medium|Medium Sub
Small | Short
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4. If amplitude increase is large and arc burst duration is long, then any

harmonic parameters can be selected for classification.

When there is any discrepancy between the confirmed status and the actual
status, the decision tree needs to be changed and updated. For the induction
process, data with known classification is necessary. However, when the system
is operated, there is not any way to confirm that the final system status decided
upon by the intelligent system is correct. In this circumstance, it is impossible
to save the data and class as a correct sample data to be used in the induction
process. An intelligent system always can be ready to ask and to get replies
from an operator about whether there is any discrepancy. However, the way the
operator replies and provides the data and corresponding class to the memory
has a time frame problem. To solve this problem, a learning detection system
which combines a technique selection, a technique combination, and an induction
process is proposed. A decision control block inside the learning detection system
combines and synthesizes the status output from an induction process, the final
belief from the combined techniques, an operator input, and an output from an
event detector. Here, it is assumed that when the final combined decision from
a learning detection system is a “Fault”, then a “TRIP” signal is issued and the
distribution feeder is disconnected. Then, an operator provides a confirmation
or unconfirmation input to the learning detection system. The event detector
indicates any disturbance or event with high frequency current or sub-harmonic
current. Combining all these inputs, a learning detection system successfully
learns about the system and parameters, identifies the data which makes the
controller decide such results, and places the identified data into a fixed-size
memory. This memory is accessed by an induction process later to update

rules. The newly induced tree will replace the old one, and thus update the
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technique selection process, too. The learning detection system will be discussed

thoroughly in Chapter VIII.

F. Summary

Inductive reasoning is explained. The initial set-up, the induction process,
and the update process are examined. A learning detection system is briefly
discussed. A detailed example, with a learning detection system implementation,
will be shown in Chapter VIII with a training set and a test set of staged fault

data.
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CHAPTER VIII

IMPLEMENTATION OF AN INTELLIGENT DECISION MAKING SYSTEM

A. Introduction

An intelligent decision making system is useful for effective analysis of
information and thus for effective and reliable detection of high impedance faults.
In addition, it adjusts to its environment making the system adaptive by using a
learning concept. The intelligent decision making system consists of a technique
selection, a technique combination, and an induction process. The realization
and implementation of an intelligent system with these three major parts will
be discussed in this chapter. A learning detection system which combines all
three parts is proposed to realize an adaptive detector and learner. An example
execution with this implementation method is shown with sample training data

and testing data.

B. Learning Detection System

As was mentioned, an intelligent decision making system consists of mainly
a technique selection, a technique combination, and an induction process.
However, the interconnection among them and the basic scheme of learning and
detection has not been discussed. A learning detection system which combines
all these processes to make an adaptive detector/learner is the subject of this
discussion.

As important indicative parameters are selected with an existing rule, a best
and secor;d best technique are selected with respect to the chosen parameters.
Then these techniques receive the corresponding input parameters from a power

distribution system to detect a fault or normal status. At the same time, a
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decision tree which also was formed from an existent rule accepts parameters to
decide the system status. The outputs from both a decision tree and combined
techniques can be mixed or compared in a cértain manner and have a final
decision on the system status. This final decision activates a relay to trip or not
to trip.

In this case, the ptoblem is the quality of the final decision. There is a chance
that this final decision is not correct. Then with this incorrect classification, the
corresponding data as an incorrect class will be stored into memory from which
an induction process updates its rule. Because using incorrectly identified stored
data is very dangerous and unreliable, the problem of the reliability of the final
decision, which is also known as the problem of an unreliable teacher, should
be minimized and ideally eliminated. The problems of an unreliable teacher are
summarized below.

1. Type I error: The system is under a Fault status, but the final decision is

“Non-Fault.”

2. TypelIl error: The system is under a Non-Fault status, but the final decision
is “Fault.”
3. There is no way to indicate the actual system status with only the three

major parts.

To meet these problems of an unreliable teacher, operator interaction and
an event detector are assumed. Operator interaction provides confirmation or
unconfirmation information on the final decision of fault. When a final decision
of fault is made and the “TRIP” signal is issued, with a power line disconnected,
then an operator checks and replies if it is actually a fault or not. This
information provides the actual system status (i.e., reliable teacher) and is very

essential to eliminate Type II errors. By this confirmation/unconfirmation, the
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data class to be stored is correctly identified. However, this operator interaction
still does not provide any useful information to eliminate Type I errors, because
an operator interaction is activated only after a final decision of “Fault.”

To minimize Type I errors, an almost perfect event detector is assumed.
This event detector is a part of an existent fault detector which has a sensitivity
problem. It detects any disturbance or event on the distribution line. High
frequency current or sub-harmonic current, which is very sensitive to any kinds
of transients, is the best candidate for an event detector. If a disturbance or
event is detected by this detector, a ‘1’ output will be issued, otherwise, a ‘0’
output will be issued.

If the final decision is not “Fault,” but there are some numbers of consecutive
events, then it is suspected that a fault condition might be present and remain
undetected. In this particular situation, a “WARNING?” signal is issued to fnake
an operator pay attention to the power system. Until there is a response from
an operator, all the data which are involved in this particular decision will be
remained unclassified and thus not stored as valid data. When an operator
response is entered, with confirmation or unconfirmation, then a correct system
status is obtained and thereafter data classification can be achieved.

To realize the above functions, a learning detection system is proposed which
controls an event detector, decision rule, technique selection, and technique
combination, in a decision control block. The structure of a learning detection
system is shown in Figure 12. Data storage is memory where classified data are
stored. This data storage, which has a fault data section and a non-fault data
section, is a fixed-size FIFO (First In First Out) memory. Therefore, when a
new classified data comes in, the first data goes out.

The signals inside a learning detection system are E, R, T, O, and D. E
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Figure 12. Structure of a Learning Detection System.
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indicates an event output (1 for event, 0 for otherwise), R indicates a status

output from a decision tree of an induction process (1 for fault, 0 for otherwise),

T indicates a final belief from combined techniques (1 for fault, 0 for otherwise),

O indicates an operator input (1 for confirmation, 0 for unconfirmation), and

D indicates a data class to be stored as a valid data (1 for fault class, 0 for

otherwise). These signals are combined and synthesized in the decision control

block. The reasons that all the signals are used to get one final output are

summarized below.

1.

A decision rule from an induction is based on no more than the available
information, and on all of the available information. Therefore, it might
miss some unexperienced and very unusual data.

Techniques are usually based on a general theory and a few experiments.
Therefore they are very \sensitive in some cases and insensitive in other
cases.

Technique selection is indirectly adjusted by a decision rule. Technique
selection is performed by experimental and subjective ratings with respect
to the parameters which are chosen by a rule. This technique selection
database is seldom complete.

An ideal match between the status output from a decision tree and a final
belief from combined techniques is always expected. However, in case,
higher security against false decision making can be highly guaranteed by

combining all the processes.

A decision control block controls and decides a sequence to a final decision:

“TRIP,” “WARNING,” or nothing. If assuming 3 digit numbers and each

number indicate the status of E, R ,and T from first to last. Then any

uninterrupted 3 counts of {011, 111, 101, 110} will cause a “TRIP” signal, any
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uninterrupted 6 counts of {010, 001, 100} with less than 2 counts of any {011,
111, 101, 110} will cause a “WARNING?” signal, and any counts of {000} will
cause no output and the corresponding data is classified and stored as non-fault
data (i.e., D=0). In addition, less than 6 counts of any combination of {010, 001,
100} will cause no output and the involved data will be classified and stored as
non-fault data. The numbers 3 and 6 are adjustable. The detailed functions of
a decision control block and some examples using this function are summarized
in Table VI.

The time frame of the learning detection system is shown in Figure 13.
When a “TRIP” signal is issued, a relay is tripped and the line is disconnected,
then the operator input makes a learning detection system classify the data
which are involved with this particular final decision and remained unclassified.
The classified data are stored in the memory as valid experience data. With
these new memory contents, a new rule is induced. This new rule will substitute
an existent rule, and adjust a technique selection.

The decision comes out of a learning detection system every half a second.
Sometimes, the amount of data which are pending unclassified should be
considered. Therefore, a data buffer is necessary in the decision control block.
The structure of the data at the decision control block consists of the statistical
measures of each parameter and the flags of the D, E, R, and T signals. The
data flow between a decision tree and the technique selection block was already
discussed in Chapter V. The data storage contains such data that was classified.
The data will be used in the induction process to update rules. This data flow
in a learning detection system is already shown in Figure 12. High frequency

current is directly connected to an event detector without any control output.



Table VI. Control Functions of a Decision Control Block.

3{Ex(R+T)} — *¢‘TRIP", D is unclassified.
3{Ex(R+T)} xO— D=1 for all 3.
3{Ex(R+T)}x0— D=0 for all 3.

3 (RxT)— ‘‘TRIP", D is unclassified.
3(RxT)x0O — D=1 for all 3.
3(RxT)x0O — D=0 for all 3.

6 {Ex(R®T)} — ¢‘WARNING", D is unclassified.

6 {Ex(R®T)} xO0 — D=1 for all 6.
6 {Ex(R®T)} xO0 — D=0 for all 6.

6 F — ‘‘WARNING", D is unclassified.
6 ExQ——>D=1 for all 6.
6 ExO— D=0 for all 6.

EXAMPLES:
E R T
1 1 0
0 1 1
1 0 1 — ¢‘TRIP"
E R T
1 0 1
1 0 0
1 1 0
1 0 0
0 1 0
1 0] 0

—  ‘‘WARNING"
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C. An Example Execution

With sample data, an example execution with this intelligent decision mak-
ing system is performed. The training sample data consists of high impedance
faults, capacitor bank operations, and load tap changer operations. In the real
world, the high impedance fault case is not frequent; therefore, for the number
of data in the training case, it seems appropriate to provide more non-fault data
than fault data. A total of 58 sample data were chosen and 17 of them were fault
data and the rest of them were non-fault data. Figure 14 shows part of a high
impedance fault waveform which is used for the knowledge acquisition purpose
in a learning process. With these training sample data, an induction process can
describe each class in terms of statistical measures. To calculate the statistical
measures for each parameter, the waveforms were passed through a notch-filter
to minimize the fundamental component. From this notched waveform, each
electrical parameter is obtained through a corresponding filter. Figure 15 shows
waveforms of two electrical parameters. Odd harmonics and even harmonics are
shown. With these electrical parameters, means, standard deviations, and mean
absolute values of parameters are obtained over a fixed window of 30 cycles. The
Section B(1) of Appendix B shows the variable list for this training waveform.

Then, the threshold value calculation follows. A program was written to
calculate each threshold value with the statistical measures. This program just
follows the threshold value calculation process explained in Chapter VIII. This
threshold value calculation program is shown in Appendix C. The threshold value
for each variable is shown in the Section B(2) of Appendix B. The threshold value
calculation for the first variable of odd harmonic currents is also shown in Section
B(2) in detail. The 1/0 binary table shown in the Section B(3) of Appendix B is

formed using these threshold values. From this 1/0 table the induction process
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starts to derive rules. Along with the simplified minimum entropy formula
explained earlier, the maximum digit index to classify two classes is found. From
the maximum digit index, the classification st&;,rts. With this procedure a first
rule is derived. The next step is to eliminate all the samples which have the
same digit formation as the first rule. From the remaining samples, the same
procedure repeats until the two classes are empty. This process is performed
by writing a rule induction program. This simplified minimum entropy formula
program is shown in Appendix C. In the Section B(4) of Appendix B, with
the 1/0 table of Section B(3), the rule derivation process is illustrated. The 6th
digit has a maximum digit index, so the first rule is on this 6th digit: 1 for
Fault. After this first rule, all the samples which have 1 in their 6th digit are
eliminated. From the remaining samples, using a similar procedure, Rule 2 is
derived. From these rules, a decision tree is ﬁﬁally derived.

Testing sample data is somewhat complicated in the high impedance fault
case. It has various kinds of bursts in terms of amplitude increase and of
length. Some parts of this sample data have a few normal or event-looking
data, but the conductor is still on the ground. These testing sample data with
calculated statistical measures of each variable are listed in the Section B(5) of
Appendix B. Figure 16 shows a test sample waveform. The first four samples
are apparently normal. At the fifth sample, a fault starts with a large amplitude
increase, and long and medium length burst durations. Sample numbers 10 and
11 look normal, or at least like an event by observing the total current, but, the
conductor is on the ground; they are actually under a fault. Sample numbers
12 through 16 show apparent fault only by the total current. Sample numbers
17 and 18 show normal or event by observing total current; however, they are

under a fault. Sample 19 is apparently fault data. By the decision rule of the
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Section B(3) of Appendix B, from the technique selection database of Table III,
the techniques to be run are selected; energy technique with even harmonics and
the randomness technique with odd harmonics. For the energy technique, a burst
is defined as a cycle of energy which is greater than 10 times the normal static
average energy. This threshold value for defining a burst is obtained roughly by
using the threshold value of a variable of the induction process, AMEVE (mean
absolute value of even harmonic current). In the Non-Fault class, a value which
is maximum or above the threshold value should be the threshold for detecting

a fault. The average of the all the values which are below the threshold value for

AMEVE, which is 1.936, is obtained as 0.728. There is only one sample which

is above the threshold value, and the value is 1.977. Because the definition of a

burst is expressed in terms of a cycle of not sample values but energy increase,

the squared ratio of above two calculated values results: This value is 7.37.

However, to secure a strict safety against false trips, the threshold value of 10 is

chosen. For the basic belief, for convenience, the following relationship is derived

by the technique and the experiments:

1. If the number of bursts in the 30 cycle window is less than 3, the basic
belief is (Normal, 0.8). This means, in this case, the technique is 80 percent
confident that it met a normal status.

2. If the number of bursts in the 30 cycle window is between 4 and 6, the basic
belief is (Event, 0.8).

3. If the number of bursts in the 30 cycle window is between 7 and 9, the basic
belief is (Fault, 0.6).

4. If the number of bursts in the 30 cycle window is between 10 and 14, the
basic belief is (Fault, 0.7)

5. If the number of bursts in the 30 cycle window is more than 14, the basic
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belief is (Fault, 0.8).

In Table VII, for each test sample, the number of bursts and the correspond-
ing basic beliefs from the energy technique using even harmonics are shown.

For the randomness technique, instead of “jumps,” the “differences” are
chosen because “jumps” are not as sensitive to long duration bursts. The
“difference” is the absolute energy difference between the current cycle energy
and the previous cycle energy. If this difference is 5 times greater than the
normal static average, a difference is counted. For this threshold value, a variable
AMODD (mean absolute of odd harmonic current) was used. For basic beliefs,
the following relationship is set by the technique itself and by experiments:

1. If the number of differences in the 30 cycle window is less than 2, the basic

belief is (Normal, 0.8).

2. If the number of diﬁerenc;s in the 30 cycle window is between 3 and 4, the
| basic belief is (Event, 0.8).
3. If the number of differences in the 30 cycle window is between 5 and 6, the

basic belief is (Fault, 0.7).

4. If the number of differences in the 30 cycle window is more than 7, the basic

belief is (Fault, 0.8).

For each test sample, the number of differences and the corresponding basic
beliefs from the randomness technique using odd harmonics are shown in Table
VII.

The purpose of this research and the example execution is not to compare
the performance of each technique in a given situation. Therefore detailed
performance variation sample by sample is not reviewed.

From these two sets of basic beliefs, a combined final belief is derived from

a simplified formula. This formula assumes that each technique has a dominant
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confirming basic belief. For example, if a technique has the following basic
beliefs,

{Fault}(0.2), { Event}(0.7), and {Normal}(0.1),
then a confirming hypothesis for this technique is {Event}(0.7).

Because there is no unconfirming basic belief, the simplified formula is
simpler. If

p1 is a supporting degree of fault,

P2 1s a supporting degree of event, and

ps is a supporting degree of normal, and if

ry =1—p,

rg =1 — py, and

r3 =1 — ps,

then, with two basic beliefs as in this example execution, p’s are derived as

p1 =1 — (1 — BB1(fault))(1 — BB2(fault))

p2 =1 — (1 — BB1(event))(1 — BB2(event))
ps =1 — (1 — BB1(normal))(1 — BB2(normal))
where BB indicates a basic belief.
The constant K is derived as follows.
K'=rirars(1 + p1/71 + p2/ra + p3/73)
K=1/K'
Then, final beliefs of each status is derived as below.
Bel(fault) = K(pirars)
Bel(event) = K(pari73)

Bel(normal) = K(psrirs)

From three different final beliefs, the only belief of interest is the belief

of fault; the other two are non-fault cases. To give a message to operators



Table VII. Test Results.

TEST ACTUAL TECHL TECH2 FINAL  DECISION EVENT DECISION
SIMPLE  STATUS BB BB  BELIEF TREE DETECTCR  CONTROL
NO. STATUS  OUTPUT SIGNAL
1 NF (§,0.8) (N,0.8) NF NF 0 N/A
2 NF  (¥,0.8) (N,0.8) NF NF 0 N/A
3 NF (§,0.8) (N,0.8) NF NF 0 N/a
4 NF  (N,0.8) (N,0.8) NF NF 0 N/A
5 F (F,0.6) (F,0.8) F F 1 N/A
8 F (F,0.8) (F,0.8) F F 1 N/A
7 F (F,0.8) (F,0.8) F F 1 TRIP
8 F (F,0.8) (F08) F F 1

9 F (F,0.8) (F,0.8) F F 1

10 F (F,0.8) (§,0.8) XF F 1

11 F (F,0.7) (§,0.8) NF F 1

12 F (F,0.8) (F08 F F 1

13 F (F,0.8) (F,0.8) F F 1

14 F (F,0.8) (F08 F F 1

15 F (F,0.8) (F0.8) F F 1

16 F (F,0.8) (F,0.8) F F 1

17 F (F,0.8) (§,0.8) NF F 1

18 F (F,0.8) (E,0.8) \NF F 1

19 F (F,0.8 (F08) F F 1

98
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or directly trip a relay, this numerated belief of fault should be delivered in
terms of a definite status, that is, fault or not. To insure strict safety against
false trips, about which most utility persons are most concerned, if the final
combined belief of fault is greater than 0.9, that is, 90 percent sure that it is
under a fault status, the definite output status is a ‘fault.” This combination,
final belief, and a definite output are obtained using a program which applied a
simplified formula. This program is shown in Appendix C. In Table VII, these
outputs are shown in the column of ‘Final Belief.’

The status from the decision tree is also obtained. The variables passing
through the branches are the standard deviation of the even harmonic current
and mean absolute odd harmonic current. Of course, sub-harmonic current or
even harmonic current can replace the odd harmonic current as shown in Rule 2,
but in this example, odd harmonic current is arbitrarily chosen. The first branch
is the standard deviation of even harmonic current and the second branch is the
mean absolute value odd harmonic current. The output status is shown in the
column ‘Decision Tree Status’in Table VII. While the techniques cannot classify
some normal-like faults, the decision tree classifies the testing samples perfectly
because it has experience with similar faulted data at the same test site.

The output from an event detector was obtained using sub-harmonic
currents. If 3 of 5 cycles have 1.75 times greater energy than the average, then
an event flag ‘1’ will be issued. This result is also shown in Table VII.

The combination or synthesis of all the results are summarized at each step.
The data of samples 1 through 4 has been automatically classified and stored
as non-fault data. These data already replaced the first 4 data of the non-fault
data section of an existing memory. The data of sample 5 and 6 are pending

unclassified. At the 7th sample, a “TRIP” signal is issued, and if a confirmation
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input from an operator arrives at the learning detection system, each data of
sample 4 through 7 is classified as fault data. These data go to the memory
and replace the first 3 existing fault data. A new rule will be induced with this
new memory structure. A new rule is derived with the new memory structure.
The new memory structure and a rule derivation is shown in the Section B(6)
of Appendix B. The new rules say that:

Rule 1:  If the 6th digit 1 (that is, if the standard deviation is higher than
0.609), then it is Fault.

Rule 2: If the 7th digit is 1 (that is, if the mean value of sub-harmonic currents
is greater than 0.407), then it is Non-Fault.

Rule 3: If the second digit is 0 (that is, if the mean absolute of odd harmonic
currents is less than 4.762), then it is Non-Fault.

The new rule is slightly different from the existent rule.

It is not appropriate to draw any general and convincing conclusions by the
execution of a learning detection system on this particular set of test samples.
However, it is found that there is no false trip even though both techniques miss
some low-level faults. The decision tree from an induction process shows very
good performance as a detector. Both reliable detection and security against
false trip can be acquired by combining multiple techniques and a decision tree.
By adding an event detector, which shows a perfect performance in indicating
the occurrence of events, the learning detection system is getting experience and

adapting itself to a variety of conditions.

D. Constraints for On-line, Real-time Operation

An intelligent decision making system performs quite well; however, it has

some constraints when it is used as an on-line, real-time system.
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“On-line” is a term which implies automated, autonomous detection of high
impedance faults. In the sense of this detection, this means the intelligent
decision making system is continuously in operation receiving parameters,
running techniques, combining basic beliefs, and confirming and controlling the
trip/notrip actions. To meet the on-line requirements of an intelligent system,
all the processes are done continuously and automatically except one. During
usual operation, the system does not need any operator interaction. However,
when there is any discrepancy between the final status and the actual status,
the system has to learn and update the induction process and thus the whole
detection reasoning process.

Real-time systems are systems which are guaranteed to respond within a
fixed period of time. The value of the fixed period of time can vary greatly,
depending on the specific sy\stem in question[27]. For the operation of an
inielligent decision making system in a real time base, the “real-time” refers
a few seconds or more by the degree of the fault itself, which is considered in
terms of the importance to the interests of the utility companies. The decision
time is fixed to 30 cycles, that is, a half second. Considering the execution
speed of today’s microcomputer or minicomputer, this amount of time is long
enough to handle all the necessary processes. One of the unsatisfactory cases is
a decision tree update process. When it is necessary to update a decision tree,
the whole induction process should begin. It involves a data-class replacement
by correct actual class and corresponding data, a threshold value calculation, a
rule derivation, and a technique selection update. This might takes less than
a quarter second, however, providing appropriate data takes much time. Even
though this will not hurt the detection itself, lose any data, or interrupt the

on-going detection process, it might lose some normal data when a distribution
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feeder is connected again after a trip.

E. Summary

Several implementation methods are examined. A comparative implemen-
tation is chosen for the structure of the intelligent decision making system. An
example execution is shown with staged fault sample data. The detailed test of
decision tree output, final belief of techniques, and a learning detection system is
examined. The intelligent decision making system works quite well; however, it
has some constraints. Constraints of the system as an on-line, real-time system

are also investigated.
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CHAPTER IX
SUMMARY AND CONCLUSIONS

The objective of this research is to find an intelligent decision making system
which combines multiple detection techniques. This intelligent system is to
have three specific properties. First, it is to be capable of taking advantage
of multiple techniques. Secondly, it is to make a decision under uncertainty
by combining multiple basic beliefs from various techniques. Thirdly, it is to
provide an adaptability using inductive reasoning realized in a learning detection
system. The research work to achieve this goal is summarized and concluded in

this chapter.

To understand the behavior of high impedance faults, statistical analysis
was performed in wideband spectra. It was found that the behavior of vari-
ous high impedance faults was not consistent. Faults, under similar conditions,
showed very different characteristics in behavior so that predicting and classi-
fying the behavior of faults and switching events were very difficult. The envi-
ronmental parameters which affect the behavior of high impedance faults were
investigated and suggested to find a best technique in a given condition. Existing
detection techniques were investigated. The principles and weaknesses with re-
spect to the environmental parameters were examined. With this examination,

the basic structure of a technique selection database was formed.

Several decision making methods which can be applied to general decision
making problems were discussed. To find a best technique for parameters
which indicate the current outside condition effectively, the method of decision
making under incomplete knowledge was applied. For the technique combination

which should handle multiple pieces of information with uncertainty, a evidence
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theory and and a simplified belief combination formula were adopted. Inductive
reasoning which minimize the entropy was applied as an induction process to
acquire the knowledge of fault class and non-fault class and apply this knowledge

to make an intelligent system adaptive to surrounding environments.

A learning detection system was implemented to fulfill a learning process
by combining all the processes. An example execution was shown with an initial
technique selection database and a decision tree which was derived using training
sample data consisting of high impedance faults, switching events, and normal
status. A complicated testing sample data was used to test the perforl'mance
of the intelligent system. It was found that the intelligent decision making
system made smart decisions even when it met very complicated situations. The
constraints of this system in on-line, real-time operation was investigated. If an
induction update takes much time, even though this will not hurt any detection
process, some amount of normal data might be lost when a distribution feeder

is connected again after a trip.
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