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Abstract 

 
A recent case of four EDG demand failures raised a concern for regulators and nuclear industry in general.  Failures 
of EDGs can lead to station blackouts that would in turn cause a plant shut down.  This study has been conducted to 
decide if the recent failure is a random/anticipated event of aging equipment that follows the historical statistics, 
and, or it is an extreme event that is unusual.  The analysis of the study is centered on the correlation between 
historical EDG failures over the last few decades and the 2011 incidence.  The object is to find the recurrence period 
and probability of high EDG demand failures. EDG demand failure data are accumulated for the period of 1980 – 
2011 by using the published reports.  Statistical analysis using the geometric and exponential distributions is applied 
to make predictions into the future.  The study finds it is likely that the excessive EDG demand failure is not a 100-
year event.  It may come much sooner than believed; it is likely that the probability of excessive number of EDG 
failures per year is greater than 1%, and the average number of yearly EDG demand failure may remain to be 1 but 
with an unmistakable upward trend. 
 

Introduction 
 
The availability of electrical power is essential for the safe operation and accident recovery of nuclear power plants 
(NPP). Offsite power sources normally supply this essential power from the electrical grid to which the plant is 
connected. If the plant loses offsite power, emergency diesel generators (EDG) provide onsite electrical power.  A 
total loss of power at an NPP as a result of complete failure of both offsite and onsite power sources, which rarely 
occurs, is referred to as a station blackout (SBO).  Researches have examined EDG failures in the U.S. from 1997 to 
2003 and calculated the average odds that an EDG would fail to work at some point during an eight-hour run were 
slightly greater than 2 or 3 percent [1].  In addition, it was calculated that an average of one EDG has failed when 
needed each year.   However, a recent report of multiple EDG failures in 2011 in several nuclear power plants raised 
a concern both for regulators and of nuclear industry maintenance practices [2].   Such failures would lead to station 
blackouts that would in turn cause a plant shut down.  The causes of the recent excessive number of EDG failures 
are still being under investigation by authorized bodies. 
 
In regards to this excessive number of demand failures of EDG in 2011, an interesting question has been raised: 
when will be the next year with multiple EDG failures, and what is the probability of having such multiple EDG 
failures?  In other words, we want to estimate the recurrence period (or return period) of excessive EDG demand 
failures, and thus the probability of having such an excessive event.   To answer the question, we applied the basic 
extreme event analysis approach with simple geometric distribution function, to start with, and later an exponential 
distribution function.   However, there is a fundamental problem in analyzing this EDG failure event since the event 
was the first and only event of having more than 2 EDG failures in a year.  In other words, even though we may use 
geometric and exponential distribution approaches, this first event alone cannot provide appropriate return period of 
the next such high EDG failure year.   
 
To overcome this fundamental problem, we took the 2011 event as if it was the mean, a value contained in the 68 % 
of the population, or a value contained in the 95% of the population of an unknown return period population of such 
high EDG failure years.  Using this approach, we could see at least if prediction of next occurrence of excessive 
number of EDG failure is possible under the three different assumed treatments of the 2011 incident.   
 
The paper is organized as follows.  It first discusses the types of EDG failures relevant to the analysis and the 
sources of yearly EDG demand failure data accumulated for the analysis.  Then, Chapter 3 analyzes the EDG failure 
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data using the exponential probability distribution to predict the recurrence and probability of high EDG demand 
failure event.  Chapter 4 concludes the paper. 
 

EDG Demand Failure Data  
 
As stated above, four emergency diesel generators that power emergency systems at the U.S. nuclear plants have 
failed when needed in 2011, which itself is an unusual cluster of event with excessive number EDG failures.  A 
complete failure of timely operations of EDGs when needed, “EDG demand failure,” may result in a SBO or 
complete loss of onsite and offsite power. EDG failures have been divided into specific types to better establish the 
proper labeling of these failures.  The most common failures included in the “EDG demand failure” are: Failure to 
Start (FTS), Failure to Load and Run (FTLR), and Failure to Run >1 Hour (FTR1H).  FTS is defined as “any failure 
that prevents from achieving a specified frequency (or speed) and voltage within certified limit”, and FTLR as “a 
failure when EDG generator starts but does not pick up the load and run successfully” [3].  Any other failures 
reported during the periodic surveillance tests and false starts do not belong to the demand failure and are not 
considered in the paper. 
 
The data for the analysis of the EDG demand failure are naturally depended first on NRC reports that have been 
documented regarding all possible types of EDG failures that have happened in the past.  Unfortunately there are not 
any documented data that covered the entirety of that time.   However, a report of NRC contained 1997-2003 
periods of EDG failures [4] and this is the one source of our EDG demand failure data.   Table 1 lists the yearly 
EDG demand failures from the report of the 3 types described above. 
 

Table 1. Year EDG Demand Failure in the period of 1993-2003 
 

Year #  Year #  Year # 
1993 0  1997 2  2001 0 
1994 0  1998 0  2002 0 
1995 1  1999 2  2003 0 

               1996       1               2000      2 
 
The second source of our data on EDG failure is the Licensee Event Report (LER), which is publicly available.  
LER is an event notification report that provides in depth details about a particular mishap, failure, or maintenance 
practice that has happened.  It particularly lists each component that has failed, the type of failure that occurred and 
whether or not it has been repaired, if so, to what extent.  LER reports first came about in January of 1980, 
extending back 32 years.   Our LER search for the years 1980-1992 and 2004-2012 results in the following two 
tables, Table 2 and Table 3, of the yearly EDG demand failures: 
 

Table 2. Year EDG Demand Failure in the period of 1980-1992 
 

Year #  Year #  Year # 
1980 0  1985 0  1990 0 
1981 0  1986 0  1991 0 
1982 0  1987 0  1992 0 

               1983      0              1988      1 
               1984      0              1989      0 
 

Table 3. Year EDG Demand Failure in the period of 2003-2011 
 

Year #  Year #  Year # 
2003 0  2006 2  2009 0 
2004 0  2007 0  2010 0 
2005 2  2008 0  2011 4 

 
Combining the 2 data sources, we make have the yearly EDG demand failure data for the 1980 – 2011 periods, as 
plotted in Fig.1. 
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period is N years. For N=23, the probability of having more than 3 EDG demand failures per year is 0.0435, and the 
return period is 23 years.  For N=31 case, the corresponding values are 0.0323 and 31 years. 
 
Now we consider more probable assumptions with emphasis on the simple expression for the probability that the 
excessive event will occur for the first time after T/r and before T·r years, where r is a unit of T [6].  Then, the 
(desired) probability of the year k being in the range of  T/r < k <T·r can be approximated with only r:  
P(T/r < k <T·r) = F(T·r) – F(T/r) =exp(-1/r) – exp(-r). 
 
If the desired probability is 0.5, for example, r is 2.2, then the range of k is 0.455T < k < 2.2T.  In other words, the 
first excessive year observed k lies in [0.455T, 2.2T] and lies within the 50% of the population of return periods 
whose mean is T.  Further, by similar calculation, we get the range of the observed year k accounted for 68% and 
95% the return periods, respectively, which for normal distribution, corresponds to the one-sigma deviation and two-
sigma deviations.    The ranges of the observed year k are, then: 
Accounted for 68%:  r =3.129, 0.3196T < k < 3.129T. 
Accounted for 95%: r = 21.485, 0.04657T < k <21.485T. 
 
Under the likely situation that the first observed year of the excessive number of EDG failures is in the range of 
0.3196T < k < 3.129T for the mean T of unknown return period population, the N can be taken as the two extreme 
values of the range, N=0.3196T and N=3.129T.  From these two relationships, we can get the likely range of the 
return period, [N/3.129, N/0.3196], which will in turn gives the likely rage of probability of more than 3 EDG 
failures in a year as [0.3196/N, 3.129/N].  Therefore, for N=23, the probability of having more than 3 EDG demand 
failures per year is [0.0139, 0.136], and the return period is [7, 72] years.  For N=31 case, the corresponding values 
are [0.0103, 0.1009] and [10, 97] years. 
 
Under the most likely situation that the first observed year of the excessive number of EDG failures is in the range 
of 0.04657T < k < 21.485T for the mean T of unknown return period population, the N can be taken similarly as the 
two extreme values of the range, N=0.04657T and N=21.485T.  In the similar manner, we get the most likely range 
of the return period, [N/21.485, N/0.04657], which will in turn gives the most likely rage of probability of more than 
3 EDG failures in a year as [0.04657/N, 21.485/N].  Hence, in N=23, the probability of having more than 3 EDG 
demand failures per year is [0.002, 0.93], and the return period is [1, 494] years.  Under N=31 case, the 
corresponding values are [0.0015, 0.69] and [1, 666] years. 
 
In summarizing the analysis results, we meet too wide ranges of probability and return period to use in predicting 
the probability and the next occurrence year of the excessive EDG demand failures. Nonetheless, we have the 
following findings: 
 

1. Until we have next excessive demand failure year, prediction of the probability and the next occurrence year 
of such failures, with an acceptable confidence level, is very difficult. 

2. It is likely that the probability of excessive EDG demand failures per year is greater than 1%, and that the 
failure will not be a 100-yeaer event, though; it may come much sooner than believed. 

3. The number of yearly EDG demand failure may remain to be 1, but as Fig.1 shows, the trend of more than 1 
failure is unmistakable. 

 
 

Conclusions 
 
The unusually high number of EDG demand failure in 2011 stimulated interesting research questions.  This paper 
attempted to analyze the incident in the hope that we might provide some basic study on the prediction of the next 
occurrence year of such high EDG failures and its probability.  We accumulated EDG demand failure data in the 
period of 1980 – 2011 using published NRC reports and the LERs, and then applied geometric and exponential 
distributions.  We found that (1) it was likely that the excessive EDG demand failure was not a 100-yeaer event and 
it might come much sooner than believed, and that the probability of excessive number EDG demand failures per 
year was greater than 1%; and (2) the average number of yearly EDG demand failure might remain to be 1 but the 
upward trend for more was unmistakable. 
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