
Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

442

Chapter 16. Digital Control using PC with IR

1. Introduction

This chapter is based on a student project, "DigiHouse" by Scotty Mazyck II completed in Spring
2003, which aims to control home appliances using a PC. The essence of "DigiHouse", in PIC
16F877 application point of view, uses two hardware components, one with a 16F877 and other
necessary parts and elements, and the other without any microcontroller but with an IR decoder
circuit. The one hardware component, IR Master station, contains a 16F877 microcontroller, IR
encoder, IR receive, and a serial communication level converter chip RS232 chip. The RS232
chip, when you use a USB based PIC board such as PIC-40-USB from Olimex, is not necessary.
The USB control chip in the PIC board handles all serial communication from 16F877. The
other component, IR Receiver/Controller, contains an IR receiver and IR decoder circuit. The IR
decoder circuit has three LED outputs to simulate the three home appliances this project intends
to control. Scotty Mazyck's report on his project DigiHouse contains many interesting aspects:
IR transmission, IR encoding, IR reception, and a Visual Basic-based Windows program which,
in place of the HyperTerminal, allows a serial communication link between a PC and the IR
Master station. This comprehensive work, however, is not properly documented. The project
report submitted to me, less than 4 page length, only briefly touches its components and coding.

So I reconstructed his project with much more detailed explanation in words and illustrations.
However, I did not change his code except the file register bank changing operations. For
example, moving from bank 0 to bank 1 to access TRISC register, the original code bothers to
set the RP1 bit of STATUS register. This works fine and perfect. However, we can use the
MPLAB directive banksel to ignore in which bank we are, and to move any bank where the
register we try to access is located. With banksel, we do not have to frequently look up the
file register table to see where a particular register is located.

2. Digital Control using PC - overview

In the Internet age, everybody gets lazy, and our life hinges on network and computer. Now I
am very sorry that I provide one more convenience so that you become lazier and more inactive.
This example is to control your home appliances like lamps, microwave, heater, or A/C from and
using your PC. Of course computer alone cannot do the job. A microcontroller would be just
fine to fit in to the case. The term "control" here means a simple on/off control of the appliances.

As we know IR remote control is everywhere and for most of our electronic appliances at home
and office. We use IR remote to turn on/off of TV, VCR, CD player, DVD player, etc. But how
do we do the same functions using a PC instead of an IR remote? There must be a way to
communicate from PC to "IR remote" like device, which can transmit IR information as an IR
remote does. This requirement is realized by the IR Master Station. The IR Master station is
built around the PIC 16F877 which establishes serial communication with PC and transmits IR
data to the IR-ready electronic appliances. In chapter 5, we already discussed about the serial
communication, therefore, the communication between PC (using the Hyperterminal in
Windows) is not bit a problem. However, if you want to open up your own window in the PC
screen with your name or your log, the Hyperterminal cannot be used. Instead, a windows

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

443

program based on Visual tool such as Visual Basic is needed. This Visual Basic code is
discussed in a separate section.

Fig. 101 Control of Home appliances from and using the PC

Then, how do we control those appliances that are not equipped with IR receiver. Most of the
home appliances like lamp, microwave, heater, etc are all not IR-ready devices. Here comes the
IR Receiver/Controller which is built around an IR receiver and decoder so that a select line
could be turned on or off (of course logically). This logical on/off (High or Low, or +5V or 0V)
can turn on/off an electronic switch connected to the appliance. In this example, however, we
simplified the control part by LED on/off at the IR Receiver/Controller side. In the circuit we
installed 3 LEDs, one for each appliance's place, and if an LED is on, for example, the
corresponding appliance would be on.

Another function we added in the IR Master is IR learning function. For example, using a real
IR remote controller, if you assign the button "2" as the command for the microwave, you aim
your remote toward the IR receiver of the IR Master so that it learns the IR command pattern for
the appliance. This pattern is stored in the memory, and later, when the microwave control is
needed, the stored pattern is used to transmit directly from IR Master (without using any IR
remote controller) to the IR Receive/Controller.

3. Hardware Description

IR Master Station: IR Master, implemented on a breadboard as pictured below, consists of
16F877 microcontroller operating at 20MHz, and IR transmitter/receiver. In addition to the
essential elements, it has several LEDs as indicators. Also, it has an IR LED to send out pulse IR
encoded message generated by an encoding circuit.

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

444

Fig. 102 Implementation of IR Master on breadboard

The circuit diagram of the IR Master is shown below.

Fig. 103 IR Master circuit diagram

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

445

As you see, in addition to the PIC microcontroller and the IR receiver, there is MC145026 Serial
Encoder chip. It has a wide bandwidth range which is just low enough for IR communication
over a 40KHz carrier. This Serial Encoder is working with MC145027 Decoder chip, which is
used in the IR Receiver/Controller board. 40 kHz IR Generator generates a 40 kHz square wave
using a 74132 Quad NAND with a Schmitt trigger and a 40.0 KHz crystal. Two LEDs are used
as rectifier diodes as well as displays.

MC145026 (Decoder) and MC145027 (Encoder) pair are designed to be used as encoder/decoder
pairs in remote control applications.

Fig. 104 Pin Assignments for MC145026 and MC145027

The MC145026 encodes nine lines of information and serially sends this information upon
receipt of a transmit enable (TE) signal. The nine lines may be encoded with trinary data (low,
high, or open) or binary data (low or high). The words are transmitted twice per encoding
sequence to increase security.

The MC145027 decoder receives the serial stream and interprets five of the trinary digits as an
address code. Thus, 243 addresses are possible. If binary data is used at the encoder, 32
addresses are possible. The remaining serial information is interpreted as four bits of binary data.
The valid transmission (VT) output goes high on the MC145027 when two conditions are met.
First, two addresses must be consecutively received (in one encoding sequence) which both
match the local address. Second, the 4 bits of data must match the last valid data received. The
active VT indicates that the information at the Data output pins has been updated.

Details of the application of the encoder/decoder pair can be found in an application note from
On Semiconductor.

IR Receiver/Controller: IR Receiver/Controller is to control home appliances by the received
command of IR protocol. This board, similarly implemented on a separate breadboard, contains
IR receiver and receiver circuit, along with decoder to switch On/Off control of the appliances.

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

446

The On/Off control of appliances is indicated by LED On/Off status. The IR
Receiver/Controller is pictured below, with 3 colored LEDs representing 3 appliances.

Fig. 105 Implementation of IR Receiver/Controller on breadboard

The schematic of the IR Receiver/Controller is shown below.

Fig.106 Schematic of IR Receiver/Controller

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

447

Parts list is shown below for those who are seriously considering implementing this project.

Part Quantity Part Quantity
Sharp IR 40KHz Receiver 2 Motorola MC145026P 1

PIC16F877 Microcontroller 1 Motorola MC145027P 1
20 MHz Crystal 1 Maxim MAX233ACPE 1
PNP Transistors 2 AlGaAs IR LED 1
Big Bulb LEDs 6 74HC00N Quad NAND 1

Small Bulb LEDs 5 74HC132 Quad NAND 1
Diodes (LED) 2 Resistors, Capacitors 20, 7

40 KHZ Crystal 1 Breadboards 2
5V Power Supply 2

Buzzer 1

In addition to the PIC 16F877 assembly language programming for the boards, there is another
element of software: a windows programming using Visual Basic to connect a PC to the IR
Master station as the controller of the appliances. In all, the overall structure of the system
operation is as illustrated below.

Fig. 107 Overall Structure of System Operation

4. 16F877 Code Segments - General

PORT Set Up for 16F877 in the IR Master Board: As you see in the schematic diagram, 16F877
has numerous outputs: RC0, RD2, RD1, RD0 for MC145026 Encoder, RD5 for IR reception,
and RD3 for IR transmission. In addition to these essential connections, 16F877 has additional 8
outputs to LEDs in PORTB. Therefore all PORTB pins are to be assigned as outputs. And
except RD5, all PORTD pins are also assigned as outputs. PORTD<5> must be declared as

PC
Software

PIC16F877

RS-232 Chip Infrared
Generator

MC145026
Encoder

40 KHz Remote
Control Module

Remote
ControlUser

40 KHz Remote
Control Module

MC145027
Decoder

Peripherals
Heats, Light, etc.

Appliances
TV, VCR

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

448

input, in order to receive IR communication. Since only PORTC<0> is used to initiate
transmission of encoded IR, all PORTC pins except RC0 are assigned as inputs. PORTC<0> is
designated as output.

banksel TRISB
clrf TRISB ;Make PORTB output ports
movlw 0x20 ;Binary = 00100000
movwf TRISD ;Make PORTD output ports except the bit 5(IRL)
movlw 0xFE ;Binary = 11111110
movwf TRISC ;Make PORTC input ports except bit 0(SendIR)
banksel PORTC
bsf PORTC, IR ;Turn off IR Transmission (IR=0) or PORTC<0>
clrf PORTD
bcf PORTD, IRLS ;IRLS=PORTD<3>
clrf PORTB ;Turn off any LEDs

Serial Communication Initialization: For the baud rate, we keep our usual 19200 bps.
However, instead of low rate we choose to use high rate selection of the value for the SPBRG
(see Chapter 5 for details). Anyway, if we briefly review, when TXSTA<2>=0 (low rate
selection), the formula for the value of SPBRG, NBRG, is:

,
where, fosc is crystal oscillation frequency and B is a desired Baud rate.
If TXSTA<2>=1 (high rate selection), the formula for the value of SPBRG, NBRG, is changed
to:

.
Therefore, with high rate selection with TXSTA<2> set, the value for NBRG for 19200 bps for
20MHz crystal oscillation is:

64104.641
1920016

000,000,201
1920016

→=−
×

=−
×

= osc
BRG

f
N

Therefore the value for SPBRG is 0x40 which is the hexadecimal equivalent value of 64 in
decimal.
Other sequences are just routine one we finished in Chapter 5.

banksel SPBRG
movlw 0x40
movwf SPBRG ;set baud rate 19200 with high rate
bsf TXSTA, BRGH ;Set for High Speed
bcf TXSTA, SYNC ;clear for Asynchronous Mode
bcf TXSTA, TX9 ;Clear for 8-bit
banksel RCSTA
bsf RCSTA, SPEN ;enable serial port
banksel TXSTA
bsf TXSTA, TXEN ;enable transmission
banksel RCSTA
bsf RCSTA, CREN ;Enable Receiver

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

449

Checking the link between PIC and PC: Checking if there is serial communication link is
established between PC and 16F877 is simple. After 16F877 sends an initial code (like 0x09) to
the PC via the serial communication link, if 16F877 receives the same code from the PC, then it
is considered that communication link between two is established and running fine.

PCLoop

Call SHDELAY ;short delay
movlw Init ;a code to be sent to PC
movwf OUTCODE ;buffer for the code INIT
Call TRANS ;Call TRANS Sub to send Init Code to PC

BTFSS RCSTA, OERR ;Check for Rx overrun error.
goto ChkIn ;If none then continue program
bcf RCSTA, CREN ;by clearing CREN and
bsf RCSTA, CREN ;resetting it

ChkIn BTFSS PIR1, RCIF ;Check if we received anything from PC
goto ContPCL ;If not then Continue PC Looping
bsf PORTB, 6 ;Indicates something has been received
movf RCREG, 0 ;If so, then check if its the Init code
sublw Init
BTFSC STATUS, Z ;If it is the Init code, then
goto PROGRAM ;Start PROGRAM (main part)

;IF not, then continue waiting for Init code

ContPCL
Call SHDELAY
goto PCLoop

;TRANS subroutine

TRANS NOP
TRANS1

movf OUTCODE, 0 ;Move contents of W code to OUTCODE.
HoldT BTFSS PIR1, TXIF

goto HoldT ;If TXIF is set (empty TREG)then continue
movwf TXREG ;Move W to Transmit
Return

; END of TRANS subroutine

Main Part of the Code: The main portion of the code is, first, to receive control command sent
from PC via serial communication established, then, second, to decode the command and to act
accordingly. The commands from PC are generated by clicking the button generated in the
screen of the PC using Visual Basic code.

The command code sent to PIC from PC is stored INCODE register in RAM area. There are
numerous function commands from PC (The command code inside INCODE is indicated inside
the parentheses:
(a) PIC ready inquiry: PC checks if PIC is ready for communication (0x10)

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

450

(b) Termination of the control session (0x11)
(c) Turn Off Appliance 3 (0x13)
(d) Turn Off Appliance 2 (0x14)
(e) Turn Off Appliance 1 (0x15)
(f) Turn On Appliance 3 (0x16)
(g) Turn on Appliance 2 (0x17)
(h) Turn on Appliance 1 (0x18)
(i) Learn IR (0x19)
(j) Send IR (0x1A)

Fig. 108(a) Buttons generated using Fig. 108(b) Visual Basic code for Hyperterminal

Visual Basic code program on PC screen

So when PROGRAM is executed, the content sent from PC is first compared with the 0x10 for
readiness of PIC. Once PIC is ready, then reply is made from PIC to PC. And the next PC
command is then subtracted by 0x10 for easier comparison of the commands. Then, the content
inside the INCODE would be the original number minus 0x10. In other words, the code for Turn
Off 2 would be now 0x03 inside the INCODE. If we decrease it by 1, and check the content
every time we check it, we can find the command sent from the PC:

PROGRAM

PollRx
BTFSS RCSTA, OERR ;Check for Rx overrun error. It could

happen.
goto RxClear ;If none then continue program
bcf RCSTA, CREN ;by clearing CREN and
bsf RCSTA, CREN ;resetting it

RxClear
BTFSS PIR1, RCIF ;Poll Rx for code
goto PollRx ;

GetCode
movf RCREG, 0 ;If a code comes through, determine the code.

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

451

movwf INCODE ;Codes are in order by value

movlw Ready ;Is it the PIC Ready code? (ready = 0x10)
subwf INCODE ;To determine, subtract Ready from INCODE

;[INCODE]=[INCODE]-[ready]
BTFSC STATUS, Z ;and check the Zero flag
Call REPLY ;If so then REPLY to PC and continue Polling Rx
movf INCODE
BTFSC STATUS, Z ;The second BitCheck was added to break
goto PollRx ;comparisons if the INCODE was actually

the Ready Code.
;Now ready check is over, and COMMAND check

decf INCODE ;Is User requesting to end of the session?
BTFSC STATUS, Z
goto EndPrg ;If so then end the program (bottom)

decf INCODE ;Is user asking to Check IR Link?
BTFSC STATUS, Z ;This is option is currently not available.
goto PollRx

decf INCODE ;Turn off Light 3
BTFSC STATUS, Z
goto OFF3

decf INCODE ;Turn off Light 2
BTFSC STATUS, Z
goto OFF2

decf INCODE ;Turn off Light 1
BTFSC STATUS, Z
goto FF1

decf INCODE ;Turn on Light 3
BTFSC STATUS, Z
goto ON3

decf INCODE ;Turn on Light 2
BTFSC STATUS, Z
goto ON2

decf INCODE ;Turn on Light 1
BTFSC STATUS, Z
goto ON1

decf INCODE ;Learn an IR CODE
BTFSC STATUS, Z
goto LEARN

decf INCODE ;Send learned IR CODE
BTFSC STATUS, Z
goto SendLIR

goto EndPrg ;If none of these codes were right, then nother
;PC program has control over the COM port. RESET PIC.

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

452

By the way the subroutine REPLY is for PIC to reply the READY code received from PC.

;Subroutine REPLY--
;Replies to the READY code sent from PC. If the PIC does not reply with the
;READY code within 750ms, the Software will ask you to check connections.
REPLY movlw READY

movwf OUTCODE ;Prepare to transmit READY code to PC
call TRANS ;OUTCODE holds whatever to be sent to PC
return

Appliance On/Off Control: To describe this part, we have to look at the encoder/decoder chip
more carefully. First, the decoder is the exact mirror image of the encoder. In other words, if
the encoder input is, for example, 000 at the D8, D7, and D6 inputs, then the decoder's outputs
D8, D7, and D6 are 000. This allows us to easily control any device attached at the outputs of
decoder, by setting/clearing the inputs of the encoder. However, there is another thing to
consider in the encoder/decoder. The inputs to the encoder are not just 0 or 1: it has hi-Z state
(more like a disconnected state) if not specified. In other words, an input to D8 of the encoder
can be 0, 1, or hi-Z. Therefore, if I choose the three inputs D8, D7, and D6 are our three inputs
to the encoder, and if I set D8=0, then inputs to D7 and D6 are interpreted as hi-Z. And the
outputs at the decoder will have, D8=0, and D7& D6 would be nothing with disconnection.

In the code of the project, this is exactly what happens to control the three appliances. Only thee
inputs (D8, D7, and D6) are used for the control, and the thee pins of PORTD are connected as
follows: D8 to PORTD<2>, D7 to PORTD<1>, and D6 to PORTD<0>. At the decoder side, D8
- D6 are used and connected to three LEDs, mimicking three appliances, respectively. The
control table is shown below. Blank spaces, unspecified, are hi-Z logic.

D8 D7 D6
PORTD<2> PORTD<1> PORTD<1>

Appliance Control
Logic

0 Turn off 1
 0 Turn off 2
 0 Turn off 1
1 Turn on 3
 1 Turn on 2
 1 Turn on 1

Therefore, coding of the appliance control consists of two parts: control the logic for the encoder
and IR signal transmission based of the select logic. The following code part shows how easy
the control is.

OFF3 bcf PORTD, 2 ;Whatever appears at PORTD

goto SEND_IR

OFF2 bcf PORTD, 1
goto SEND_IR

OFF1 bcf PORTD, 0
goto SEND_IR

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

453

ON3 bsf PORTD, 2
goto SEND_IR

ON2 bsf PORTD, 1
goto SEND_IR

ON1 bsf PORTD, 0
goto SEND_IR

SEND_IR bcf PORTC, IR
call SHDELAY ;Send short IR burst
call SHDELAY
Call REPLY ;Let the PC know that the PIC received the code.
bsf PORTC, IR
goto PollRx ;go back to polling for incoming code

5. 16F877 Source Code Details

The whole code is listed here. As I mentioned above, I did not change the code made by Scotty
Mazyck except a few MPLAB directives. The .INC file in the second line includes all
declaration of file registers and bit information, and an .INC file for 16F877A is included at the
end of the chapter. 16F877A.INC can replace 16F877.INC.

list p = PIC16F877
#include <P16F877.INC>

;-----------Codes Used by PIC and Program------------------------------------
;These characters not available on a standard keyboard. This prevents
;unintended interfacing between a PC user and the DigiHouse.

Init EQU 0x09 ;Used on power-up to initialize PIC
Ready EQU 0x10 ;Used to check Serial Link and to confirm ready to PC
EndP EQU 0x11 ;Ends Program
IR_OK EQU 0x12 ;Not Used. Checks IR Link between PIC and other
Board.
OFF_3 EQU 0x13 ;Turn Off Light 3
OFF_2 EQU 0x14 ;Turn Off Light 2
OFF_1 EQU 0x15 ;Turn Off Light 1
ON_3 EQU 0x16 ;Turn on Light 3
ON_2 EQU 0x17 ;Turn on Light 2
ON_1 EQU 0x18 ;Turn on Light 1
LearnIR EQU 0x19 ;Learn a IR Code
SendIR EQU 0x1A ;Sends a learned IR Code
IR_BAD EQU 0x1B ;Tells the PC that It Couldn't Learn IR CODE
IR_Wait EQU 0X1C ;Tells PC to wait while the PIC is learning IR
Code

;-----------CONSTANTS USED IN IR SENDING, RECEIVING, AND SAMPLING------------
IR EQU 0 ;PORTC bit used to enable IR Transmission
IRL EQU 5 ;PORTD bit used for LEARNING IR CODE
IRLS EQU 3 ;PORTD bit used to Send Learned IR CODE

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

454

MSB EQU 7 ;Stores voltage level of incoming IR pulse <See
LEARN>

;--

CBLOCK 0x20 ;RAM AREA for USE at address 20h
;Variables sed for RS-232 Communication

StrtReg ;20 - Used for transmitting multiple register
EndReg ;21

;Variables used for program/PIC communication
INCODE ;22 - The code entered from the PC to PIC
OUTCODE ;23 - The code sent from the PIC to PC

;Variables used for Loops and Delays
first ;24 - Used for delay loops
second ;25
third ;26
DelVal ;27 - Delay Value for Programmable Delay and

SendLIR
Temp_Loop ;28 - Temporary Loop variable

Num_Dbl_O ;29 - Counts double-overflows of Timer0 module
;A double overflow is 128 cycles of Timer0 overflow.
;Determines when to quit learning IR Code.
;<See LEARN>

;Variables used for Learning and Sending an IR CODE
IR_Learned ;2A - Tells an IR Code been learned (Boolean: 0 or 1)
IR_Reg_Max ;2B - Maximum number of recording spaces is 80 (0x50)
IR_Reg_Count ;2C - Counts registers that recorded IR Pulse

Lengths
IR_Reg_Start ;2D - First register for Recording IR Pulse

Length
;To tranmit learned IR code, a loop length = 80 (0x50)

ENDC

;-------CONFIGURE I/O PORTS--

ORG 0x0000
GOTO START
ORG 0x0005

START
banksel TRISB
clrf TRISB ;Make PORTB output ports except bit<0>

movlw 0x20 ;Binary = 00100000
movwf TRISD ;Make PORTD output ports except the bit 5(IRL)

movlw 0xFE ;Binary = 11111110
movwf TRISC ;Make PORTC input ports except bit 0 used for SendIR

banksel PORTC
bsf PORTC, IR ;Turn off IR Transmission

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

455

clrf PORTD
bcf PORTD, IRLS
clrf PORTB ;Turn off any LEDs

;-------CONFIGURE SERIAL PORT--
banksel SPBRG
movlw 0x40
movwf SPBRG ;set baud rate
bsf TXSTA, BRGH ;Set for High Speed
bcf TXSTA, SYNC ;clear for Asynchronous Mode
bcf TXSTA, TX9 ;Clear for 8-bit

banksel RCSTA
bsf RCSTA, SPEN ;enable serial port

banksel TXSTA
bsf TXSTA, TXEN ;enable transmission

banksel RCSTA
bsf RCSTA, CREN ;Enable Receiver

;-------INITIATE VARIABLES---

bcf IR_Learned, 0 ;On reset, there is no code stored in PIC

;-------CHECK THE PC LINK--
;Initial Auto Detection Subroutine. The PIC continuously sends the Init code
;until the PC responds with the Init code.

ChkPC
banksel PORTB
clrf PORTB

PCLoop bsf PORTB, 7 ;LED display while waiting for PC to send codes
bcf PORTB, 5
Call SHDELAY

movlw Init ;Waiting for PC to reply to send the Init Code
movwf OUTCODE ;Init code for Xmission to PC
Call TRANS ;Call TRANS Sub to send Init Code to PC

BTFSS RCSTA, OERR ;Check for Rx overrun error.
goto ChkIn ;If none then continue program
bsf PORTB, 5 ;If so then clear it
bcf RCSTA, CREN ;by clearing CREN and
bsf RCSTA, CREN ;resetting it

ChkIn BTFSS PIR1, RCIF ;Check if we have received anything from PC
goto ContPCL ;If not then Continue PC Looping
bsf PORTB, 6 ;Indicates something has been received

movf RCREG, 0 ;If so, then check to see if its the Init code

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

456

sublw Init
BTFSC STATUS, Z ;If it is the Init code, then
goto PROGRAM ;Start PROGRAM

;IF not, then continue waiting for Init code

ContPCL bcf PORTB, 7
Call SHDELAY
bcf PORTB, 6
goto PCLoop

;-------PROGRAM: PROCESSES CODES, RETURNS READY CODE TO PC, ENABLES IR
TRANSMISSION

PROGRAM bsf PORTB, 7
bcf PORTB, 6 ;Set LEDs for display purposes. LED7 should hold on

PollRx BTFSS RCSTA, OERR ;Check for Rx overrun error. It could happen.
goto RxClear ;If none then continue program
bsf PORTB, 5 ;If so then clear it
bcf RCSTA, CREN ;by clearing CREN and
bsf RCSTA, CREN ;resetting it

RxClear BTFSS PIR1, RCIF ;Poll Rx for code
goto PollRx ;

GetCode movf RCREG, 0 ;If a code comes through, determine the code.
movwf INCODE ;Codes are in order by value

movlw Ready ;Is it the PIC Ready code?
subwf INCODE, 1 ;To determine, subtract Ready from INCODE
BTFSC STATUS, Z ;and check the Zero flag
Call REPLY ;If so then REPLY to PC and continue Polling Rx
movf INCODE, 1
BTFSC STATUS, Z ;The second BitCheck was added to break the
goto PollRx ;comparisons if the INCODE was actually the

Ready Code.

decf INCODE, 1 ;Is User requesting to end DigiHouse session?
BTFSC STATUS, Z
goto EndPrg ;If so then end the program (bottom)

decf INCODE, 1 ;Is user asking to Check IR Link?
BTFSC STATUS, Z ;This is option is currently not available.
goto PollRx

decf INCODE, 1 ;Turn off Light 3
BTFSC STATUS, Z
goto OFF3

decf INCODE, 1 ;Turn off Light 2
BTFSC STATUS, Z
goto OFF2

decf INCODE, 1 ;Turn off Light 1
BTFSC STATUS, Z
goto OFF1

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

457

decf INCODE, 1 ;Turn on Light 3
BTFSC STATUS, Z
goto ON3

decf INCODE, 1 ;Turn on Light 2
BTFSC STATUS, Z
goto ON2

decf INCODE, 1 ;Turn on Light 1
BTFSC STATUS, Z
goto ON1

decf INCODE, 1 ;Learn an IR CODE
BTFSC STATUS, Z
goto LEARN

decf INCODE, 1 ;Send learned IR CODE
BTFSC STATUS, Z
goto SendLIR

goto EndPrg ;If none of these codes were right, then
another

;PC program has control over the COM port. RESET PIC.

;-------SUB ROUTINES---

;-------TRANS--
;Transmits Register Contents to PC. whenever a subroutine calls TRANS, it
;places a value in the W register.

TRANS NOP

TRANS1 movf OUTCODE, 0 ;Move contents of W code to OUTCODE.
HoldT BTFSS PIR1, TXIF

goto HoldT ;If TXIF is set (empty TREG) then continue

movwf TXREG ;Move W to Transmit
Return

;-------REPLY--
;Replies to the READY code sent from PC. If the PIC does not reply with the
READY code
;within 750ms, the Software will ask you to check connections.

REPLY movlw READY
movwf OUTCODE ;Prepare to transmit READY code to PC
call TRANS
return

;-------SET AND SEND IR--

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

458

;Set/Clear the PORTD bit that corresponds to the correct LED, then clear
PORTC, IR to send

OFF3 bcf PORTD, 2 ;PORTD conencts to IR encoder. Whatever appears at
PORTD

bcf PORTB, 2 ;is what's transmitted. PORTB is used as local
display.

goto SEND_IR

OFF2 bcf PORTD, 1
bcf PORTB, 1
goto SEND_IR

OFF1 bcf PORTD, 0
bcf PORTB, 0
goto SEND_IR

ON3 bsf PORTD, 2
bsf PORTB, 2
goto SEND_IR

ON2 bsf PORTD, 1
bsf PORTB, 1
goto SEND_IR

ON1 bsf PORTD, 0
bsf PORTB, 0
goto SEND_IR

SEND_IR bcf PORTC, IR
call SHDELAY ;Send short IR burst
call SHDELAY
Call REPLY ;Let the PC know that the PIC received the code.
bsf PORTC, IR
goto PollRx ;go back to polling for incoming code

;-------LEARN--
;This routine RECORDS by counting the number of times TMR0<7> overruns for
each voltage
;level L,H. The values are stored in order starting at RAM area 0x2D. With a
2:1
;prescaler, we can sample pulse lengths in 52.2us intervals (19.9KHz) by
polling TMRO<7>.
;Each register stores the voltage level in the MSB(7) and the number of
TMR0<7> overflows
;in bits<6:0> The maximum value storable in each register is 52.2us x 127 =
6.5ms

;If a High pulse lasts more than 6ms, I call it a Double Overflow. therefore
the next
;register will have the same MSB as the previous register and continues
sampling.

;The maximum number of registers allowable is 80 (0x50). The maximum time
storable is

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

459

;6.5ms/reg x 80reg = 520ms, but it lessens depending on the number of pulses.

;PORTB<4> displays the sampled demodulated IR pulses.

LEARN Call Reply ;Let PC know we received LearnIR Code
movlw IR_Wait ;Tell the PC to wait while PIC samples IR

Code
movwf OUTCODE
Call TRANS
bsf PORTB, 3 ;Show Ready Light

movlw 0x50 ;Initiation
movwf IR_Reg_Max ;Set maximum Recording time to 80 Registers
clrf IR_Reg_Start ;Empty the starting register
movlw IR_Reg_Start
movwf FSR ;Make INDF point to starting register
clrf IR_Reg_Count
clrf TMR0 ;Reset the Timer0 Register

WAIT_IR movlw 0xAA ;This is a delay Loop. In the loop we
movwf first ;are waiting for bit PORTD<IRL> to go

low.
W_IR_L movwf second ;PORTD<IRL> is where the
Remote Receiver

decfsz first ;is connected. <See constants>
goto IR_n1
goto EndWIRL ;<See EndWIRL below>

IR_n1 movwf third
decfsz second
goto IR_n2
goto W_IR_L

IR_n2 BTFSS PORTD, IRL ;Check if the user started sending signal

goto RECORD ;If so then break this loop and RECORD...
decfsz third ;If not, keep waiting.
goto IR_n2
goto IR_n1 ;End of Waiting for IR Loop

EndWIRL movlw IR_BAD ;If the Loop finishes before a low value
movwf OUTCODE ;is detected, then send IR_BAD CODE to PC.
Call TRANS ;Return to Waiting For Next Code.
bcf PORTB, 3 ;Turn off LED
bcf IR_Learned, 0 ;Remember that we didn't learned an IR Code.
goto PollRx ;Go back and wait for next code.

;-------RECORD---

RECORD
banksel OPTION_REG ;Initiate Timer0
movlw 0x60 ;Binary = (01100000).
andwf OPTION_REG ;Prescaler = 2:1, Rising Edge
bcf OPTION_REG, T0CS ;Start Timer0
banksel TMR0
clrf TMR0

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

460

goto LowSamp ;It's not necessary to Poll TMR0 on first
sample.

;- -
Availbl decfsz IR_Reg_Max

goto NewReg ;If there are more available registers
use them

goto IRGOOD ;If not, then we are finished Recording

NewReg incf FSR ;Make a new blank register if double overflows occur.
clrf INDF ;Let the recording subroutines determine what
incf IR_Reg_Count ;to do with it. Keep count of registers

used.

Poll_T0 BTFSS TMR0, 7 ;Poll TMR0. After 128
increments(52.2us) bit<7> goes Hi.

goto Poll_T0
clrf TMR0 ;Immediately clear TMR0 register
bcf INTCON, T0IF

BTFSC PORTD, IRL ;Check Status of IRL and the INDF<MSB> bits.
goto IRL_Hi ;Remember, MSB stores the voltage level of the
goto IRL_Low ;current pulse after sampling has begun.

IRL_Low BTFSC INDF, MSB
goto LowRec ;If IRL is Low and MSB is High, start new Low recording
goto LowSamp ;If IRL is Low and MSB is Low, continue

sampling Low
IRL_Hi BTFSC INDF, MSB

goto HiSamp ;If IRL is Hi and MSB is Hi, continue sampling Hi
;goto HiRec ;If IRL is Hi and MSB is Low, start new Hi recording

;- - - - - - - - - - - - - This is where actual recording takes place. - - -

HiRec movf INDF, 0 ;If this register is already empty, there is no need
BTFSC STATUS, Z ;to start a new one. It only needs its MSB

changed
goto SetHi ;to Hi. But if it's not new...

incf FSR ;Move to and prepare a clean register for Hi pulse
clrf INDF
incf IR_Reg_Count
decf IR_Reg_Max
BTFSC STATUS, Z ;Check if we have any more available registers
goto IRGOOD ;If not then we're finished recording.

SetHi bsf INDF, MSB ;Set MSB. IF IRL pulse remains high after next TMR0
HiSamp bcf PORTB, 4 ;overflow, then continue sampling with register.

incf INDF
movf INDF, 0 ;Check if this register has reached its capacity.
sublw 0xFF ;(1xxxxxxx - 11111111)
BTFSS STATUS, Z
goto Poll_T0 ;No, keep filling it
goto Availbl ;Yes, Check if we have any more available registers.

;- -

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

461

LowRec movf INDF, 0 ;If this register is empty, there is no need
BTFSC STATUS, Z ;to start a new one. There is also no need to change
goto LowSamp ;its MSB because its already Lo. But, if it's not new...

incf FSR ;Move to and prepare a clean register for Low
pulse.

clrf INDF
incf IR_Reg_Count ;(LowRec not necessary on first sample)
decf IR_Reg_Max
BTFSC STATUS, Z ;Check if we have any more available registers
goto IRGOOD ;If not then we're finished recording.

SetLo bcf INDF, MSB ;Clear MSB. IF IRL pulse remains low after next
TMR0
LowSamp bsf PORTB, 4 ;overflow, then continue sampling with
this register.

incf INDF
movf INDF, 0 ;Check if this register has reached its

capacity.
sublw 0x7F ;(0xxxxxxx - 01111111)
BTFSS STATUS, Z
goto Poll_T0 ;No, keep filling it
goto Availbl ;Yes, Check if we have any more available

registers.

;- -
;When finished, we let the Program Know.
IRGOOD bcf INTCON, T0IF

banksel OPTION_REG ;When all 80 Register are filled...
bsf OPTION_REG, T0CS ;Stop Timer0
banksel PORTB
bcf PORTB, 4 ;Turn off LEDs
bcf PORTB, 3

bsf IR_Learned, 0 ;Remember that we learned an IR Code.
movlw IR_OK
movwf OUTCODE ;then send IR_OK CODE to PC.
Call TRANS ;Return to Waiting For Next Code.

;***********Insert Testing Code Here

;***********************************

Finish bsf PORTB, 7
goto PollRx

;-------SendLIR--
;Send a Learned IR Code
;The SendLIR algorithm is structured around DelVal, a temporary varaible that
stores

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

462

;only the timing information of each IR Register.The MSB of INDF tells the
pulse value
;whether it's Lo or Hi. This way a TMR0 loop can be created without change to
registers.

SendLIR BTFSC IR_Learned, 0 ;Check if PIC has learned a IR code.
goto SndLoop ;Yes. Decode IR Registers to transmit it.
;goto NoCode ;No...

NoCode call REPLY ;REPLY to the Program.

movlw IR_BAD ;Let the Program know that PIC has no code.
movwf OUTCODE ;It will reset the button panel.
call Trans
goto PollRx ;Wait for next code.

SndLoop movlw IR_Reg_Start ;Point to the 1st Register w/ IR information
movwf FSR
movf INDF, 0 ;DelVal temporarily stores TMRO loop-counts
movwf DelVal ;so that actual registers remain unchanged.
movlw 0x50 ;Set Loop for 80 IR registers
movwf Temp_Loop

banksel OPTION_REG ;Initiate Timer0
movlw 0x60 ;Binary = (01100000).
andwf OPTION_REG ;Prescaler = 2:1, Rising Edge
bcf OPTION_REG, T0CS ;Start Timer0
banksel TMR0

clrf TMR0
PlsInit bcf PORTD, IRLS ;Initiate first IR pulse.
Cycl_T0 BTFSS TMR0, 7 ;Cycle TMR0 for 128 increments.

goto Cycl_T0
clrf TMR0 ;Immediately clear TMR0 register
bcf INTCON, T0IF

BTFSS INDF, MSB ;Check the MSB of the current IR Register
bsf PORTD, IRLS ;Lo - Send Hi pulse to PORTD<IRLS>
BTFSC INDF, MSB
bcf PORTD, IRLS ;Hi - Send Lo pulse to PORDT<IRLS>

decfsz DelVal
goto Cycl_T0
;goto SndNexR

SndNexR incf FSR ;Go to the next register
movf INDF, 0 ;Temporarily store its value in DelVal
movwf DelVal ;Clear DelVal's MSB -- we don't need it.
bcf DelVal, MSB

decfsz Temp_Loop ;Have we cycled all 80 registers.
goto Cycl_T0 ;No...Continue
;goto NoMoreR ;Yes...

NoMoreR call REPLY

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

463

bcf PORTD, IRLS ;Sometimes pulse must be turned off.
bcf PORTB, 3
goto PollRx

;-------SHDELAY--
;Loop generates a short delay

SHDELAY movlw 0x40
movwf first

DLoop movwf second
decfsz first
goto nest1
goto theend

nest1 movwf third
decfsz second
goto nest2
goto DLoop

nest2 decfsz third
goto nest2
goto nest1

theend RETURN

;-------PDELAY---
-
;Programmable Delay.

PDELAY movf DelVal, 0 ;Move the Delay Value to the W Register.
movwf first

PLoop movwf second
decfsz first
goto Pnest1
goto EndIt

Pnest1 movwf third
decfsz second
goto Pnest2
goto PLoop

Pnest2 decfsz third
goto Pnest2
goto Pnest1

EndIt RETURN

;-------EndPrg---
;End Prgram w/ LED Display, and go back to waiting for the Init Code (ChkPC)

EndPrg bcf STATUS, C
clrf PORTB ;LED Display
bsf PORTB, 0
movlw 0x6
movwf Temp_Loop

Display Call SHDELAY
rlf PORTB
decfsz Temp_Loop

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

464

goto Display
goto ChkPC

END

6. Visual Basic Code for Windows Programming of Serial Communication

The following complete code is for making a serial communication windows programming
instead of using Hyperterminal program.

Fig. 109 Visual Basic code for serial communication windows programming on PC screen

Visual Basic Form Code: 2 Timers (Timer1, Timer2); 1 Label (Label2), 1 Shape
(Circle), 5-Button Array (Send (1 to 5)), Frame containing Buttons (Frame1)

Option Explicit 'This expression helps prevent coding errors.

Const Init = &H9 'These codes are sent to the PIC from the PC.
Const Ready = &H10 'They are the same values as in the PIC's code.
Const End_Prg = &H11
Const IR_OK = &H12 'The Init code is used on startup
Const OFF_3 = &H13 'The Ready code is used to check the serial link
Const OFF_2 = &H14 'prior to each transmission. If the PIC received it,
Const OFF_1 = &H15 'then it will REPLY with the Ready code.
Const ON_3 = &H16 'Using a timer, we can detect whether the PIC
Const ON_2 = &H17 'actually received the Ready code or not.
Const ON_1 = &H18
Const LearnIR = &H19 'Code used to Learn a IR Code
Const SendIR = &H1A 'Sends a learned IR Code
Const IR_BAD = &H1B 'PIC was not able to learn IR code
Const IR_Wait = &H1C 'Wait while PIC learns IR code

Dim SEND_CODE 'These variables are used to store the
Dim REC_CODE 'ASCII codes that are being sent and received.

Dim PIC_Ready As Boolean 'PIC_Ready is used for link testing
purposes.

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

465

'Whenever PIC responds with the Ready or Init code, this value is set
True.
Dim IR_Learned As Boolean 'Program knows if an IR code was Learned.

Dim btn_Index As Integer 'Tells which button is clicked
Dim btn_State(1 To 5) As Boolean 'The Current State of each button
Dim btn_PrevColor(1 To 5) 'Stores the previous color of the button
pressed
Dim btn_Color(1 To 5)
Const btn_Yellow = &HFFFF&
Const btn_Blue = &HFF0000
Const btn_Red = &HFF&

Private Sub C_OnComm()
'The COMM control is the heart of this project on the PC side.
'It handles all events that take place during serial operation.

Dim Comm_Event As Integer 'Know the event that is taking place.
Comm_Event = C.CommEvent

Const Send_Event = 1
Const Rec_Event = 2

Select Case Comm_Event
Case Rec_Event

REC_CODE = Asc(C.Input)
Select Case REC_CODE

Case Init
'check to see if PIC has already been initiated
'if not then initiate it. If it has, then the Init
'is being sent because the PIC has been reset

manually
'therefore causing it to start Init sending again.
'Determining the state of PIC_Ready keeps the system

from
'endlessly restarting itself and locking up the PC.

If PIC_Ready = True Then
PIC_Ready = False

ElseIf PIC_Ready = False Then
C.Output = Chr(Init)
PIC_Ready = True

End If

'enable button controls
Frame1.Enabled = True
Timer1.Enabled = False
Label2.Caption = "Ready..."
Circle1.Visible = False

Case Ready
'The PIC REPLYs with the Ready code after each Tx.
'This is used to ensure that serial link is still

good.
'The timer will disable the buttons if the Ready code

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

466

'is not received from the PIC within 500ms.
Timer1.Enabled = False
Frame1.Enabled = True
Label2.Caption = "Ready..."
Circle1.Visible = False
PIC_Ready = True

'Controlling the Buttons' Function and Color
'The state of the buttons change only if the
'Ready code was received after the button was presed.

If (0 < btn_Index) And (btn_Index < 4) Then
If btn_State(btn_Index) = False Then

Send(btn_Index).BackColor = btn_Yellow
Else: Send(btn_Index).BackColor = btn_Blue

End If

'Toggle the button state and clear index
btn_State(btn_Index) = Not btn_State(btn_Index)

End If
btn_Index = 0

Case IR_Wait
'The PIC is telling the Program to wait while it
'learns an IR code. The program halts for 20 seconds
'waiting on PIC. The PIC requires less than 20

seconds.
Timer2.Enabled = True
Frame1.Enabled = False
Label2.Caption = "Learning your code..."
Circle1.Visible = True

Case IR_BAD
Dim errPrompt As String
Dim errTitle As String
Dim Response
errPrompt = "Digihouse did not read remote control"
errTitle = "DigiHouse"
Beep
Response = MsgBox(errPrompt, vbInformation, errTitle)
Timer2.Enabled = False
Frame1.Enabled = True
Send(5).Enabled = False
Send(5).BackColor = btn_Blue
Label2.Caption = "Ready..."
Circle1.Visible = False

Case IR_OK
Timer2.Enabled = False
Frame1.Enabled = True
Send(5).Enabled = True
Send(5).BackColor = btn_Yellow
Label2.Caption = "Ready..."
Circle1.Visible = False
Response = MsgBox("Learned Code", , "DigiHouse")

End Select

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

467

'Text2 = Text2 & REC_CODE
'Text1.Text = Text1.Text & Comm_Event

Case Send_Event

'Text1.Text = Text1.Text & Comm_Event
End Select

End Sub

Private Sub Form_Load()
On Error GoTo CheckError

If C.PortOpen = False Then C.PortOpen = True
C.Output = Chr(Ready)
Exit Sub

CheckError:
Dim errPrompt As String
Dim errTitle As String
Dim Response
errPrompt = "Another Program is already using the Serial Port."
errTitle = "DigiHouse"
Beep
Response = MsgBox(errPrompt, vbInformation, errTitle)
Unload Me

End Sub

Private Sub Form_Unload(Cancel As Integer)
On Error GoTo CheckError

C.Output = Chr(End_Prg)

C.PortOpen = False
CheckError:

Exit Sub
End Sub

Private Sub Label2_Click()
If PIC_Ready = False Then C.Output = Chr(Ready)

End Sub

Private Sub Send_Click(Index As Integer)
'Remember which button was clicked

btn_Index = Index

'Determine whether to turn light on or off
Select Case Index

Case 1
If btn_State(Index) = False Then

SEND_CODE = Chr(ON_1)
Else: SEND_CODE = Chr(OFF_1)

End If

Case 2

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

468

If btn_State(Index) = False Then
SEND_CODE = Chr(ON_2)
Else: SEND_CODE = Chr(OFF_2)

End If
Case 3

If btn_State(Index) = False Then
SEND_CODE = Chr(ON_3)
Else: SEND_CODE = Chr(OFF_3)

End If
Case 4

SEND_CODE = Chr(LearnIR)
Case 5

SEND_CODE = Chr(SendIR)
End Select

Timer1.Enabled = True
Frame1.Enabled = False

'Send the code the COMM object.
C.Output = SEND_CODE

'After the COMM object sends the code to the PIC, it will wait
'for the PIC to reply with the Ready code. If there is no response
'from PIC, then the state of the buttons remain unchanged.

End Sub

Private Sub Send_MouseDown(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)

If Button = 1 Then
btn_PrevColor(Index) = Send(Index).BackColor
Send(Index).BackColor = btn_Red

End If
End Sub

Private Sub Send_MouseUp(Index As Integer, Button As Integer, Shift As
Integer, X As Single, Y As Single)

If Button = 1 Then Send(Index).BackColor = btn_PrevColor(Index)
End Sub

Private Sub Text1_DblClick()
C.PortOpen = True

End Sub

Private Sub Text2_DblClick()
C.PortOpen = False

End Sub

Private Sub Timer1_Timer()
'If a Ready signal is not sent within 500ms, then
'the the timer completes its cycle. It clears all present values
'as well as disables the buttons, and flags a message

PIC_Ready = False
btn_Index = 0

Frame1.Enabled = False

Circle1.Visible = Not Circle1.Visible 'blink the Circle

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

469

Label2.Caption = "Check Connections..." 'flag a warning message

End Sub

Private Sub Timer2_Timer()
'If the PIC doesn't learn IR Code within 20 sec, then
'the program assumes that it lost connection. It disables
'itself and enables the Reply error timer, Timer1.

Timer2.Enabled = False

Dim errPrompt As String
Dim errTitle As String
Dim Response
errPrompt = "DigiHouse lost connection System"
errTitle = "DigiHouse"
Beep
Response = MsgBox(errPrompt, vbInformation, errTitle)
Timer1.Enabled = True

End Sub

7. 17F877A.INC file

LIST
; P16F877A.INC Standard Header File, Version 1.00 Microchip Technology,
Inc.

NOLIST

; This header file defines configurations, registers, and other useful bits
of
; information for the PIC16F877A microcontroller. These names are taken to
match
; the data sheets as closely as possible.

; Note that the processor must be selected before this file is
; included. The processor may be selected the following ways:

; 1. Command line switch:
; C:\ MPASM MYFILE.ASM /PIC16F877A
; 2. LIST directive in the source file
; LIST P=PIC16F877A
; 3. Processor Type entry in the MPASM full-screen interface

;==
;
; Revision History
;
;==

;Rev: Date: Reason:
;1.01 09/13/01 Added the PIR2 bit CMIF and the PIE2 bit CMIE
;1.00 04/19/01 Initial Release (BD - generated from PIC16F877.inc)

;==
;
; Verify Processor

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

470

;
;==

IFNDEF __16F877A
MESSG "Processor-header file mismatch. Verify selected

processor."
ENDIF

;==
;
; Register Definitions
;
;==

W EQU H'0000'
F EQU H'0001'

;----- Register Files--

INDF EQU H'0000'
TMR0 EQU H'0001'
PCL EQU H'0002'
STATUS EQU H'0003'
FSR EQU H'0004'
PORTA EQU H'0005'
PORTB EQU H'0006'
PORTC EQU H'0007'
PORTD EQU H'0008'
PORTE EQU H'0009'
PCLATH EQU H'000A'
INTCON EQU H'000B'
PIR1 EQU H'000C'
PIR2 EQU H'000D'
TMR1L EQU H'000E'
TMR1H EQU H'000F'
T1CON EQU H'0010'
TMR2 EQU H'0011'
T2CON EQU H'0012'
SSPBUF EQU H'0013'
SSPCON EQU H'0014'
CCPR1L EQU H'0015'
CCPR1H EQU H'0016'
CCP1CON EQU H'0017'
RCSTA EQU H'0018'
TXREG EQU H'0019'
RCREG EQU H'001A'
CCPR2L EQU H'001B'
CCPR2H EQU H'001C'
CCP2CON EQU H'001D'
ADRESH EQU H'001E'
ADCON0 EQU H'001F'

OPTION_REG EQU H'0081'
TRISA EQU H'0085'
TRISB EQU H'0086'
TRISC EQU H'0087'
TRISD EQU H'0088'

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

471

TRISE EQU H'0089'
PIE1 EQU H'008C'
PIE2 EQU H'008D'
PCON EQU H'008E'
SSPCON2 EQU H'0091'
PR2 EQU H'0092'
SSPADD EQU H'0093'
SSPSTAT EQU H'0094'
TXSTA EQU H'0098'
SPBRG EQU H'0099'
CMCON EQU H'009C'
CVRCON EQU H'009D'
ADRESL EQU H'009E'
ADCON1 EQU H'009F'

EEDATA EQU H'010C'
EEADR EQU H'010D'
EEDATH EQU H'010E'
EEADRH EQU H'010F'

EECON1 EQU H'018C'
EECON2 EQU H'018D'

;----- STATUS Bits --

IRP EQU H'0007'
RP1 EQU H'0006'
RP0 EQU H'0005'
NOT_TO EQU H'0004'
NOT_PD EQU H'0003'
Z EQU H'0002'
DC EQU H'0001'
C EQU H'0000'

;----- INTCON Bits --

GIE EQU H'0007'
PEIE EQU H'0006'
T0IE EQU H'0005'
INTE EQU H'0004'
RBIE EQU H'0003'
T0IF EQU H'0002'
INTF EQU H'0001'
RBIF EQU H'0000'

;----- PIR1 Bits --

PSPIF EQU H'0007'
ADIF EQU H'0006'
RCIF EQU H'0005'
TXIF EQU H'0004'
SSPIF EQU H'0003'
CCP1IF EQU H'0002'
TMR2IF EQU H'0001'
TMR1IF EQU H'0000'

;----- PIR2 Bits --

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

472

CMIF EQU H'0006'
EEIF EQU H'0004'
BCLIF EQU H'0003'
CCP2IF EQU H'0000'

;----- T1CON Bits ---

T1CKPS1 EQU H'0005'
T1CKPS0 EQU H'0004'
T1OSCEN EQU H'0003'
NOT_T1SYNC EQU H'0002'
T1INSYNC EQU H'0002' ; Backward compatibility only
T1SYNC EQU H'0002'
TMR1CS EQU H'0001'
TMR1ON EQU H'0000'

;----- T2CON Bits ---

TOUTPS3 EQU H'0006'
TOUTPS2 EQU H'0005'
TOUTPS1 EQU H'0004'
TOUTPS0 EQU H'0003'
TMR2ON EQU H'0002'
T2CKPS1 EQU H'0001'
T2CKPS0 EQU H'0000'

;----- SSPCON Bits --

WCOL EQU H'0007'
SSPOV EQU H'0006'
SSPEN EQU H'0005'
CKP EQU H'0004'
SSPM3 EQU H'0003'
SSPM2 EQU H'0002'
SSPM1 EQU H'0001'
SSPM0 EQU H'0000'

;----- CCP1CON Bits ---

CCP1X EQU H'0005'
CCP1Y EQU H'0004'
CCP1M3 EQU H'0003'
CCP1M2 EQU H'0002'
CCP1M1 EQU H'0001'
CCP1M0 EQU H'0000'

;----- RCSTA Bits ---

SPEN EQU H'0007'
RX9 EQU H'0006'
RC9 EQU H'0006' ; Backward compatibility only
NOT_RC8 EQU H'0006' ; Backward compatibility only
RC8_9 EQU H'0006' ; Backward compatibility only
SREN EQU H'0005'
CREN EQU H'0004'
ADDEN EQU H'0003'

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

473

FERR EQU H'0002'
OERR EQU H'0001'
RX9D EQU H'0000'
RCD8 EQU H'0000' ; Backward compatibility only

;----- CCP2CON Bits ---

CCP2X EQU H'0005'
CCP2Y EQU H'0004'
CCP2M3 EQU H'0003'
CCP2M2 EQU H'0002'
CCP2M1 EQU H'0001'
CCP2M0 EQU H'0000'

;----- ADCON0 Bits --

ADCS1 EQU H'0007'
ADCS0 EQU H'0006'
CHS2 EQU H'0005'
CHS1 EQU H'0004'
CHS0 EQU H'0003'
GO EQU H'0002'
NOT_DONE EQU H'0002'
GO_DONE EQU H'0002'
ADON EQU H'0000'

;----- OPTION_REG Bits ---

NOT_RBPU EQU H'0007'
INTEDG EQU H'0006'
T0CS EQU H'0005'
T0SE EQU H'0004'
PSA EQU H'0003'
PS2 EQU H'0002'
PS1 EQU H'0001'
PS0 EQU H'0000'

;----- TRISE Bits ---

IBF EQU H'0007'
OBF EQU H'0006'
IBOV EQU H'0005'
PSPMODE EQU H'0004'
TRISE2 EQU H'0002'
TRISE1 EQU H'0001'
TRISE0 EQU H'0000'

;----- PIE1 Bits --

PSPIE EQU H'0007'
ADIE EQU H'0006'
RCIE EQU H'0005'
TXIE EQU H'0004'
SSPIE EQU H'0003'
CCP1IE EQU H'0002'
TMR2IE EQU H'0001'
TMR1IE EQU H'0000'

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

474

;----- PIE2 Bits --

CMIE EQU H'0006'
EEIE EQU H'0004'
BCLIE EQU H'0003'
CCP2IE EQU H'0000'

;----- PCON Bits --

NOT_POR EQU H'0001'
NOT_BO EQU H'0000'
NOT_BOR EQU H'0000'

;----- SSPCON2 Bits --

GCEN EQU H'0007'
ACKSTAT EQU H'0006'
ACKDT EQU H'0005'
ACKEN EQU H'0004'
RCEN EQU H'0003'
PEN EQU H'0002'
RSEN EQU H'0001'
SEN EQU H'0000'

;----- SSPSTAT Bits ---

SMP EQU H'0007'
CKE EQU H'0006'
D EQU H'0005'
I2C_DATA EQU H'0005'
NOT_A EQU H'0005'
NOT_ADDRESS EQU H'0005'
D_A EQU H'0005'
DATA_ADDRESS EQU H'0005'
P EQU H'0004'
I2C_STOP EQU H'0004'
S EQU H'0003'
I2C_START EQU H'0003'
R EQU H'0002'
I2C_READ EQU H'0002'
NOT_W EQU H'0002'
NOT_WRITE EQU H'0002'
R_W EQU H'0002'
READ_WRITE EQU H'0002'
UA EQU H'0001'
BF EQU H'0000'

;----- TXSTA Bits ---

CSRC EQU H'0007'
TX9 EQU H'0006'
NOT_TX8 EQU H'0006' ; Backward compatibility only
TX8_9 EQU H'0006' ; Backward compatibility only
TXEN EQU H'0005'
SYNC EQU H'0004'
BRGH EQU H'0002'

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

475

TRMT EQU H'0001'
TX9D EQU H'0000'
TXD8 EQU H'0000' ; Backward compatibility only

;----- CMCON Bits ---
C2OUT EQU H'0007'
C1OUT EQU H'0006'
C2INV EQU H'0005'
C1INV EQU H'0004'
CIS EQU H'0003'
CM2 EQU H'0002'
CM1 EQU H'0001'
CM0 EQU H'0000'

;----- CVRCON Bits --
CVREN EQU H'0007'
CVROE EQU H'0006'
CVRR EQU H'0005'
CVR3 EQU H'0003'
CVR2 EQU H'0002'
CVR1 EQU H'0001'
CVR0 EQU H'0000'

;----- ADCON1 Bits --

ADFM EQU H'0007'
PCFG3 EQU H'0003'
PCFG2 EQU H'0002'
PCFG1 EQU H'0001'
PCFG0 EQU H'0000'

;----- EECON1 Bits --

EEPGD EQU H'0007'
WRERR EQU H'0003'
WREN EQU H'0002'
WR EQU H'0001'
RD EQU H'0000'

;==
;
; RAM Definition
;
;==

__MAXRAM H'1FF'
__BADRAM H'8F'-H'90', H'95'-H'97', H'9A'-H'9B'
__BADRAM H'105', H'107'-H'109'
__BADRAM H'185', H'187'-H'189', H'18E'-H'18F'

;==
;
; Configuration Bits
;
;==

Chapter 16. Digital Control using PC with IR

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

476

_CP_ALL EQU H'3FFF'
_CP_OFF EQU H'1FFF'
_DEBUG_OFF EQU H'3FFF'
_DEBUG_ON EQU H'37FF'
_WRT_OFF EQU H'3FFF' ; No prog memmory write
protection
_WRT_256 EQU H'3DFF' ; First 256 prog memmory
write protected
_WRT_1FOURTH EQU H'3BFF' ; First quarter prog memmory
write protected
_WRT_HALF EQU H'39FF' ; First half memmory write
protected
_CPD_OFF EQU H'3FFF'
_CPD_ON EQU H'3EFF'
_LVP_ON EQU H'3FFF'
_LVP_OFF EQU H'3F7F'
_BODEN_ON EQU H'3FFF'
_BODEN_OFF EQU H'3FBF'
_PWRTE_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_RC_OSC EQU H'3FFF'
_HS_OSC EQU H'3FFE'
_XT_OSC EQU H'3FFD'
_LP_OSC EQU H'3FFC'

LIST

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

