Chapter 15. Armatron Robot Control 416

Chapter 15. Armatron Robot Control

The Armatron robot arm is one of the coolest toys ever made. Put out by Radio Shack the robot
is operated via a couple of levers on the base. Came with all kinds of accessories to pick up and
move around. The toy was made by Tomy and later versions showed this name on the box.

Fig. 90 Armatron robot arm

The Armatron we introduce here is micro-programmable version which comes with a separate
relay board.

Fig. 91 Micro-programmable version of Armatron robot arm

The one we actually have does not have the control pad: it has only the Armatron body and the
7-wire ribbon cable. The focus in the chapter is first to know how to operate the Armatron, and
how we develop our own relay board, which in turn can be controlled by the output port of
16F877.

1. Motion Control of the Armatron

The Armatron can move forward, backward, turn right and left, move the arm up and down, and
twist, and clamp the jaw. At the bottom there is a big battery housing, and it need 4 D-type 1.5
V dry cell batteries. As soon as you turn on (or by putting the batteries), there are voltages
developed at each of the 7 wires in the ribbon cable. This means there is more than slight chance
of short circuit unless you separate each wire before turning on the Armatron. Therefore it is
safe to separate (on insulate) each wire of the ribbon cable before you inset batteries.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 417

Once the power is on to the Armatron, you have the following voltages developed at each wire:
Black -- OV (or Ground)

Brown -- 6V

Red --3V

Yellow -- 3V

Orange -- 3V

Green -- 3V

Blue -- 3V

There are motors (DC motors) inside the Armatron, and as you know the direction of the motor
turning is controlled by the polarity of the voltage applied to the terminals of the motor. Let's
consider an example.

’;\ /—\;

As seen above, if a terminal of the motored is connected to 6V source, and the other terminal is
to 3V source, then left terminal higher potential then right, so voltage has positive potential and
the motor turns clockwise. If two motors are polarized same, then two would make the body
move leftward.

If, instead, the right terminal has higher potential, the motor would turn counter-clockwise,
moving the whole body leftward.

)
)

3V
GND 3V GND

This is the principle of controlling the Armatron. Then, how do we change the direction of the
motors inside the Armatron? We connect the wires together, based on the original design, we
can change the direction of the motor running. Take look at the illustration shown in the next

page.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 418

Assume that a motor's left terminal is with 3V. Then the voltage at the other end of also (close
to) 3V. Assume again that the left terminal is connected to the green wire of the ribbon cable,
while the right terminal is internally connected to the same 3V point. Now as we learned from
above, when the power is up, the brown wire develops to 6V, and the black wire is connected to
the ground. If the brown wire with 6V potential is connected to the green wire, since brown side
is with higher potential, now current flows from the left terminal of the motor to the right.

GREEN
BROWN
6vV 3V

GND ©
BLACK

On the other hand, if the green wire of the motor is connected to the black wire, the right
terminal potential with 3V will flow current from right to the left, and this reverses the motor
direction.

The overall control pattern is tabulated below:

Armaton Control Diagram

{Basic: connecting two or more wires would turn on motor(s) inside the Armatron. There is a
ribbon wire running from the Armatron. The ribbon has 7 colored wires. Controlling the
Armatron is to connect the colred wires together. The connecting points are marked by X below}

RIBBON FROM ARMATRON

Blue Green Yellow Orange Red Brown Black
voltage level* +3V +3V +3V +3V +3V +3V GND

MOTION

STOP
FORWARD
BACKWARD
TURN RIGHT
TURN LEFT
ARM UP
ARM DOWN
WRIST UP X

WRIST DOWN X

WRIST TURN X
CLAMPING X

X X
X X
X X X X
X X X X X
X X X X X

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 419

*Explanation: (1) For FORWARD motion, connect Green, Yellow, and Brown wired together.
(2) For TURN RIGHT motion, connect yellow and Brown wires together.

As explained above, motion control is done by connecting the wires together, and the above table
shows exactly how we have to connect which wires together for a desired motion control. If we
want to move the Armatron forward, we have to connect green, yellow, and brown wires
together. On the other hand, connection of green, yellow, and black wires together would move
the Armatron reverse. All the other movements and motions are similarly obtained.

2. Motion Control by Relay

Now let's discuss how we set up a circuit to control the motion by a microcontroller. A relay is
an electronic switch. When current flows through the relay coil inside, the magnetic energy
generated by the current would grab a metal lever and pull down it. When there is no current and
no magnetic energy, my mechanical spring force, the metal lever would stay in the up position
touching another contact point. When the metal lever is pulled down, it would touch a contact
below.

Let's have an illustration. In the relay shown below left, when there is no voltage source (or Low
source) is connected to S, there is no current flowing through the coil, and there is no magnetic
force asserted to the metal lever pivoted in the P contact. Then, A and P are opened. This,
between A and B, is called "Normal Open" meaning that, at normal condition, A and B are open.

In the relay shown below right, S is the input for relay operation. If S is connected to High side
(i.e., +5V for example) then current flows through the coil to the ground. Then, the level pivoted
in the P is moved to the left to A. Then, A and P are connected.

i : -H-El-ﬂ:-,' L A Hfl-c'l'g'
Lo— -
, 13 frie
I
bl & i
v _
Fig. 92(a) S connected to Low side Fig. 92(b) S connected to High side

Now let's expand our discussion on the relay to the motor control case. At the left, we connected

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 420

Fed

Fed

Brown

Fig. 93(a) A of the relay 1 and Fig. 93(b) A of the relay 1 and
A of the relay 2 disconnected A of relay 2 connected

P points together for both of the relays. At the present situation, with LOW level at the S points,
there are no magnetic energy, so A and P are normal open for both relays. This means, A (red)
of the relay 1 and the A (brown) of the relay 2 are disconnected.

When we apply High to the S points of the both relay, by means of byte oriented instruction of

16F877, the brown and the red wires are now connected. Expanding this idea to all 7 wires, we
can have the following relay configuration.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 421

Felay 1

BLUE

Fig. 94 7 inputs of 7 relays all connected

As we see above, there are 7 inputs, one each to each relay, and this perfectly fits to a port
(PORTB, PORTC, or PORTD) of 16F877, and sending out outputs signals 1 or 0 to each line,
according to the motion control table, would make the Armatron control easy and simple.

A student implemented this idea into his work, along with other sensors, as depicted next page.
In the project, an IR receiver and two IR rangers are installed for IR remote control and collision
avoidance.

3. Armatron Control Project

Figure below illustrates the logic flow of the software of the system. The command is first read
from the remote control. Safety is the primary concern of the robot motion and this is the first
question that must be asked. If it is safe to move then the command can be read and then
decoded. If it is unsafe then the command is read but it must be compared to the unsafe direction.
If the command coincides with the unsafe direction then it is ignored and the robot awaits a new

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 422

command. If the command is safe then it is decoded and then executed. As motion continues
safety is continuously checked and also input from the infrared receiver is checked. If any of
those two are detected then this loop is broken and the process is restarted. It must be stressed
that at every stage of robot motion safety is checked. However, it is only necessary to check
safety when the robot is moving forwards and backwards.

GET
COMMAND

P

GET

WHICH IS

vEs| BT SAFE DIRECTION |—» COMMAND | commanD
TO MOVE? IS UNSAFE? AND SAFE?

' COMPARE '

VES—

L}

YES

DECODE

v

START/
CONTINUE
MOTION

v

IS IT SAFE
TO L -NO—,l

CONTINUE?

END
MOTION

NEW
COMMAND?

Fig. 95 Software Logic flow of Armatron Robot system

The hardware architecture of the system is shown next. The infrared receiver sends an address
and a command to the microprocessor through Port D. The Sony protocol the address has 5 bits
and the command 7. These bits are sent in serial form to the microprocessor. These two parts of
the signal are stored in two separate registers (see the source code for details). The forward and
reverse infrared sensors send their serial outputs to ports RA1 and RA3 respectively. An LED is
lighted whenever a signal is received and this is connected to the RAO output. The input from the
infrared receiver determines the output into the relay system. The relay system acts as the
interface between the microprocessor and the Armatron robot. Seven outputs are fed from the
microprocessor from Port B into the relay system and then into the Armatron robot.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

sharp GR20O1Z
Detectes

Farward
Sensor

Shai jp GREDZ
Dietesctoa

Reverse
Sensor

5\

ETRADT e pan
BADRED ==
RALRED BEG
FAZAHVREF- R
FALAHVEER + i
RALITOOK R
RAATT E Enl
FEORLWAAS o0 ST
el O] E Tob
TR g ¥
o o e
L] e
OECYCLEOH REOAPSE
DECICLENDT EDALTIRE
f] RCVRHTT

o miE) EOATINCE

FOUTCR

O

FOECEECL RMSIEEDA

RT3
FLLF

RLAFIE
FLFFETa

423
RELAY Armitron
SYSTEM |"™0 Rohot
TELLUSw
BRI
BLALCK
"W LOE |
RED
FC
+5y =;'.|E‘
1
il
—F

Fig. 96 Hardware architecture of Armatron Robot system

The relay used in the project is depicted next. The relay is a single pole, single throw and is
either on or off. Right to it is a schematic of the relay and it shows that when input (left primary
side) is received from 16F877, the coil energizes and operates the switch. In this figure wire A
and wire B are connected when the coil is energized. The relay is used to close a secondary
circuit whenever the primary circuit is energized.

Fig. 97(a) Relay used in the project

WIREA

WIREB

Fig. 97(b) Schematic of the relay

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

424

Next is the detail connection diagram for robot control. As discussed before 7 relays are used to
execute the commands. The relays are controlled by outputs from Port B of the 16F877 shown
coming from the left and the output of the system goes directly to the robot. Those wires are

shown on the right.

RELAY1
RB7 GREEN +3V
YELLOW +3V
RELAY?2
RB6
BROWN +6V
RELAY3
RB5
BLACK (GND)
=52 RELAY4
BLUE +3V
RB3 RELAY5
RELAY6
RB2 RED +3V
RELAY7
RB1

Fig. 98 Detail connection diagram for robot control

The component list for the project is displayed in the table below.

Part Name and Description Quantity | Part No. Price (each) | Total
PIC 16F877 1 PIC 16F877-201/P-ND | $9.88 $9.88
RS232 Transceiver 16-DIP 1 MAX232CPE-ND $3.31 $3.31
1Uf 50V Electrolytic Capacitor | 4 P1196-ND $0.37 $1.48
20 MHz Crystal Oscillator 1 CTX062-ND $0.94 $0.94
20pF(22pF) Ceramic Oscillator | 2 1330PH-ND $0.72 $1.46

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 425
DB-9 Connector, Female 1 A2100-ND $2.36 $2.36
9-pin Serial Cable, Male- 1 AE1020-ND (2m long) | $5.35 $5.35
Female
40-Pin Wire Wrap Socket 1 ED4640-ND $4.38 $4.38
16-Pin Wire Wrap Socket 1 ED4316-ND $1.38 $1.38
Prototype Board 1 V2012-ND(6°"X6°") $9.36 $9.36
7805 Voltage Regulator, TO- 1 NJM7805FA-ND $0.60 $0.60
220
SPST Reed Relays 7 275-232 $2.14 $14.98
Infrared Sensors 2 GP2D12 $11.59 $23.18
Project Box 1 $5.39 $5.39
Infrared Remote Control 1 15-2131 $14.59 $14.59
Infrared Receiver 1 $2.00 $2.00
TOTAL $101.28

Fig. 99 The completed Armatron Robot

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 426

4. Source Code

*Note: This source code is written by Jason Burrows who took the Embedded Computing course
from me. | revised/added slightly only the parts I think are better for beginners to understand
easily. You can find the routines we discussed in the previous chapters here in the source code.

; JASON BURROWES- JONES
; ARM TRON ROBOT ARM CONTRCL

LI ST P = 16F877

| HAHHBHHBHBHHBH AR H BB R R R R AR R A AR R R R
; REG STER DECLARATI ONS
) HHBHBHHBHHHHBHHBH BB B R R R R R R R R R

STATUS EQU 0X03
PORTA EQU 0X05
PORTB EQU 0X06
PORTD EQU 0X08
TRISA EQU 0X85
TRISB EQU 0X86
TRISD EQU 0X88
PIRL EQU 0XOC - PERI PHERAL | NTERRUPT FLAG
- LOCATED AT THI S ADDRESS AS
- SPECI FI ED | N MANUAL
RCF EQU 0X05 - RECEI VE | NTERRUPT FLAG
-1 RECEl VE BUFFER | S FULL
© 0 REVEI VE BUFFER | N EMPTY
TXIF EQU 0X04 : TRANSM T | NTERRUPT FLAG
-1 TRANSM T BUFFER | S EMPTY
0 TRANSM T BUFFER | S FULL
BAUD EQU OXOF BAUD RATE |'S 15 FOR 19200 BPS
PIEL EQU 0X8C
PIRL EQU 0XOC

ADCONO EQU OX1F
ADCON1 EQU OX9F
ADRESH EQU OX1E
ADRESL EQU OX9E

ADIE EQU 0X06
ADIF EQU 0X06

(€0 EQU 0X02

I RX EQU 0XO00 ; NFRARED | NPUT BIT I N PORTD
CARRY EQU 0X0O0 ; CARRY BI' T OF STATUS REAQ STER

V5B EQU 0XO07 ; MOST SI G BIT OF REG STER
ZFLAG EQU 0X02 ; ZERO FLAG

BUZ EQU 0X04 ; BUZZER CONNECTED TO PORT<D4>

BIT3 EQU 0X03
BIT2 EQU 0X02
BITTL EQU 0X01

) HHBHBHHBHHHHBHHBH BB R BB B R R R R R R R R R

; DATA SPACE FOR RAM
, HEHBHBHEHEH R R R R R R R R R AR R R

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 427

CBLOCK 0X20 . RAM AREA FOR USE AT ADDRESS 20H
TEMP . STORES TEMP VARI ABLE
FI RST : VARI ABLE DECLARATI ON
SECOND
THI RD
COUNT
DCOUNT
CMCOUNT - KEEPS COUNT OF NUMBER OF BITS IN
COVVAND
ADDCOUNT ; KEEPS COUNT OF NUMBER OF BI TS | N ADDRESS
PCOUNT . KEEPS COUNT | F NUVBER OF
120M CROSECS
L COUNT - KEEPS COUNT OF NUMBER OF LED
FLASHES
COVREG . REG STER STORES COMMAND BI TS
ADDREG . REGl STER STORES ADDRESS BI TS
SAFETY_FLAG
FR_FLAG
N120US
DG T1
DI G T2
DI G T3
ENDC END OF RAM BLOCK
T T e T
ORG 0X00
GOTO MAI N
ORG 0X06

R R R R R R R R R R R I I I S R R I O R

; BHHABHBHHBHBHHBHHBH B HBH BB R BB BB R B R R R R H
; MAI N PROGRAM
| HAHHBHHBHBHHBH AR H BB B R A R R A R R A R R R R

rhkkhkkhkkkhkkhkhkhkkhkhkhhkhkhhkhkhhkhhhkhhhkhkhhkhhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhdhdhdhdhkrdhkhkhkrkhkrx*x
’

MAI N
MOVLW 0X55
MOVWF DCOUNT
CALL DELAY ; DELAY TO WARM UP HARDWARE
CALL INIT
CALL STOP ; MAKE SURE THE ROBOT IS NOT MOVI NG
I NI TI AL_READ_| NFRARED
CALL | NFRARED_READ ; READ | NPUT FROM REMOTE CONTROL
CALL | NPUT_TEST ; TEST FOR BAD | NPUT
BTFSC TEMP, BI T1 ;1 F THE INPUT IS BAD THEN CONTI NUE TO READ

; AND WAI T FOR GOOD | NPUT
GOTO | NI TI AL_READ_| NFRARED

FR_DETERM NE
CALL FR _FLAG SET ; THHS DETERM NES WHETHER A FORWARD OR REVERSE
; HAS BEEN G VEN

CALL MOTI ON_SAFETY ; AFTER RECEI VI NG THE COMWAND THE SENSORS ARE
; CHECKED TO DETERM NE ANY DANGER

PERFORM_OPERATI ON

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 428

CALL DET_PERFORM OPERATI ON ; DETERM NE THE OPERATI ON TO BE PERFORVED
; AND PERFORM THI S OPERATION I F THERE IS NO
; COVFLI CT W TH THE SENSORS

; THE FOLLOW NG CONTI NUOUSLY CHECKS FOR NEW
; NPUT AND TO SEE | F THE ROBOT SENSES ANY DANGER

CHECKI NG
CALL MOTI ON_SAFETY ; CHECK SAFETY
BANKSEL PORTD
BTFSC PORTD, |RX ; TEST FOR I R I NPUT AND START BI T

GOTO CHECKI NG

CONTI NUOUS_ | NFRARED_READ
CALL | NFRARED_READ ; READ | NPUT FROM REMOTE CONTROL
CALL | NPUT_TEST ; TEST FOR BAD | NPUT
BTFSC TEMP, BI T1
GOTO CHECKI NG
GOTO FR_DETERM NE

rhkkhkkhkkhkkhkhkkhkkhkhkhhkhkhkhhkhhhkhdhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhddkhkhdhkhrkhrkk r*x*
’

| HAHHBHHBHBHHBH AR H BB A R R A R R R AR R R R
; END OF MAI N PROGRAM
s HHBHBHHBHHHHBHHBH BB BB R B R R B R R R R R

ckkhkhkkhkhkhkk kA hkhkhkhkkhkhkhkhkhkhkhkhkhkdkhkhkhkkhkhkrkhkdkhkhkhhkdkhkdkhkhkdhkdkhkdhkhkdhkdrkhkdkhrhkdhkrxhkdkrhkhhxhkdxkdkxxk
’

ckkhkkkkhkhkkhkhkhkhkh Ak Kk hkhkhkhkhkhkkhkhkhkhkhkhkhkhkdkhkhkdhhkdkhkdkhkhkhhkdhkdkhkhkddkrxhkdhhkhhkrxhkdhrhkhdxkdhxk*x
’

; THE'S SUBROUTI NE READS THE | NFRARED SI GNAL FROM REMOTE CONTROLLER

rhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhkhhhhhhkhhhkhhhhhhhhhhhhhhhhhkhhhddhkrhhkrkhkrkkx*

I NFRARED_READ
BANKSEL CMCOUNT
MOVLW 0X07 ; COWAND HAS SEVEN BI TS
MOVWF CMCOUNT
VWAL T
BTFSS PORTD, | RX ; WAL T FOR SEPERATOR
; SHOULD BE 600 M CROSECS
GOTo0 WAIT
CMNEXT
CLRF PCOUNT ; NUMBER OF 120 M CROSEC DURATI ONS
BCF STATUS, CARRY ; CLEAR CARRY BI T OF STATUS
RRF COVREG ; COWAND STORAGE, MSB IS NOW O
VWAI T2
BTFSC PORTD, |RX ; TESTS AND WAI TS FOR THE END OF
; SEPERATOR
GOTO WAl T2
DURATI ON
CALL DELAY120US ; 120 M CROSECS DELAY SUBROUTI NE
WAI T3
BTFSC PORTD, |RX
GOTO0 ONEZERO ; DETERM NES END OF LOW DURATI ON

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 429

;ISITALICOCRO

I NCF PCOUNT . DETERM NES NUMBER OF 120US
GOTO DURATI ON
ONEZERO
BTFSC PCOUNT, 0X03 .| F GREATER THAN 8 THEN WE HAVE A
- 120US DELAY AND WE LEAVE MSB AS IS
BSF COVREG, M5B ; OTHERW SE WE SET MSB AS 1
DECFSZ CMCOUNT
GOTO CVNEXT
BCF STATUS, CARRY
RRF COVREG
ADD_READ
CLRF ADDREG
BANKSEL ADDCOUNT
MOVLW 0X05 - COMMAND HAS FI VE BI TS
MOVWE ADDCOUNT
ADDNEXT
CLRF PCOUNT NUMBER OF 120 M CROSEC DURATI ONS
BCF STATUS, CARRY - CLEAR CARRY BI T OF STATUS
RRF ADDREG . COMVAND STORAGE, MBB |'S NOW O
WAl TB
BTFSC PORTD, | RX . TESTS AND WAI TS FOR THE END OF
- SEPERATOR
GOTO WAl TB
DURATI ONA
CALL DELAY120US : 120 M CROSECS DELAY SUBROUTI NE
WAI TC
BTFSC PORTD, | RX
GOTO ONEZERO A - DETERM NES END OF LOW DURATI ON
ISITAL1ORO
I NCF PCOUNT : DETERM NES NUMBER OF 120US
GOTO DURATI ONA
ONEZERO A
BTFSC PCOUNT, 0X03 | F GREATER THAN 8 THEN WE HAVE A
: 120US DELAY AND WE LEAVE MSB AS IS
BSF ADDREG, M5B ; OTHERW SE WE SET MSB AS 1
DECFSZ ADDCOUNT
GOTO ADDNEXT
BCF STATUS, CARRY - SET CARRY BI T TO ZERO
BANKSEL ADDREG
RRF ADDREG
RRF ADDREG
RRF ADDREG
RETURN

rhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhhhkhhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhkrdhkrkhkrkkx*
’

; THES SUBROUTI NE CHECKS SAFETY DURI NG MOTI ON

ckkkkhkkhkhkkhkhkhk kA Ak khkhkhkhkhkhkkhkdkhkhkhkhkhkhkdkhkhkhhkdkhkdkhkhkhhkdkhkdkhkhkhdrxhkdkrhkhdkrxhkdhrkhdxkdhxk*x
’

MOTI ON_SAFETY

CALL CHECK_SENSORS ; CHECK SENSCOR FOR SAFETY
BTFSS SAFETY_FLAG BIT1 ;I F SAFE SI MPLY RETURN
RETURN

BTFSS SAFETY_FLAG BIT2 ;IF BIT 2 IS SET THEN STOP
; FORWARD MOTI ON

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

GOTO REVERSE_STOP ; OTHERW SE CHECK REVERSE MOTI ON
FORWARD_STOP
BANKSEL FR_FLAG TEST FR FLAG AND IF BIT 1 IS SET THEN

;1 T THE ROBOT | S MOVI NG FORWARD
BTFSC FR_FLAG, BI T1
CALL STOP
RETURN

REVERSE_STOP
BTFSS SAFETY_FLAG, BIT3 ;IF BIT 3 IS SET THEN I T | S UNSAFE TO
. MOVE BACKWARDS AND THEN WE MOVE BACKWARDS
RETURN
BANKSEL FR_FLAG - CHECK FR FLAG TO SEE | F THE ROBOT IS
: MOVI NG FORWARDS OR BACKWARDS
BTFSC FR_FLAG, Bl T2
CALL STOP
RETURN

R R R R R R R R R R R R R R R R R I R R R R I R I I I I
’

; THE'S SUBROUTI NE READS THE SENSCORS AND DETERM NES SAFE AND UNSAFE MOTI ON

R R R R R R R R R R R I I I I R R I R R R R I R I I I
’

CHECK_SENSORS

CLRF SAFETY_FLAG ; ALWAYS ASSUME SAFE UNTI L PROVEN
; OTHERW SE
SENSOR1
CALL SENSORL_INIT
CALL SENSOR_READ ; READ FORWARD SENSOR
CALL SAFETY_CHECK ; CHECK FORWARD SAFETY

BTFSS SAFETY_FLAG BIT1 ;1 F FORWARD SENSOR | S UNSAFE THEN SET
;BIT 2 OF THE SAFETY BIT AND THEN

; RETURN

GOTO SENSOR2 ; I F NOT THEN CHECK THE SECOND SENSOR
FORWARD_UNSAFE ; | F FORWARD UNSAFE THEN SET BI T2

BANKSEL SAFETY_FLAG

BSF SAFETY_FLAG BI T2

RETURN
SENSOR2

CALL SENSORZ2_INIT

CALL SENSOR_READ ; READ REVERSE SENSOR

CALL SAFETY_CHECK ; CHECK REVERSE SAFETY

BTFSS SAFETY_FLAG BIT1 ;1 F REVERSE SENSOR | S UNSAFE THEN SET

430

;BIT 3 OF THE SAFETY BIT AND THEN

; RETURN
RETURN ; 1 F NOT THEN SI MPLY RETURN
REVERSE_UNSAFE ; | F REVERSE UNSAFE THEN SET BI T3
BANKSEL SAFETY_FLAG
BSF SAFETY_FLAG, BI T3
RETURN

ckkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhk bk hkhkhkhkhkhkhkhkhkhkdkhkdkhkhkhhkdkhkdkhkhkdhhkdkhkdhkhkhhkdrhkdhrhkdhkrxhkdkrhkhhxhkdxkdkxxk

; SUBROUTI NE | NI TI ALI ZES SENSOR1

R R R R R R R R R R I I I O R R I I I S I I I I R R I S I I R

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 431

SENSORL_INIT

BANKSEL Pl E1

BCF PIE1, ADIE ;DI SABLE ADC | NTERRUPT

BANKSEL Pl R

BCF Pl R1, ADI F

BANKSEL ADCONO

MOVLW 0XD9

MOVWE ADCONO I NI TI ALI SE ADC(RAL |'S ADC PORT)

BANKSEL ADCONL

MOVLW 0X00

MOVMF ADCONL - PORTA |'S ADC CHANNEL LEFT JUSTI FI ED
BITS 8 AND 9 ARE | N ADRESH
BITS 7 TO 0 ARE | N ADRESL

RETURN

ckkhkhkkhkhkhkkhkdkhkdkhkhkhhkrkhkdkhkhkdhhkdkhkdkhkhkhhkdrhkdhrhkdhkrxhkdkrhkhhxhdxkdxx*k
’

; SUBROUTI NE | NI TI ALI SES SENSOR2
R R R R R R R R R I I I R R I I S I I I R I I I R I I
SENSORZ2_I NI T

BANKSEL Pl E1

BCF PI E1, ADI E ; DI SABLE ADC | NTERRUPT

BANKSEL Pl R1
BCF PI R1, ADI F

BANKSEL ADCONO
MOVLW 0XC9 ; CHANGE TO SENSCR 2 | NPUT PORT
MOVWF ADCONO ; I NI TI ALI SE ADC(RA2 | S ADC PORT)

BANKSEL ADCON1

MOVLW 0X00

MOVWF ADCON1 ; PORTA | S ADC CHANNEL LEFT JUSTI FI ED
;BITS 8 AND 9 ARE | N ADRESH
;BITS 7 TO 0 ARE | N ADRESL

MOVLW 0X25

MOVWF DCOUNT

CALL DELAY

RETURN

rhkkhkkhkhkkhkkhkhkkhhkhkhhkhkhhkhkhhkhhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhddhkhkhkrkkhkrk*x*

;THI S SUBROUTI NE READS THE SENSOR

R R R R R R R R R R S R I R I R I I R I R I L I
’

SENSOR_READ
BANKSEL ADCONO
BSF ADCONO, GO ; START CONVERSI ON
ADCLCOP
BANKSEL ADCONO
BTFSC ADCONO, GO ; WAL T UNTI L DATA FULLY COLLECTED

GOro ADCLOCP

BANKSEL Pl R1

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

BCF PI R1, ADI F

BANKSEL ADRESH
MOVF ADRESH, W

MOVWF TEMP

RETURN

; CLEAR CONVERSI ON COVPLETE FLAG

ckkkkhkkhkhkkhkhk Ak kA Ak hkhkhkhkhkhkkhkdkrkhkhkhkhkhkhkhkhkdhhkdkhkdkhkhkhhkrkhkdkhkhkddkdrxhkdhkhkhhkrhkdhkhhxhdhxk*x
’

; THE'S SUBROUTI NE CHECKS MOTI ON SAFETY

ckkkkhkkhkhkkhkhkhk kA Ak hkhkhkhkhkhkkhkdkhkhkhkhkhkhkdkhkhkhkhkdhkdkhkhkdhkdkhkdkhkhkhdkdrhkdkhkhkhdkrxhkdhhkhdxkdhxk*x

SAFETY_CHECK

SAFE

BTFSC TEMP, 0X07
GOTO SAFE
BTFSC TEMP, 0X06
GOTO SAFE
BTFSC TEMP, 0X05
GOTO SAFE

GOTO UNSAFE

CLRF SAFETY_FLAG
CLRF TEMP
RETURN

UNSAFE

;10CM
: 20CM

; 40CM

BSF SAFETY_FLAG, BI T1

CLRF TEMP
RETURN

ckkhkkhkkhkhkkhkhkhkhkh Ak khkhkhkhkhkhkkhkdkhkhkhkhkrkhkdkhkhkhkhkdkhkdkhkhkhhkdhkdkhkhkddkdrhkdkhhkhdkrxhkdhrkhdxkdhxk*x

rhkkhkkhkkhkkhkhkhkhkhkhhkhkhhkhkhhkhhhkhdhhkhhhkhhhhhhhkhhhhhhhhhhkhhhhhhhhhhdhhhdhdhkhkhkrkhkrkx*
’

; THE'S SUBROUTI NE DETERM NES WHI CH OPERATI ON SHOULD TAKE PLACE

R R R R R R R R R R R R R R I R I R R I R O I

DET_PERFORM_OPERATI ON

TV
LEFT

BANKSEL ADDREG
MOVF ADDREG W
XORLW H 07"

BANKSEL STATUS
BTFSC STATUS, ZFLAG
G&Oro VI DEO

BANKSEL ADDREG
MOVF ADDREG, W
XORLW H 01'

BANKSEL STATUS
BTFSC STATUS, ZFLAG
&0ro TV

GOTO BAD_I NPUT

BANKSEL COVREG

; TEST FOR VI DEO COVVAND

; TEST FOR TV COMVAND

; SHOULD WE TURN LEFT?

432

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

Rl GAT

VI DEO

MOVF COVREG W
XORLW H 13"

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL TURN_LEFT
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 12'

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL TURN_RI GHT
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLWH 1C

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL FORWARD
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 1B

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL REVERSE
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 18"

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL STOCP

BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 10

433

; SHOULD WE TURN RI GHT?

; SHOULD WE GO FORWARD?

; SHOULD WE REVERSE?

; SHOULD WE STOP?

; SHOULD WE MOVE ARM UP?

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

BAD

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL ARM UP
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 11"

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL ARM DOWN
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 3F

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL WRI ST_TURN
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 2A

BANKSEL STATUS
BTFSC STATUS, ZFLAG
CALL CLAWP
BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

BANKSEL COVREG
MOVF COVREG W
XORLW H 1A

BANKSEL STATUS
BTFSC STATUS, ZFLAG

CALL PRESET_ROUTI NE_DET

BANKSEL STATUS
BTFSC STATUS, ZFLAG
RETURN

434

; SHOULD WE MOVE ARM DOAN?

; SHOULD WE TURN WRI ST?

; SHOULD WE CLAMP?

; SHOULD WE EXECUTE A ROUTI NE?

CALL BAD INPUT ;1 F NONE OF THE CONDI TI ONS ARE

RETURN

; SATI SFI ED THEN WE BUZZ

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

R R R R R R R R R R R R R R S R I R R I R R I R I S I R

THE FOLLOW NG SUBROUTI NES CAUSES THE SPECI FI ED MOTI ON | N THE ROBOT
R R R R RN RN

R R R R R R R R R R R R I R I R R R R I R I I R I I I
’

ckkhkhkkkhkhkkhkhk Ak kA Ak hkhkhkhkhkhkkhkdkhkhkhkhkhkhkdkhkhkhkhkdkhkdkhkhkdhkdhkdhkhkhdkdkhkdhdrkdhkrhkdhrkhdxkdhxix*x
’

TURN_LEFT
rhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhhhkhhhkhdhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhddhrdhkrrkhkrx*x*
’

BANKSEL PORTB

MOVLW H 08’

MOVWF PCRTB

RETURN
rhhkkhkkhkkkhkkhkhkkhhkhkhhkhkhhkhkhhkhhhkhkhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhdhkhkhkrkkhkrk*x*
’
TURN_RI GHT
rhkkkkkhkkkhkhkhkkhkkhkkhkkhkhkhkhkhkhkhkhkkdkhhkhhkhkhhkhkhhkhkhhkhkhhkhkdrhkdxhdxddxdrxdrkxkdrkxkdxxk*x
’

BANKSEL PORTB

MOVLW H 04'

MOVWF PCRTB

RETURN
rhkkkkkkhkkkhkkhkkhkkhkkhkkhkhkhkhkkhkhkhkhkdkhkhkdhkhkhhkhkhhkhkhhkhkhhkhkdrhkdxhdxddxdrxdrkkxdrkkxkhxxk*x
’
FORWARD
rhhkkhkkhkkkhkkhkhkkhhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhdhkhkhkrkkhkrx*x*
’

BANKSEL SAFETY_FLAG ;1S FORWARD MOTI ON SAFE?

BTFSS SAFETY_FLAG Bl T1
GOTO FORWARD_MOTI ON
BTFSS SAFETY_FLAG Bl T2
GOTO FORWARD MOTI ON

RETURN
FORWARD_MOTI ON

BANKSEL PORTB

MOVLW H 06"

MOWAF PORTB

BANKSEL FR_FLAG

BSF FR_FLAG, BI T1

RETURN
;***
REVERSE
;***

BANKSEL SAFETY_FLAG :1'S REVERSE MOTI ON SAFE?

BTFSS SAFETY_FLAG, BI T1
GOTO REVERSE_MOTI ON
BTFSS SAFETY_FLAG, BI T3
GOTO REVERSE_MOTI ON
RETURN

REVERSE_MOTI ON
BANKSEL PORTB
MOVLW H OA'
MOVWF PCRTB
BANKSEL FR_FLAG
BSF FR_FLAG BI T2
RETURN

435

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

R R R R R R R R R R R R R S I I R R R I R I I R I R
’

STOP
;***

BANKSEL PORTA

MOVLW H 00’

MOVWF PORTA

BANKSEL PORTB

MOVLW H 00’

MOVWF PCRTB

RETURN

ckkhkkkkhkhkkhkhkhk kA Ak khkhkhkhkhkhkkhkhkhkhkhkhkkhkdkhkhkhkhkrkhkdkhkhkdhhkdkhkdkhkhkhdkdrkhkdhhkhhkrxhkdhrhkhhxkdhxk*x

ARM_UP
;***
BANKSEL PORTB
MOVLW H 10°
MOWAF PORTB
RETURN

rhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhkhhkhhhkhhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhdhkhkhkrkkhkrkkx*
’

ARM DOMN
;***
BANKSEL PORTB
MOVLW H 20
MOWAF PORTB
RETURN

R R R R R R R R R R R I I I R I I R R R I I R I I R I

’
VRl ST_TURN
rhkkkkkkhkkkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkdkhkhkdkhkhkhhkhkhhkhkhhkhkdhkhkdrxhkdxhkdxdhxdrxdkrxdkrkkxhkxk*x
’

BANKSEL PORTB

MOVLW H 40'

MOVWF PCRTB

RETURN
ERE R O R S S
’
CLAWP
rhkkhkkhkkkhkkhkhkhkhkhkhhkhkhhkhkhhkhkhhkhdhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhrhhkhkhkrrhkrkkx*
’

BANKSEL PORTA

MOVLW H 20'

MOVWF PORTA

RETURN

R R R R R R R R I R R I I I R R I R R R I I S R

PRESET ROUTI NE_DET

fkkkkkkhkhkkhkhkhkhkhhkkhkhkhkhkhkhkkhkdkhkhkhkhkkhkhkhkhkdhhkdkhkdkhkhkdhhkrhkdkhkhkdhkrhkdkrhkhdkrxhkdhkhkhdxkdhxk*x
’

; ANY MOTION | S FI RST STOPPED

436

; BEFORE PRESET SUBROUTI NE IS CHOSEN

; THERE MUST BE TWO BUZZES

CALL STOP

CALL DELAY

CALL BUZZ

CALL DELAY

CALL BUzZz
PLAY_WHAT

CALL | NFRARED_READ

BANKSEL ADDREG ; TEST FOR VI DEO COMMAND

MOVF ADDREG W

XORLW H 07"

BANKSEL STATUS

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 437

BTFSS STATUS, ZFLAG
GOTO PLAY_WHAT

BANKSEL COVREG ; SHOULD WE PLAY ROUTI NE 17
MOVF COVREG W

XORLW H 00

BANKSEL STATUS

BTFSC STATUS, ZFLAG

CALL ROUTI NE1

BANKSEL STATUS

BTFSC STATUS, ZFLAG

RETURN

BANKSEL COVREG ; SHOULD WE PLAY ROUTI NE 27
MOVF COVREG W

XORLW H 01"

BANKSEL STATUS

BTFSC STATUS, ZFLAG
CALL ROUTI NE2

BANKSEL STATUS

BTFSC STATUS, ZFLAG

RETURN

BANKSEL COVREG ; SHOULD WE PLAY ROUTI NE 3?
MOVF COVREG W

XORLW H 02

BANKSEL STATUS

BTFSC STATUS, ZFLAG
CALL ROUTI NE2

BANKSEL STATUS

BTFSC STATUS, ZFLAG

RETURN

BANKSEL COVREG ; SHOULD WE PLAY ROUTI NE 47
MOVF COVREG W

XORLW H 03

BANKSEL STATUS

BTFSC STATUS, ZFLAG
CALL ROUTI NE2

BANKSEL STATUS

BTFSC STATUS, ZFLAG

RETURN

BANKSEL COVREG ; SHOULD WE PLAY ROUTI NE 57
MOVF COVREG W

XORLW H 04"

BANKSEL STATUS

BTFSC STATUS, ZFLAG
CALL ROUTI NE2

BANKSEL STATUS

BTFSC STATUS, ZFLAG

RETURN

RETURN
R R R R R R R R R R R R R R I I R I R R R R I R I I I
ROUTI NE1

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 438

; THHS ROUTI NE JUST SENDS THE ROBOT FORWARD AND THEN BACKWARDS AND THEN
;?;I—"Jq*)f**

MOVLW 0XAO0

MOVWF DCOUNT

CALL FORWARD

CALL MOTI ON_DELAY

CALL STOCP

CALL REVERSE

CALL MOTI ON_DELAY

CALL STOP

RETURN

R R R R R R R R R R R R S I I R R R I R R I R I I

ROUTI NE2

R R R R R R R R R R R R R R R I I I R R I R R R R I I R I I I I
’

RETURN

ckkkkkkhkhkkhkhkhkhkhk Ak Kk hkhkhkhkhkhkkhkdkhkhkhkhkhkhkdkhkhkhkhkdkhkdhkhkdhhkdxhkdkhkhkddkdrxhkdhhkhdkrxhkdhkhdxkdhxk*x

ROUTI NE3

rhkkhkkhkkkhkkhkhkhhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhdhhhkhdhkhkhkrkhkrx*x*
’

RETURN

ckkkhkhkkhkhkkhkhkhk kA Ak hkhkhkhkhkhkkhkdkhkhkhkhkhkhkhkhkhkhkhkdkhkdkhkhkhhkdkhkdkhkhkhdkdrhkdhhkhhkrxhkdhrkhhxkdhxk*x

ROUTI NE4

rhhkkhkkhkkkhkkhkhkkhkhkhkkhhkhkhhkhkhhkhkhhkhdhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhkhkhkrkkhkrkx*

RETURN

rhkkhkkhkhkkhkkhkhkhhkhkhhkhkhhkhkhhkhhhkhkhhkhhhkhhhhhhhkhhhhhhkhhhhhhhhhhhdhhhdhhhddkhkhkhkrkkhkrk*x*

ROUTI NE5

ckkkkkkhkhkkhkhkhk kA Ak khkhkhkhkhkhkkhkhkhkhkhkhkrkhkdkhkhkhhkdkhkdkhkhkdhhkdhkdhkhkdhkrxhkdhrhkhdkrxhkdhkrkhdxkdhxk*x
’

RETURN

R R R R R R R R R R I I I R I R R I I R I R I I I
’

BAD_| NPUT
; CALL BUZZ
RETURN

R R R R R R R R R R R R I I R R R R R R I R I I I I

EEE R S Sk R S S Rk kS S kS Rk Sk S S kI Rk Sk

)
ckkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrkhkhkhkkhkhkrkhkdkhkhkhdkdkhkdhrhkhhkdkhkdkhkhkhhkdrhkdhrhkdhorxhkdhrhkhhxhdxkdxx*k

’
* kkkk*k

; SUBROUTI NE | NI TI ALI ZES REG STERS

rhhkkkhkkkhkkhkhkhkkhkhkhkhkhkhkhhkhhhkhhhkhhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhhdhhhdhhhddkhkhdhkrrhrkk r*x*

*kkkkhk*k

INIT
BANKSEL TRI SA

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 439

MOVLW OXOF
MOVWF TRI SA

BANKSEL TRI SB
MOVLW 0X00
MOVWF TRI SB

BANKSEL TRI SD
MOVLW 0X01
MOVWF TRI SD

ckkkkkkhkhkkhkhk Ak kA Ak hkhkhkhkhkhkkhkdkhkhkhkhkhkhkdkhkhkhkhkdkhkdkhkhkdhhkdkhkdkhkhkhdrhkdhkhkhhkrxhkdhkrkhhxkdhxk*x

; DELAY 120 M CROSECS SUBROUTI NE

rhkkhkkhkkkhkkhkhkhkkhkhkhhkhkhhkhkhhkhhhkhdhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhhdhhhkhhhddhkhdhrkkhkrk*x*

DELAY120US
MOVLW 0XC5
MOVWF N120US
AGAI N
DECFSZ N120US
GOTO0 AGAIN
RETURN

rhhkkkhkkkhkkhkhkkhhkhkhhkhkhhkhkhhkhhhkhdhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhkhdhrrkhkrk*x*

" DELAY SUBROUTI NE

ckkhkkhkkhkhkkhkhkhkhk kA khkhkhkhkhkhkkhkhkhkhkhkhkhkhkdkhkhkhkhkdkhkdkhkhkhhkdhdkhkhkdhkdkhkdhrhkhdkrxhkdhrhkhhxkdhxk*x
’

DELAY
MOVF DCOUNT, W
MOVWF FI RST
DLOCP
MOVWF SECOND
DECFSZ FI RST
GOTO NEXT1
GOrO0 THEEND
NEXT1
MOVWF THI RD
DECFSZ SECOND
GOTO NEXT2
&Oro DLOOP
NEXT2
DECFSZ THI RD
GOTO NEXT2
GOTO NEXT1
THEEND
RETURN

rhkkhkkhkkkhkkhkhkhkkhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhddhkhkhkrkhkrkkx*

I NPUT TEST SUBROUTI NE

ckkhkhkhkkhkhkkhkhkhk kA Ak khkhkhkhkhkhkkhkdkhkhkhkhkrkhkdkhkhkhkhkdkhkdkhkhkhhkdxhkdkhkhkddkdrxhkdhrhkhdkrhkdhrkhdxkdhxk*x
’

| NPUT_TEST
MOVF ADDREG, W
XORLW H 07"
BANKSEL STATUS

BTFSC STATUS, ZFLAG

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control

GOToO GOODI NPUT

MOVF ADDREG, W
XORLW H 01'

BANKSEL STATUS
BTFSC STATUS, ZFLAG
GOTO GOODI NPUT
GOTO BADI NPUT

GOODI NPUT
CLRF TEMP
RETURN
BADI NPUT

BSF TEMP, BI T1

RETURN

rhhkkkhkkkhkkhkhkhhkhkhhkhkhhkhkhhkhhhkhdhhkhkhhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhdhhhdrhhkhkhkrkkhkrk*x*

;THI S SUBROUTI NE DETERM NES WHETHER FORWARD OF REVERSE COVWWAND IS G VEN

R R R R R R R R R R R R I R R R R R I I R I I R R

FR_FLAG SET
BANKSEL FR_FLAG
CLRF FR_FLAG
BANKSEL COVREG
MOVF COVREG, W
XORLW H 1C
BANKSEL STATUS

BTFSC STATUS, ZFLAG
GOTO0 FORWARD_SET

BANKSEL COVREG
MOVF COVREG W
XORLW H 1B

BANKSEL STATUS
BTFSC STATUS, ZFLAG
GOTO REVERSE_SET

BANKSEL FR_FLAG

CLRF FR_FLAG
RETURN

FORWARD_SET

BSF FR_FLAG BI T1

RETURN
REVERSE_SET

BSF FR_FLAG BI T2

RETURN

R R R R R R R R R R R I I I R I R R I R R I I R O I

; MOTI ON DELAY SUBROUTI NE

rhkkhkkhkkkhkkhkhkhhkhkkhhkhkhhkhkhhkhhhkhkhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhkhkhkrkhkrkkx*
’

MOTI ON_DELAY

MOVLW H 64’

440

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 15. Armatron Robot Control 441

MOVWF FI RST
MOVLW H 64’
MOVWF SECOND
MOVI NG
MR

CALL DELAY120US

CALL MOTI ON_SAFETY
BTFSC SAFETY_FLAG, BI T1
RETURN

DECFSZ FI RST
GOro M

DECFSZ SECOND
GOTO MOVl NG

RETURN

R R R R R R R R R R R R R R I R R R I S I I O

" BUZZER

rhkkhkkhkkkhkkhkhkkhhkhkkhhkhkhhkhkhhkhhhkhkhhkhhhkhhhhhhhkhhhkhhhhhhhhhhhdhhhhhhdhhhkhdhkhkhrrhkrxx*

BUZZ
BUZZ I T
MOVLW 0X35
MOWAE DCOUNT
MOVLW 0X10
MOWAE COUNT
BSF PORTD, BUZ
CALL DELAY
BCF PORTD, BUZ
CALL DELAY
DECFSZ COUNT
GOTO BUZZ I T
RETURN

rhkkhkkhkhkkhkkhkhkhhkhkkhhkhkhhkhkhhkhhhkhhhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhrdhrdhrkk krk*x*
’

END

Fig. 100 Man operating Armatron Robot

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

