
Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

416

Chapter 15. Armatron Robot Control

The Armatron robot arm is one of the coolest toys ever made. Put out by Radio Shack the robot
is operated via a couple of levers on the base. Came with all kinds of accessories to pick up and
move around. The toy was made by Tomy and later versions showed this name on the box.

Fig. 90 Armatron robot arm

The Armatron we introduce here is micro-programmable version which comes with a separate
relay board.

Fig. 91 Micro-programmable version of Armatron robot arm

The one we actually have does not have the control pad: it has only the Armatron body and the
7-wire ribbon cable. The focus in the chapter is first to know how to operate the Armatron, and
how we develop our own relay board, which in turn can be controlled by the output port of
16F877.

1. Motion Control of the Armatron
The Armatron can move forward, backward, turn right and left, move the arm up and down, and
twist, and clamp the jaw. At the bottom there is a big battery housing, and it need 4 D-type 1.5
V dry cell batteries. As soon as you turn on (or by putting the batteries), there are voltages
developed at each of the 7 wires in the ribbon cable. This means there is more than slight chance
of short circuit unless you separate each wire before turning on the Armatron. Therefore it is
safe to separate (on insulate) each wire of the ribbon cable before you inset batteries.

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

417

Once the power is on to the Armatron, you have the following voltages developed at each wire:
Black -- 0V (or Ground)
Brown -- 6V
Red --3V
Yellow -- 3V
Orange -- 3V
Green -- 3V
Blue -- 3V

There are motors (DC motors) inside the Armatron, and as you know the direction of the motor
turning is controlled by the polarity of the voltage applied to the terminals of the motor. Let's
consider an example.

As seen above, if a terminal of the motored is connected to 6V source, and the other terminal is
to 3V source, then left terminal higher potential then right, so voltage has positive potential and
the motor turns clockwise. If two motors are polarized same, then two would make the body
move leftward.

If, instead, the right terminal has higher potential, the motor would turn counter-clockwise,
moving the whole body leftward.

This is the principle of controlling the Armatron. Then, how do we change the direction of the
motors inside the Armatron? We connect the wires together, based on the original design, we
can change the direction of the motor running. Take look at the illustration shown in the next
page.

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

418

Assume that a motor's left terminal is with 3V. Then the voltage at the other end of also (close
to) 3V. Assume again that the left terminal is connected to the green wire of the ribbon cable,
while the right terminal is internally connected to the same 3V point. Now as we learned from
above, when the power is up, the brown wire develops to 6V, and the black wire is connected to
the ground. If the brown wire with 6V potential is connected to the green wire, since brown side
is with higher potential, now current flows from the left terminal of the motor to the right.

On the other hand, if the green wire of the motor is connected to the black wire, the right
terminal potential with 3V will flow current from right to the left, and this reverses the motor
direction.

The overall control pattern is tabulated below:

Armaton Control Diagram
{Basic: connecting two or more wires would turn on motor(s) inside the Armatron. There is a
ribbon wire running from the Armatron. The ribbon has 7 colored wires. Controlling the
Armatron is to connect the colred wires together. The connecting points are marked by X below}

RIBBON FROM ARMATRON

voltage level*

Blue
+3V

Green
+3V

Yellow
+3V

Orange
+3V

Red
+3V

Brown
+3V

Black
GND

MOTION

STOP
FORWARD X X X
BACKWARD X X X
TURN RIGHT X X
TURN LEFT X X
ARM UP X X
ARM DOWN X X
WRIST UP X X
WRIST DOWN X X
WRIST TURN X X
CLAMPING X X

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

419

*Explanation: (1) For FORWARD motion, connect Green, Yellow, and Brown wired together.
 (2) For TURN RIGHT motion, connect yellow and Brown wires together.

As explained above, motion control is done by connecting the wires together, and the above table
shows exactly how we have to connect which wires together for a desired motion control. If we
want to move the Armatron forward, we have to connect green, yellow, and brown wires
together. On the other hand, connection of green, yellow, and black wires together would move
the Armatron reverse. All the other movements and motions are similarly obtained.

2. Motion Control by Relay
Now let's discuss how we set up a circuit to control the motion by a microcontroller. A relay is
an electronic switch. When current flows through the relay coil inside, the magnetic energy
generated by the current would grab a metal lever and pull down it. When there is no current and
no magnetic energy, my mechanical spring force, the metal lever would stay in the up position
touching another contact point. When the metal lever is pulled down, it would touch a contact
below.

Let's have an illustration. In the relay shown below left, when there is no voltage source (or Low
source) is connected to S, there is no current flowing through the coil, and there is no magnetic
force asserted to the metal lever pivoted in the P contact. Then, A and P are opened. This,
between A and B, is called "Normal Open" meaning that, at normal condition, A and B are open.

In the relay shown below right, S is the input for relay operation. If S is connected to High side
(i.e., +5V for example) then current flows through the coil to the ground. Then, the level pivoted
in the P is moved to the left to A. Then, A and P are connected.

Fig. 92(a) S connected to Low side Fig. 92(b) S connected to High side

Now let's expand our discussion on the relay to the motor control case. At the left, we connected

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

420

Fig. 93(a) A of the relay 1 and Fig. 93(b) A of the relay 1 and
 A of the relay 2 disconnected A of relay 2 connected

P points together for both of the relays. At the present situation, with LOW level at the S points,
there are no magnetic energy, so A and P are normal open for both relays. This means, A (red)
of the relay 1 and the A (brown) of the relay 2 are disconnected.

When we apply High to the S points of the both relay, by means of byte oriented instruction of
16F877, the brown and the red wires are now connected. Expanding this idea to all 7 wires, we
can have the following relay configuration.

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

421

Fig. 94 7 inputs of 7 relays all connected

As we see above, there are 7 inputs, one each to each relay, and this perfectly fits to a port
(PORTB, PORTC, or PORTD) of 16F877, and sending out outputs signals 1 or 0 to each line,
according to the motion control table, would make the Armatron control easy and simple.

A student implemented this idea into his work, along with other sensors, as depicted next page.
In the project, an IR receiver and two IR rangers are installed for IR remote control and collision
avoidance.

3. Armatron Control Project
Figure below illustrates the logic flow of the software of the system. The command is first read
from the remote control. Safety is the primary concern of the robot motion and this is the first
question that must be asked. If it is safe to move then the command can be read and then
decoded. If it is unsafe then the command is read but it must be compared to the unsafe direction.
If the command coincides with the unsafe direction then it is ignored and the robot awaits a new

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

422

command. If the command is safe then it is decoded and then executed. As motion continues
safety is continuously checked and also input from the infrared receiver is checked. If any of
those two are detected then this loop is broken and the process is restarted. It must be stressed
that at every stage of robot motion safety is checked. However, it is only necessary to check
safety when the robot is moving forwards and backwards.

GET
COMMAND

IS IT SAFE
TO MOVE?

WHICH
DIRECTION
IS UNSAFE?

GET
COMMAND

AND
COMPARE

IS
COMMAND

SAFE?

NO

DECODE

YES
YES

START/
CONTINUE

MOTION

IS IT SAFE
TO

CONTINUE?

END
MOTION

NEW
COMMAND?

YESNO

YES

NO

Fig. 95 Software Logic flow of Armatron Robot system

The hardware architecture of the system is shown next. The infrared receiver sends an address
and a command to the microprocessor through Port D. The Sony protocol the address has 5 bits
and the command 7. These bits are sent in serial form to the microprocessor. These two parts of
the signal are stored in two separate registers (see the source code for details). The forward and
reverse infrared sensors send their serial outputs to ports RA1 and RA3 respectively. An LED is
lighted whenever a signal is received and this is connected to the RA0 output. The input from the
infrared receiver determines the output into the relay system. The relay system acts as the
interface between the microprocessor and the Armatron robot. Seven outputs are fed from the
microprocessor from Port B into the relay system and then into the Armatron robot.

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

423

Fig. 96 Hardware architecture of Armatron Robot system

The relay used in the project is depicted next. The relay is a single pole, single throw and is
either on or off. Right to it is a schematic of the relay and it shows that when input (left primary
side) is received from 16F877, the coil energizes and operates the switch. In this figure wire A
and wire B are connected when the coil is energized. The relay is used to close a secondary
circuit whenever the primary circuit is energized.

WIRE B

WIRE A

Fig. 97(a) Relay used in the project Fig. 97(b) Schematic of the relay

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

424

Next is the detail connection diagram for robot control. As discussed before 7 relays are used to
execute the commands. The relays are controlled by outputs from Port B of the 16F877 shown
coming from the left and the output of the system goes directly to the robot. Those wires are
shown on the right.

RELAY1

RELAY2

RELAY4

RELAY3
RB5

RELAY5

RELAY6

RELAY7

GREEN +3V

YELLOW +3V

RB7

BROWN +6V

RB6

BLACK (GND)

BLUE +3V

RB4

RB3

RED +3VRB2

RB1

Fig. 98 Detail connection diagram for robot control

The component list for the project is displayed in the table below.

Part Name and Description Quantity Part No. Price (each) Total
PIC 16F877 1 PIC 16F877-20I/P-ND $9.88 $9.88
RS232 Transceiver 16-DIP 1 MAX232CPE-ND $3.31 $3.31
1Uf 50V Electrolytic Capacitor 4 P1196-ND $0.37 $1.48
20 MHz Crystal Oscillator 1 CTX062-ND $0.94 $0.94
20pF(22pF) Ceramic Oscillator 2 1330PH-ND $0.72 $1.46

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

425

DB-9 Connector, Female 1 A2100-ND $2.36 $2.36
9-pin Serial Cable, Male-
Female

1 AE1020-ND (2m long) $5.35 $5.35

40-Pin Wire Wrap Socket 1 ED4640-ND $4.38 $4.38
16-Pin Wire Wrap Socket 1 ED4316-ND $1.38 $1.38
Prototype Board 1 V2012-ND(6’’X6’’) $9.36 $9.36
7805 Voltage Regulator, TO-
220

1 NJM7805FA-ND $0.60 $0.60

SPST Reed Relays 7 275-232 $2.14 $14.98
Infrared Sensors 2 GP2D12 $11.59 $23.18

Project Box 1 $5.39 $5.39

Infrared Remote Control 1 15-2131 $14.59 $14.59

Infrared Receiver 1 $2.00 $2.00

TOTAL $101.28

Fig. 99 The completed Armatron Robot

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

426

4. Source Code
*Note: This source code is written by Jason Burrows who took the Embedded Computing course
from me. I revised/added slightly only the parts I think are better for beginners to understand
easily. You can find the routines we discussed in the previous chapters here in the source code.

;JASON BURROWES-JONES
;ARMITRON ROBOT ARM CONTROL

LIST P = 16F877

;##
;REGISTER DECLARATIONS
;##

STATUS EQU 0X03
PORTA EQU 0X05
PORTB EQU 0X06
PORTD EQU 0X08
TRISA EQU 0X85
TRISB EQU 0X86
TRISD EQU 0X88
PIR1 EQU 0X0C ;PERIPHERAL INTERRUPT FLAG

;LOCATED AT THIS ADDRESS AS
;SPECIFIED IN MANUAL

RCIF EQU 0X05 ;RECEIVE INTERRUPT FLAG
;1 RECEIVE BUFFER IS FULL
;0 REVEIVE BUFFER IN EMPTY

TXIF EQU 0X04 ;TRANSMIT INTERRUPT FLAG
;1 TRANSMIT BUFFER IS EMPTY
;0 TRANSMIT BUFFER IS FULL

BAUD EQU 0X0F ;BAUD RATE IS 15 FOR 19200 BPS
PIE1 EQU 0X8C
PIR1 EQU 0X0C
ADCON0 EQU 0X1F
ADCON1 EQU 0X9F
ADRESH EQU 0X1E
ADRESL EQU 0X9E

ADIE EQU 0X06
ADIF EQU 0X06
GO EQU 0X02

IRX EQU 0X00 ;INFRARED INPUT BIT IN PORTD
CARRY EQU 0X00 ;CARRY BIT OF STATUS REGISTER
MSB EQU 0X07 ;MOST SIG BIT OF REGISTER
ZFLAG EQU 0X02 ;ZERO FLAG
BUZ EQU 0X04 ;BUZZER CONNECTED TO PORT<D4>
BIT3 EQU 0X03
BIT2 EQU 0X02
BIT1 EQU 0X01

;##
;DATA SPACE FOR RAM
;##

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

427

CBLOCK 0X20 ;RAM AREA FOR USE AT ADDRESS 20H
TEMP ;STORES TEMP VARIABLE
FIRST ;VARIABLE DECLARATION
SECOND
THIRD
COUNT
DCOUNT
CMCOUNT ;KEEPS COUNT OF NUMBER OF BITS IN

COMMAND
ADDCOUNT ;KEEPS COUNT OF NUMBER OF BITS IN ADDRESS
PCOUNT ;KEEPS COUNT IF NUMBER OF

120MICROSECS
LCOUNT ;KEEPS COUNT OF NUMBER OF LED

FLASHES
COMREG ;REGISTER STORES COMMAND BITS
ADDREG ;REGISTER STORES ADDRESS BITS
SAFETY_FLAG
FR_FLAG
N120US
DIGIT1
DIGIT2
DIGIT3

ENDC ;END OF RAM BLOCK
;##

ORG 0X00
GOTO MAIN
ORG 0X06

;**
;##
;MAIN PROGRAM
;##
;**

MAIN
MOVLW 0X55
MOVWF DCOUNT
CALL DELAY ;DELAY TO WARM UP HARDWARE
CALL INIT
CALL STOP ;MAKE SURE THE ROBOT IS NOT MOVING

INITIAL_READ_INFRARED
CALL INFRARED_READ ;READ INPUT FROM REMOTE CONTROL
CALL INPUT_TEST ;TEST FOR BAD INPUT
BTFSC TEMP,BIT1 ;IF THE INPUT IS BAD THEN CONTINUE TO READ

;AND WAIT FOR GOOD INPUT
GOTO INITIAL_READ_INFRARED

FR_DETERMINE
CALL FR_FLAG_SET ;THIS DETERMINES WHETHER A FORWARD OR REVERSE

;HAS BEEN GIVEN

CALL MOTION_SAFETY ;AFTER RECEIVING THE COMMAND THE SENSORS ARE
;CHECKED TO DETERMINE ANY DANGER

PERFORM_OPERATION

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

428

CALL DET_PERFORM_OPERATION ;DETERMINE THE OPERATION TO BE PERFORMED
;AND PERFORM THIS OPERATION IF THERE IS NO
;COMFLICT WITH THE SENSORS

;THE FOLLOWING CONTINUOUSLY CHECKS FOR NEW
;INPUT AND TO SEE IF THE ROBOT SENSES ANY DANGER

CHECKING
CALL MOTION_SAFETY ;CHECK SAFETY
BANKSEL PORTD
BTFSC PORTD, IRX ;TEST FOR IR INPUT AND START BIT
GOTO CHECKING

CONTINUOUS_INFRARED_READ
CALL INFRARED_READ ;READ INPUT FROM REMOTE CONTROL
CALL INPUT_TEST ;TEST FOR BAD INPUT
BTFSC TEMP,BIT1
GOTO CHECKING
GOTO FR_DETERMINE

;**
;##
;END OF MAIN PROGRAM
;##
;**

;!!!
;***
;THIS SUBROUTINE READS THE INFRARED SIGNAL FROM REMOTE CONTROLLER
;***
;!!!

INFRARED_READ

BANKSEL CMCOUNT
MOVLW 0X07 ;COMMAND HAS SEVEN BITS
MOVWF CMCOUNT

WAIT
BTFSS PORTD, IRX ;WAIT FOR SEPERATOR

;SHOULD BE 600 MICROSECS
GOTO WAIT

CMNEXT
CLRF PCOUNT ;NUMBER OF 120 MICROSEC DURATIONS
BCF STATUS, CARRY ;CLEAR CARRY BIT OF STATUS
RRF COMREG ;COMMAND STORAGE, MSB IS NOW 0

WAIT2
BTFSC PORTD, IRX ;TESTS AND WAITS FOR THE END OF

;SEPERATOR
GOTO WAIT2

DURATION
CALL DELAY120US ;120 MICROSECS DELAY SUBROUTINE

WAIT3
BTFSC PORTD, IRX
GOTO ONEZERO ;DETERMINES END OF LOW DURATION

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

429

;IS IT A 1 OR 0
INCF PCOUNT ;DETERMINES NUMBER OF 120US
GOTO DURATION

ONEZERO
BTFSC PCOUNT,0X03 ;IF GREATER THAN 8 THEN WE HAVE A

;120US DELAY AND WE LEAVE MSB AS IS
BSF COMREG,MSB ;OTHERWISE WE SET MSB AS 1
DECFSZ CMCOUNT
GOTO CMNEXT
BCF STATUS,CARRY
RRF COMREG

ADD_READ
CLRF ADDREG
BANKSEL ADDCOUNT
MOVLW 0X05 ;COMMAND HAS FIVE BITS
MOVWF ADDCOUNT

ADDNEXT
CLRF PCOUNT ;NUMBER OF 120 MICROSEC DURATIONS
BCF STATUS, CARRY ;CLEAR CARRY BIT OF STATUS
RRF ADDREG ;COMMAND STORAGE, MSB IS NOW 0

WAITB
BTFSC PORTD, IRX ;TESTS AND WAITS FOR THE END OF

;SEPERATOR
GOTO WAITB

DURATIONA
CALL DELAY120US ;120 MICROSECS DELAY SUBROUTINE

WAITC
BTFSC PORTD, IRX
GOTO ONEZERO_A ;DETERMINES END OF LOW DURATION

;IS IT A 1 OR 0
INCF PCOUNT ;DETERMINES NUMBER OF 120US
GOTO DURATIONA

ONEZERO_A
BTFSC PCOUNT,0X03 ;IF GREATER THAN 8 THEN WE HAVE A

;120US DELAY AND WE LEAVE MSB AS IS
BSF ADDREG,MSB ;OTHERWISE WE SET MSB AS 1
DECFSZ ADDCOUNT
GOTO ADDNEXT
BCF STATUS,CARRY ;SET CARRY BIT TO ZERO
BANKSEL ADDREG
RRF ADDREG
RRF ADDREG
RRF ADDREG
RETURN

;!!!
;!!!
;***
;THIS SUBROUTINE CHECKS SAFETY DURING MOTION
;***
MOTION_SAFETY

CALL CHECK_SENSORS ;CHECK SENSOR FOR SAFETY
BTFSS SAFETY_FLAG,BIT1 ;IF SAFE SIMPLY RETURN
RETURN

BTFSS SAFETY_FLAG,BIT2 ;IF BIT 2 IS SET THEN STOP
;FORWARD MOTION

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

430

GOTO REVERSE_STOP ;OTHERWISE CHECK REVERSE MOTION

FORWARD_STOP
BANKSEL FR_FLAG ;TEST FR FLAG AND IF BIT 1 IS SET THEN

;IT THE ROBOT IS MOVING FORWARD
BTFSC FR_FLAG,BIT1
CALL STOP
RETURN

REVERSE_STOP
BTFSS SAFETY_FLAG,BIT3 ;IF BIT 3 IS SET THEN IT IS UNSAFE TO

;MOVE BACKWARDS AND THEN WE MOVE BACKWARDS
RETURN
BANKSEL FR_FLAG ;CHECK FR FLAG TO SEE IF THE ROBOT IS

;MOVING FORWARDS OR BACKWARDS
BTFSC FR_FLAG,BIT2
CALL STOP
RETURN

;***
;THIS SUBROUTINE READS THE SENSORS AND DETERMINES SAFE AND UNSAFE MOTION
;***

CHECK_SENSORS
CLRF SAFETY_FLAG ;ALWAYS ASSUME SAFE UNTIL PROVEN

;OTHERWISE
SENSOR1

CALL SENSOR1_INIT
CALL SENSOR_READ ;READ FORWARD SENSOR
CALL SAFETY_CHECK ;CHECK FORWARD SAFETY
BTFSS SAFETY_FLAG,BIT1 ;IF FORWARD SENSOR IS UNSAFE THEN SET

;BIT 2 OF THE SAFETY BIT AND THEN
;RETURN

GOTO SENSOR2 ;IF NOT THEN CHECK THE SECOND SENSOR

FORWARD_UNSAFE ;IF FORWARD UNSAFE THEN SET BIT2
BANKSEL SAFETY_FLAG
BSF SAFETY_FLAG,BIT2
RETURN

SENSOR2
CALL SENSOR2_INIT
CALL SENSOR_READ ;READ REVERSE SENSOR
CALL SAFETY_CHECK ;CHECK REVERSE SAFETY
BTFSS SAFETY_FLAG,BIT1 ;IF REVERSE SENSOR IS UNSAFE THEN SET

;BIT 3 OF THE SAFETY BIT AND THEN
;RETURN

RETURN ;IF NOT THEN SIMPLY RETURN

REVERSE_UNSAFE ;IF REVERSE UNSAFE THEN SET BIT3
BANKSEL SAFETY_FLAG
BSF SAFETY_FLAG,BIT3
RETURN

;**
;SUBROUTINE INITIALIZES SENSOR1
;**

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

431

SENSOR1_INIT
BANKSEL PIE1
BCF PIE1,ADIE ;DISABLE ADC INTERRUPT

BANKSEL PIR1
BCF PIR1,ADIF

BANKSEL ADCON0
MOVLW 0XD9
MOVWF ADCON0 ;INITIALISE ADC(RA1 IS ADC PORT)

BANKSEL ADCON1
MOVLW 0X00
MOVWF ADCON1 ;PORTA IS ADC CHANNEL LEFT JUSTIFIED

;BITS 8 AND 9 ARE IN ADRESH
;BITS 7 TO 0 ARE IN ADRESL

RETURN

;**
;SUBROUTINE INITIALISES SENSOR2
;**
SENSOR2_INIT

BANKSEL PIE1
BCF PIE1,ADIE ;DISABLE ADC INTERRUPT

BANKSEL PIR1
BCF PIR1,ADIF

BANKSEL ADCON0
MOVLW 0XC9 ;CHANGE TO SENSOR 2 INPUT PORT
MOVWF ADCON0 ;INITIALISE ADC(RA2 IS ADC PORT)

BANKSEL ADCON1
MOVLW 0X00
MOVWF ADCON1 ;PORTA IS ADC CHANNEL LEFT JUSTIFIED

;BITS 8 AND 9 ARE IN ADRESH
;BITS 7 TO 0 ARE IN ADRESL

MOVLW 0X25
MOVWF DCOUNT
CALL DELAY
RETURN

;***
;THIS SUBROUTINE READS THE SENSOR
;***

SENSOR_READ
BANKSEL ADCON0
BSF ADCON0, GO ;START CONVERSION

ADCLOOP
BANKSEL ADCON0
BTFSC ADCON0, GO ;WAIT UNTIL DATA FULLY COLLECTED
GOTO ADCLOOP

BANKSEL PIR1

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

432

BCF PIR1,ADIF ;CLEAR CONVERSION COMPLETE FLAG

BANKSEL ADRESH
MOVF ADRESH,W

MOVWF TEMP

RETURN

;***
;THIS SUBROUTINE CHECKS MOTION SAFETY
;***

SAFETY_CHECK
BTFSC TEMP,0X07 ;10CM
GOTO SAFE
BTFSC TEMP,0X06 ;20CM
GOTO SAFE
BTFSC TEMP,0X05 ;40CM
GOTO SAFE
GOTO UNSAFE

SAFE
CLRF SAFETY_FLAG
CLRF TEMP
RETURN

UNSAFE
BSF SAFETY_FLAG,BIT1
CLRF TEMP
RETURN

;!!!
;***

;***
;THIS SUBROUTINE DETERMINES WHICH OPERATION SHOULD TAKE PLACE
;***

DET_PERFORM_OPERATION

BANKSEL ADDREG ;TEST FOR VIDEO COMMAND
MOVF ADDREG,W
XORLW H'07'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
GOTO VIDEO

BANKSEL ADDREG ;TEST FOR TV COMMAND
MOVF ADDREG,W
XORLW H'01'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
GOTO TV
GOTO BAD_INPUT

TV
LEFT

BANKSEL COMREG ;SHOULD WE TURN LEFT?

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

433

MOVF COMREG,W
XORLW H'13'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL TURN_LEFT
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

RIGHT
BANKSEL COMREG ;SHOULD WE TURN RIGHT?
MOVF COMREG,W
XORLW H'12'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL TURN_RIGHT
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

VIDEO
BANKSEL COMREG ;SHOULD WE GO FORWARD?
MOVF COMREG,W
XORLW H'1C'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL FORWARD
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE REVERSE?
MOVF COMREG,W
XORLW H'1B'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL REVERSE
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE STOP?
MOVF COMREG,W
XORLW H'18'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL STOP
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE MOVE ARM UP?
MOVF COMREG,W
XORLW H'10'

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

434

BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ARM_UP
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE MOVE ARM DOWN?
MOVF COMREG,W
XORLW H'11'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ARM_DOWN
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE TURN WRIST?
MOVF COMREG,W
XORLW H'3F'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL WRIST_TURN
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE CLAMP?
MOVF COMREG,W
XORLW H'2A'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL CLAMP
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE EXECUTE A ROUTINE?
MOVF COMREG,W
XORLW H'1A'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL PRESET_ROUTINE_DET
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BAD
CALL BAD_INPUT ;IF NONE OF THE CONDITIONS ARE

;SATISFIED THEN WE BUZZ
RETURN

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

435

;***
;!!!
;THE FOLLOWING SUBROUTINES CAUSES THE SPECIFIED MOTION IN THE ROBOT
;!!!
;***

;***
TURN_LEFT
;***

BANKSEL PORTB
MOVLW H'08'
MOVWF PORTB
RETURN

;***
TURN_RIGHT
;***

BANKSEL PORTB
MOVLW H'04'
MOVWF PORTB
RETURN

;***
FORWARD
;***

BANKSEL SAFETY_FLAG ;IS FORWARD MOTION SAFE?
BTFSS SAFETY_FLAG,BIT1
GOTO FORWARD_MOTION
BTFSS SAFETY_FLAG,BIT2
GOTO FORWARD_MOTION
RETURN

FORWARD_MOTION
BANKSEL PORTB
MOVLW H'06'
MOVWF PORTB
BANKSEL FR_FLAG
BSF FR_FLAG,BIT1
RETURN

;***
REVERSE
;***

BANKSEL SAFETY_FLAG ;IS REVERSE MOTION SAFE?
BTFSS SAFETY_FLAG,BIT1
GOTO REVERSE_MOTION
BTFSS SAFETY_FLAG,BIT3
GOTO REVERSE_MOTION
RETURN

REVERSE_MOTION
BANKSEL PORTB
MOVLW H'0A'
MOVWF PORTB
BANKSEL FR_FLAG
BSF FR_FLAG,BIT2
RETURN

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

436

;***
STOP
;***

BANKSEL PORTA
MOVLW H'00'
MOVWF PORTA
BANKSEL PORTB
MOVLW H'00'
MOVWF PORTB
RETURN

;***
ARM_UP
;***

BANKSEL PORTB
MOVLW H'10'
MOVWF PORTB
RETURN

;***
ARM_DOWN
;***

BANKSEL PORTB
MOVLW H'20'
MOVWF PORTB
RETURN

;***
WRIST_TURN
;***

BANKSEL PORTB
MOVLW H'40'
MOVWF PORTB
RETURN

;***
CLAMP
;***

BANKSEL PORTA
MOVLW H'20'
MOVWF PORTA
RETURN

;***
PRESET_ROUTINE_DET
;***

;ANY MOTION IS FIRST STOPPED
;BEFORE PRESET SUBROUTINE IS CHOSEN
;THERE MUST BE TWO BUZZES

CALL STOP
CALL DELAY
CALL BUZZ
CALL DELAY
CALL BUZZ

PLAY_WHAT
CALL INFRARED_READ
BANKSEL ADDREG ;TEST FOR VIDEO COMMAND
MOVF ADDREG,W
XORLW H'07'
BANKSEL STATUS

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

437

BTFSS STATUS,ZFLAG
GOTO PLAY_WHAT

BANKSEL COMREG ;SHOULD WE PLAY ROUTINE 1?
MOVF COMREG,W
XORLW H'00'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ROUTINE1
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE PLAY ROUTINE 2?
MOVF COMREG,W
XORLW H'01'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ROUTINE2
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE PLAY ROUTINE 3?
MOVF COMREG,W
XORLW H'02'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ROUTINE2
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE PLAY ROUTINE 4?
MOVF COMREG,W
XORLW H'03'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ROUTINE2
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

BANKSEL COMREG ;SHOULD WE PLAY ROUTINE 5?
MOVF COMREG,W
XORLW H'04'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
CALL ROUTINE2
BANKSEL STATUS
BTFSC STATUS,ZFLAG
RETURN

RETURN
;***
ROUTINE1

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

438

;THIS ROUTINE JUST SENDS THE ROBOT FORWARD AND THEN BACKWARDS AND THEN
;STOPS
;***

MOVLW 0XA0
MOVWF DCOUNT
CALL FORWARD
CALL MOTION_DELAY
CALL STOP
CALL REVERSE
CALL MOTION_DELAY
CALL STOP
RETURN

;***
ROUTINE2
;***

RETURN

;***
ROUTINE3
;***

RETURN

;***
ROUTINE4
;***

RETURN

;***
ROUTINE5
;***

RETURN

;***
BAD_INPUT

;CALL BUZZ
RETURN

;***
;!!!
;***
;**

;SUBROUTINE INITIALIZES REGISTERS
;**

INIT
BANKSEL TRISA

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

439

MOVLW 0X0F
MOVWF TRISA

BANKSEL TRISB
MOVLW 0X00
MOVWF TRISB

BANKSEL TRISD
MOVLW 0X01
MOVWF TRISD

;***
;DELAY 120 MICROSECS SUBROUTINE
;***

DELAY120US
MOVLW 0XC5
MOVWF N120US

AGAIN
DECFSZ N120US
GOTO AGAIN
RETURN

;***
;DELAY SUBROUTINE
;***

DELAY
MOVF DCOUNT,W

MOVWF FIRST
DLOOP

MOVWF SECOND
DECFSZ FIRST
GOTO NEXT1
GOTO THEEND

NEXT1
MOVWF THIRD
DECFSZ SECOND
GOTO NEXT2
GOTO DLOOP

NEXT2
DECFSZ THIRD
GOTO NEXT2
GOTO NEXT1

THEEND
RETURN

;***
;INPUT TEST SUBROUTINE
;***

INPUT_TEST

MOVF ADDREG,W
XORLW H'07'
BANKSEL STATUS
BTFSC STATUS,ZFLAG

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

440

GOTO GOODINPUT

MOVF ADDREG,W
XORLW H'01'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
GOTO GOODINPUT
GOTO BADINPUT

GOODINPUT
CLRF TEMP
RETURN

BADINPUT
BSF TEMP,BIT1
RETURN

;***
;THIS SUBROUTINE DETERMINES WHETHER FORWARD OF REVERSE COMMAND IS GIVEN
;***
FR_FLAG_SET

BANKSEL FR_FLAG
CLRF FR_FLAG

BANKSEL COMREG
MOVF COMREG,W
XORLW H'1C'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
GOTO FORWARD_SET

BANKSEL COMREG
MOVF COMREG,W
XORLW H'1B'
BANKSEL STATUS
BTFSC STATUS,ZFLAG
GOTO REVERSE_SET
BANKSEL FR_FLAG
CLRF FR_FLAG
RETURN

FORWARD_SET
BSF FR_FLAG,BIT1
RETURN

REVERSE_SET
BSF FR_FLAG,BIT2
RETURN

;***
;MOTION DELAY SUBROUTINE
;***

MOTION_DELAY

MOVLW H'64'

Chapter 15. Armatron Robot Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

441

MOVWF FIRST
MOVLW H'64'
MOVWF SECOND

MOVING

M2
CALL DELAY120US
CALL MOTION_SAFETY
BTFSC SAFETY_FLAG,BIT1
RETURN
DECFSZ FIRST
GOTO M2

DECFSZ SECOND
GOTO MOVING

RETURN

;***
;BUZZER
;***
BUZZ
BUZZ_IT

MOVLW 0X35
MOVWF DCOUNT
MOVLW 0X10
MOVWF COUNT
BSF PORTD,BUZ
CALL DELAY
BCF PORTD,BUZ
CALL DELAY
DECFSZ COUNT
GOTO BUZZ_IT
RETURN

;***
END

Fig. 100 Man operating Armatron Robot

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

