
Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

384

Chapter 14. SSP Module and I2C bus for External EEPROM Access

This chapter deals with serial peripheral interface (SPI) and Inter-IC (I2C) bus operation using
the Master Synchronous Serial Port (MSSP) module of 16F877. We only brief the SPI, and
concentrate our focus on I2C operation and its application to serial EEPROM access.

1. SSP Module and SPI Operation

The Master Synchronous Serial Port (MSSP) module of PIC 16F877 is a serial interface useful
for communicating with other peripheral or microcontroller devices. These peripheral devices
may be serial EEPROMs, display drivers, or external A/D converters. The MSSP module can
operate in one of two modes: Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C)
bus operation. In the operation, there are two operational modes: Master and Slave modes.

The SPI mode is for transmitting and receiving 8-bits of data simultaneously. All four modes of
SPI (i.e., SPI master mode, SPI slave mode, I2C master mode, and I2C slave mode) are
supported. In SPI mode, typically three pins are used: Serial Data Out (SDO), Serial Data In
(SDI), and Serial Clock (SCK). Additionally a fourth pin may be used when in a slave mode of
operation: Slave Select (SS).

Fig. 86 SS, SCK, SDO and SDI pins of PIC 16F887

The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF).
The SSPSR shifts the data in and out of the device, MSB first. The SSPBUF holds the data that
was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been
received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. This double buffering of the received
data (SSPBUF) allows the next byte to start reception before reading the data that was just
received. Any write to the SSPBUF register during transmission/reception of data will be

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

385

ignored, and the write collision detect bit, WCOL (SSPCON1<7>), will be set. Our code should
handle this to clear the WCOL bit so that it can be determined if the following write to the
SSPBUF register completed successfully.

Fig. 87 Synchronous Serial Port (SSP)

When our code is expecting to receive valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates
when SSPBUF has been loaded with the received data (transmission is complete).
When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a
transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has
completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be
used, then software polling can be done to ensure that a write collision does not occur.

Details of the SPI operation including mater and slave modes can be found in the manuals
published from Microchip Technology.

2. I2C Bus Operation

A. I2C Bus-Overview

This section is greatly indebted to several publications on I2C bus from Phillips Semiconductor
Co. I am merely summarizing otherwise very rich documentation on the subject. If there is any
error or discrepancy between the overview here and the original documentation, it's all because
of my misunderstanding or mistakes.

In consumer electronics, telecommunications and industrial electronics, there are often many
similarities between seemingly unrelated designs. For example, nearly every system includes:

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

386

Some intelligent control, usually a single-chip microcontroller; General-purpose circuits like
LCD drivers, remote I/O ports, RAM, EEPROM, or data converters; Application-oriented
circuits such as digital tuning and signal processing circuits for radio and video systems, or
DTMF generators for telephones with tone dialing.

To exploit these similarities to the benefit of both systems designers and equipment
manufacturers, as well as to maximize hardware efficiency and circuit simplicity, Philips
developed a simple bidirectional 2-wire bus for efficient inter-IC control. This bus is called the
Inter IC or I2C-bus. At present, Philips’ IC range includes more than 150 CMOS and bipolar
I2C-bus compatible types for performing functions in all three of the previously mentioned
categories. All I2C-bus compatible devices incorporate an on-chip interface which allows them to
communicate directly with each other via the I2C-bus. This design concept solves the many
interfacing problems encountered when designing digital control circuits.

Here are some of the features of the I2C-bus:

• Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL)
• Each device connected to the bus is software addressable by a unique address and simple

master/ slave relationships exist at all times; masters can operate as master-transmitters or
as master-receivers

• It’s a true multi-master bus including collision detection and arbitration to prevent data
corruption if two or more masters simultaneously initiate data transfer

• Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 kbit/s in the
standard mode or up to 400 kbit/s in the fast mode

• On-chip filtering rejects spikes on the bus data line to preserve data integrity. The number
of ICs that can be connected to the same bus is limited only by a maximum bus
capacitance of 400 pF.

The I2C-bus supports any IC fabrication process (NMOS, CMOS, bipolar). Two wires, serial
data (SDA) and serial clock (SCL), carry information between the devices connected to the bus.
Each device is recognized by a unique address — whether it’s a microcontroller, LCD driver,
memory or keyboard interface — and can operate as either a transmitter or receiver, depending
on the function of the device. Obviously an LCD driver is only a receiver, whereas a memory
can both receive and transmit data.

In addition to transmitters and receivers, devices can also be considered as masters or slaves
when performing data transfers. A master is the device which initiates a data transfer on the bus
and generates the clock signals to permit that transfer. At that time, any device addressed is
considered a slave. Some I2C Bus Terminologies are listed below:

• Transmitter: The device which sends the data to the bus
• Receiver: The device which receives the data from the bus
• Master: The device which initiates a transfer, generates clock signals and terminates

a transfer
• Slave: The device addressed by a master
• Multi-master: More than one master can attempt to control the bus at the same time

without corrupting the message

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

387

• Arbitration: Procedure to ensure that, if more than one master simultaneously tries to
control the bus, only one is allowed to do so and the message is not
corrupted

• Synchronization: Procedure to synchronize the clock signals of two or more devices

The I2C-bus is a multi-master bus. This means that more than one device capable of controlling
the bus can be connected to it. As masters are usually microcontrollers, let’s consider the case of
a data transfer between two microcontrollers such as 16F877(A and B) connected to the I2C-bus.
This highlights the master-slave and receiver-transmitter relationships to be found on the I2C-
bus. It should be noted that these relationships are not permanent, but only depend on the
direction of data transfer at that time. The transfer of data would proceed as follows:
1. Suppose microcontroller A wants to send information to microcontroller B:
– microcontroller A (master), addresses microcontroller B (slave)
– microcontroller A (master-transmitter), sends data to microcontroller B (slave-receiver)
– microcontroller A terminates the transfer.
2. If microcontroller A wants to receive information from microcontroller B:
– microcontroller A (master) addresses microcontroller B (slave)
– microcontroller A (master-receiver) receives data from microcontroller B (slave-transmitter)
– microcontroller A terminates the transfer.

Even in the reception case, the master (microcontroller A) generates the timing and terminates
the transfer.

The possibility of connecting more than one microcontroller to the I2C-bus means that more than
one master could try to initiate a data transfer at the same time. To avoid the chaos that might
ensue from such an event — an arbitration procedure has been developed. This procedure relies
on the wired-AND connection of all I2C interfaces to the I2C-bus. If two or more masters try to
put information onto the bus, the first to produce a ‘one’ when the other produces a ‘zero’ will
lose the arbitration. The clock signals during arbitration are a synchronized combination of the
clocks generated by the masters using the wired-AND connection to the SCL line.

Generation of clock signals on the I2C-bus is always the responsibility of master devices; each
master generates its own clock signals when transferring data on the bus. Bus clock signals from
a master can only be altered when they are stretched by a slow-slave device holding-down the
clock line, or by another master when arbitration occurs.

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a pull-up
resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the
bus must have an open-drain or open-collector in order to perform the wired-AND function. Data
on the I2C-bus can be transferred at a rate up to 100 kbit/s in the standard-mode, or up to 400
kbit/s in the fast-mode. The number of interfaces connected to the bus is solely dependent on the
bus capacitance limit of 400pF. The pull-up resistors for SDA and SCL used in our 16F877 and
24LC16 serial EEPROM are both 1.8 kohm.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

388

B. I2C Bus Protocol

Bit Transfer: Due to the variety of different technology devices (CMOS, NMOS, bipolar) which
can be connected to the I 2 C-bus, the levels of the logical ‘0’ (LOW) and ‘1’ (HIGH) are not
fixed and depend on the associated level of V DD. One clock pulse is generated for each data bit
transferred. The data on the SDA line must be stable during the HIGH period of the clock. The
HIGH or LOW state of the data line can only change when the clock signal on the SCL line is
LOW.

Within the procedure of the I 2 C-bus, unique situations arise which are defined as START and
STOP conditions (see Figure below).

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This
situation indicates a START condition. A LOW to HIGH transition on the SDA line while SCL
is HIGH defines a STOP condition. START and STOP conditions are always generated by the
master. The bus is considered to be busy after the START condition. The bus is considered to be
free again a certain time after the STOP condition. This bus free situation is specified in Section
15.0. Detection of START and STOP conditions by devices connected to the bus is easy if they
incorporate the necessary interfacing hardware. However, microcontrollers with no such
interface have to sample the SDA line at least twice per clock period in order to sense the
transition.

Transferring Data: Every byte put on the SDA line must be 8-bits long. The number of bytes
that can be transmitted per transfer is unrestricted. Each byte has to be followed by an
acknowledge bit. Data is transferred with the most significant bit (MSB) first.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

389

If a receiver can’t receive another complete byte of data until it has performed some other
function, for example servicing an internal interrupt, it can hold the clock line SCL LOW to
force the transmitter into a wait state. Data transfer then continues when the receiver is ready for
another byte of data and releases clock line SCL. In some cases, it’s permitted to use a different
format from the I 2 C-bus format (for CBUS compatible devices for example). A message which
starts with such an address can be terminated by generation of a STOP condition, even during the
transmission of a byte. In this case, no acknowledge is generated.

Data transfer with acknowledge is obligatory. The acknowledge-related clock pulse is generated
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock
pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it
remains stable LOW during the HIGH period of this clock pulse. Of course, set-up and hold
times (specified in Section 15.0) must also be taken into account.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each
byte has been received. When a slave-receiver doesn’t acknowledge the slave address (for
example, it’s unable to receive because it’s performing some real-time function), the data line
must be left HIGH by the slave. The master can then generate a STOP condition to abort the
transfer. If a slave-receiver does acknowledge the slave address but, some time later in the
transfer cannot receive any more data bytes, the master must again abort the transfer. This is
indicated by the slave generating the not acknowledge on the first byte to follow. The slave
leaves the data line HIGH and the master generates the STOP condition.

If a master-receiver is involved in a transfer, it must signal the end of data to the slave-
transmitter by not generating an acknowledge on the last byte that was clocked out of the slave.
The slave-transmitter must release the data line to allow the master to generate a STOP or
repeated START condition.

Arbitration and Clock Generation: All masters generate their own clock on the SCL line to
transfer messages on the I2C-bus. Data is only valid during the HIGH period of the clock. A
defined clock is therefore needed for the bit-by-bit arbitration procedure to take place. Clock
synchronization is performed using the wired-AND connection of I2C interfaces to the SCL line.
This means that a HIGH to LOW transition on the SCL line will cause the devices concerned to
start counting off their LOW period and, once a device clock has gone LOW, it will hold the
SCL line in that state until the clock HIGH state is reached.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

390

However, the LOW to HIGH transition of this clock may not change the state of the SCL line if
another clock is still within its LOW period. The SCL line will therefore be held LOW by the
device with the longest LOW period. Devices with shorter LOW periods enter a HIGH wait-state
during this time. When all devices concerned have counted off their LOW period, the clock line
will be released and go HIGH. There will then be no difference between the device clocks and
the state of the SCL line, and all the devices will start counting their HIGH periods. The first
device to complete its HIGH period will again pull the SCL line LOW. In this way, a
synchronized SCL clock is generated with its LOW period determined by the device with the
longest clock LOW period, and its HIGH period determined by the one with the shortest clock
HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a
START condition within the minimum hold time of the START condition which results in a
defined START condition to the bus. Arbitration takes place on the SDA line, while the SCL line
is at the HIGH level, in such a way that the master which transmits a HIGH level, while another
master is transmitting a LOW level will switch off its DATA output stage because the level on
the bus doesn’t correspond to its own level. Arbitration can continue for many bits. Its first stage
is comparison of the address bits. If the masters are each trying to address the same device,
arbitration continues with comparison of the data. Because address and data information on the
I2C-bus is used for arbitration, no information is lost during this process.

A master which loses the arbitration can generate clock pulses until the end of the byte in which
it loses the arbitration. If a master also incorporates a slave function and it loses arbitration
during the addressing stage, it’s possible that the winning master is trying to address it. The
losing master must therefore switch over immediately to its slave-receiver mode.

In addition to being used during the arbitration procedure, the clock synchronization mechanism
can be used to enable receivers to cope with fast data transfers, on either a byte level or a bit
level. On the byte level, a device may be able to receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold
the SCL line LOW after reception and acknowledgement of a byte to force the master into a wait
state until the slave is ready for the next byte transfer in a type of handshake procedure. On the
bit level, a device such as a microcontroller without, or with only a limited hardware I2C
interface on-chip can slow down the bus clock by extending each clock LOW period. The speed
of any master is thereby adapted to the internal operating rate of this device.

Formats with 7-Bit Addresses: Data transfers follow the format shown below. After the
START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

391

bit which is a data direction bit (R/W) — a ‘zero’ indicates a transmission (WRITE), a ‘one’
indicates a request for data (READ). A data transfer is always terminated by a STOP condition
(P) generated by the master. However, if a master still wishes to communicate on the bus, it can
generate a repeated START condition (Sr) and address another slave without first generating a
STOP condition. Various combinations of read/write formats are then possible within such a
transfer.

Possible data transfer formats are:
(a) Master-transmitter transmits to slave-receiver. The transfer direction is not changed

(b)Master reads slave immediately after first byte. At the moment of the first acknowledge, the
master-transmitter becomes a master-receiver and the slave-receiver becomes a slave-transmitter.
This acknowledge is still generated by the slave. The STOP condition is generated by the master.

(c) Combined format. During a change of direction within a transfer, the START condition and
the slave address are both repeated, but with the R/W bit reversed. If a master receiver sends a
repeated START condition, it has previously sent a not acknowledge (A).

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

392

7-Bit Addressing:
The addressing procedure for the I2C-bus is such that the first byte after the START condition
usually determines which slave will be selected by the master. The exception is the ‘general call’
address which can address all devices. When this address is used, all devices should, in theory,
respond with an acknowledge. However, devices can be made to ignore this address. The second
byte of the general call address then defines the action to be taken.

The first seven bits of the first byte make up the slave address.

The eighth bit is the LSB. It determines the direction of the message. A ‘zero’ in the least
significant position of the first byte means that the master will write information to a selected
slave. A ‘one’ in this position means that the master will read information from the slave.

When an address is sent, each device in a system compares the first seven bits after the START
condition with its address. If they match, the device considers itself addressed by the master as a
slave-receiver or slave-transmitter, depending on the R/W bit. A slave address can be made-up of
a fixed and a programmable part. Since it’s likely that there will be several identical devices in a
system, the programmable part of the slave address enables the maximum possible number of
such devices to be connected to the I2C-bus. The number of programmable address bits of a
device depends on the number of pins available. For example, if a device has 4 fixed and 3
programmable address bits, a total of 8 identical devices can be connected to the same bus.

The I2C-bus committee coordinates allocation of I 2 C addresses. Two groups of eight addresses
(0000XXX and 1111XXX) are reserved for the purposes shown in Table below. The bit
combination 11110XX of the slave address is reserved for 10-bit addressing.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

393

The general call address is for addressing every device connected to the I2C-bus. However, if a
device doesn’t need any of the data supplied within the general call structure, it can ignore this
address by not issuing an acknowledgement. If a device does require data from a general call
address, it will acknowledge this address and behave as a slave-receiver. The second and
following bytes will be acknowledged by every slave-receiver capable of handling this data.

A slave which cannot process one of these bytes must ignore it by not acknowledging. The
meaning of the general call address is always specified in the second byte.

There are two cases to consider:

• When the least significant bit B is a ‘zero’
• When the least significant bit B is a ‘one’.

When bit B is a ‘zero’; the second byte has the following definition:

o 00000110 (H‘06’). Reset and write programmable part of slave address by
hardware. On receiving this 2-byte sequence, all devices designed to respond to
the general call address will reset and take in the programmable part of their
address. Precautions have to be taken to ensure that a device is not pulling down
the SDA or SCL line after applying the supply voltage, since these low levels
would block the bus

o 00000100 (H‘04’). Write programmable part of slave address by hardware. All
devices which define the programmable part of their address by hardware (and
which respond to the general call address) will latch this programmable part at the
reception of this two byte sequence. The device will not reset.

o 00000000 (H‘00’). This code is not allowed to be used as the second byte.

When bit B is a ‘one’; the 2-byte sequence is a ‘hardware general call’. This means that the
sequence is transmitted by a hardware master device, such as a keyboard scanner, which cannot
be programmed to transmit a desired slave address. Since a hardware master doesn’t know in
advance to which device the message has to be transferred, it can only generate this hardware
general call and its own address — identifying itself to the system.

The seven bits remaining in the second byte contain the address of the hardware master. This
address is recognized by an intelligent device (e.g. a microcontroller) connected to the bus which
will then direct the information from the hardware master. If the hardware master can also act as

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

394

a slave, the slave address is identical to the master address. In some systems, an alternative could
be that the hardware master transmitter is set in the slave-receiver mode after the system reset. In
this way, a system configuring master can tell the hardware master-transmitter (which is now in
slave-receiver mode) to which address data must be sent. After this programming procedure, the
hardware master remains in the master-transmitter mode.

(a) Configuring master sends dump address to hardware master

(b) Hardware master dumps data to selected slave

Microcontrollers can be connected to the I2C-bus in two ways. A microcontroller with an on-chip
hardware I2C-bus interface can be programmed to be only interrupted by requests from the bus.
When the device doesn’t have such an interface, it must constantly monitor the bus via software.
Obviously, the more times the microcontroller monitors, or polls the bus, the less time it can
spend carrying out its intended function. There is therefore a speed difference between fast
hardware devices and a relatively slow microcontroller which relies on software polling.
In this case, data transfer can be preceded by a start procedure which is much longer than
normal.

The start procedure consists of:
– A START condition (S)
– A START byte (00000001)
– An acknowledge clock pulse (ACK)
– A repeated START condition (Sr).

After the START condition S has been transmitted by a master which requires bus access, the
START byte (00000001) is transmitted. Another microcontroller can therefore sample the SDA
line at a low sampling rate until one of the seven zeros in the START byte is detected. After
detection of this LOW level on the SDA line, the microcontroller can switch to a higher
sampling rate to find the repeated START condition Sr which is then used for synchronization.
A hardware receiver will reset on receipt of the repeated START condition Sr and will therefore
ignore the START byte. An acknowledge-related clock pulse is generated after the START byte.
This is present only to conform with the byte handling format used on the bus. No device is
allowed to acknowledge the START byte.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

395

Electrical Characteristics for I2C Bus Devices:
I2C-bus devices with fixed input levels of 1.5 V and 3 V can each have their own appropriate
supply voltage. Pull-up resistors must be connected to a 5V supply.

I2C-bus devices with input levels related to V DD must have one common supply line to which
the pull-up resistor is also connected.

When devices with fixed input levels are mixed with devices with input levels related to VDD ,
the latter devices must be connected to one common supply line of 5 V and must have pull-up
resistors connected to their SDA and SCL pins.

Input levels are defined in such a way that:

– The noise margin on the LOW level is 0.1 VDD
– The noise margin on the HIGH level is 0.2 VDD
– As shown in figure below, series resistors (R S) of, e.g., 30ohm can be used for

protection against high-voltage spikes on the SDA and SCL lines (due to flash-over of a
TV picture tube, for example).

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

396

3. Serial EEPROM

Basic Serial EEPROM Operation
Serial EEPROM technology is one of the non-volatile memory technologies that has emerged as
a leading embedded control solution. Serial EEPROMS are ideal non-volatile cost effective
memory solutions in applications that require: (a) small footprint and board space as in cellular
phone applications, (b) BYTE level ERASE, WRITE, and READ of data as in a TV tuner, (c)
low voltage and current for handheld battery applications as in a keyless entry transmitter, (d)
multiple non-volatile functions in the same application such as a VCR, or (e) low availability of
microcontroller I/O lines

The common applications for serial EEPROMS are:TV tuners, VCRs, CD players, cameras,
radios, and remote controls; Airbags, anti-lock brakes, odometers, radios, and keyless entry;
Printers, copiers, PCs, and portable PCs; Cellular, cordless and full feature phones, faxes,
modems, pagers, and satellite receivers; Bar code readers, point-of-sale terminals, smart cards,
lock boxes, garage door openers, and test measurement.

The typical functions that serial EEPROMs are utilized for are: memory storage of channel
selectors or analog controls (volume, tone, etc.) in consumer electronics products, power down
storage and retrieval of events such as fault detection or error diagnostics in automotive products,
electronic real time event or maintenance logs such as page counting in office automation
products. Also, configuration or DIP switch storage in office automation products, last number
redial storage and speed dial number storage in telecom products, and user in-circuit
reprogrammable look up tables such as bar code readers, point-of-sale terminals, environmental
controls and other industrial products

Other application examples include: data storage from a learn function as in a remote control
transmitter, ID number storage for security or remote access for electronic keys and entry
databases, and reprogrammable calibration data for test equipment or analog interface products

There are two primary protocols for serial EEPROM access: 3-wire bus and 2-wire bus.
A 2- wire product is utilized in applications that require an I2C bus, noise immunity, limited
microcontroller I/O pin availability, or a WRITE buffer for multiple bytes to be stored with one
instruction. A 3-wire product is utilized in applications that have limited protocol requirements,
an SPI protocol, higher clock frequency requirements, or 16-bit data width applications. Since
our discussion in the chapter is I2C bus, our focus here is the 2-wire bus protocol. Readers who
are interested in 3-wire protocol can refer Microchip Technology for manual valuable manuals
and application notes. However, there still is merit to brief on the 3-wire protocol, since the
popular serial EEPROMs from Microchip Technology has different lines of product depending
upon which protocol they use. The 3-wire common serial EEPROM from Microchip
Technology has the common nomenclature of 93XXXX.

• 93XX06: 256 bit
• 93XX46: 1K bit
• 93XX56: 2K bit
• 93XX66: 4K bit

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

397

The 3-wire bus requires the following 4 pins: CS (Chip Select), DI (data in), CLK (Clock), DO
(data out). All 93XXXX parts are hardware compatible for these four pins.

2-wire bus operation
2-wire bus system uses the following pins: SCL (Serial clock), SDA (Serial Data),WP (Active
High WRITE Protection), and A0, A1, and A2 (Chip or block select). Only the SCL and SDA
pins are essential for bus operation, and the other pins are supplementary. SDA’s open-drain
requires a pull-up resistor to VDD. The data is organized as 8 bit. Signals are level triggered, not
edge triggered. Also, there are filters on the inputs that will filter noise glitches <100ns wide.

The I2C protocol utilizes master/slave bi-directional communication. A device that sends data
onto the bus is defined as the transmitter, and a device that is receiving data is the receiver. Both
the master and the slave can operate as the transmitter or receiver. The bus must be controlled by
a master device (most often a microcontroller), which generates the serial clock (SCL), controls
the bus direction, and generates the START and the STOP conditions.

The serial EEPROM is the slave. The serial EEPROM will be the bus transmitter during READ
operations and when the serial EEPROM must acknowledge data transmitted by the master.
START and STOP bits control the bus activity. Operations must begin with a START bit and
end with a STOP bit. A START bit is when SDA transitions LOW while SCL is HIGH while
observing the START set-up and hold time specifications. A STOP bit is when SDA transitions
HIGH while SCL is HIGH while observing the STOP set-up and hold time specifications. Data
is recognized as valid while SCL is high. The data on SDA must observe data in set-up and hold
specifications before and after SCL is pulsed. There is only one bit of data for each SCL pulse.

The common 2-wire device of Microchip Technology nomenclature is 24XXXX and 85XXXX.
The 2-wire serial EEPROM we use in this chapter is 24LC16B. The 24LC16B is a 16K bit
EEPROM, and it is organized as eight blocks of 256 x 8 bit memory. The 24LC16B is available
in the standard 8-pin DIP, surface mount SOIC, and TSSOP packages.

In the 24LC16B access, a control byte is the first byte received following the start condition from
a master device. The control byte consists of a four-bit control code, for the 24LC16B this is set
as 1010 binary for read and write operations.

The next three bits of the control byte are the block select bits (B2, B1, B0). They are used by the
master device to select which of the eight 256 word blocks of memory are to be accessed. These
bits are in effect the three most significant bits of the word address. It should be noted that the
protocol limits the size of the memory to eight blocks of 256 words, therefore the protocol can
support only one 24LC16B per system.
The last bit of the control byte defines the operation to be performed. When set to one a read
operation is selected, when set to zero a write operation is selected. Following the start
condition, the 24LC16B monitors the SDA bus checking the device type identifier being

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

398

transmitted, upon a 1010 code the slave device outputs an acknowledge signal on the SDA line.
Depending on the state of the R/W bit, the 24LC16B will select a read or write operation.

4. Serial EEPROM Access with 16F877

After a length introduction of MSSP with I2C operation and serial EEPROM, we are finally here
to discuss the PIC16F877 access to the serial EEPROM 24LC16B. There are several registers
involved in the I2C operation. We will move around, from MSSP module set up and
initialization to byte writing and byte reading, controlling the bits of the registers. Before we
proceed, it's beneficial at least to be familiar with the involved registers. They are listed below:

• SSP Control Register (SSPCON)
• SSP Control Register2 (SSPCON2)
• SSP Status Register (SSPSTAT)
• Pin Direction Control (TRISC)
• Serial Receive/Transmit Buffer (SSPBUF)
• SSP Shift Register (SSPSR) - Not directly accessible
• SSP Address Register (SSPADD)
• SSP Hardware Event Status (PIR1)
• SSP Interrupt Enable (PIE1)
• SSP Bus Collision Status (PIR2)
• SSP Bus Collision Interrupt Enable (PIE2)

MSSP Module Initialization and Set-up

Step 1: Since the two-wire point, SDA and SCL, share with PORTC pins, SCL with PORTC<3>,
and SDA with PORTC<4>, the declaration of the direction of the pins must be properly
configured at the first step of initialization. An important thing here is that we have to set the
two pins as inputs.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

399

Fig. 88 SDA and SCL pins of PIC 16F877

The following lines of code would be enough for the PORTC direction for the two wires.

;PORTC setup - SDA and SCL both as inputs

movlw 0x18 ;0001 1000
banksel TRISC
movwf TRISC ;RC4 (SDA) and RC3(SCL) as inputs

Step 2: In this step, we select I2C operation of MSSP. Let's consider the SSPCON. Here we
focus only on I2C application, and therefore, each bit configuration indicated here is valid only
for I2C operation. SSPCON is for the module activation and mode selection. As indicated
below, for I2C operation of SSP, there are SSPEN bit for enabling the SSP module and the four
bits of SSPM for mode selection. In I2C operation for 16F877 master mode, SSPEN must be set
and SSPM<3:0> must be configured as 1000.

SSPCON1: SSP Control Register1

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0
bit 7 bit 0

bit 7 WCOL: Write Collision Detect bit
 0 = No collision
bit 6 SSPOV: Receive Overflow Indicator bit
 0 = No overflow
bit 5 SSPEN: Synchronous Serial Port Enable bit
 1 = Enables the serial port and configures the SDA and
 SCL pin as the source of the serial port pins
 0 = Disables serial port and configures these pins as I/O port pins

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

400

bit 4 CKP: Clock Polarity Select bit
 Unused in I2C master mode
bit 3 – 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bit
 0110 = I2C slave mode, 7-bit address
 0111 = I2C slave mode, 10-bit address
 1000 = I2C master mode, clock = Fosc / (4 * (SSPADD + 1))

The following lines would serve as the SSPCON configuration of I2C operation.

movlw 0x28 ;0010 1000 (SSPEN=1, SSPM3:0= 1000) master mode
banksel SSPCON
movwf SSPCON

One thing we note here is that since we selected 1000 as for SSPM<3:0>, the clock speed of data

flow (this is called baud rate of I2C operation) is determined by
1][*4 +

=
SSPADD

FClock osc
speed .

Step3: We decide the clock (or speed) of the data flow in I2C operation. There are two types: a
more standard of 400kHz, and modest speed of 100kHz. In the example we choose to use the
speed of 100kHz. Then, from the equation in the step 2, we can an equation for the content of
SSPADD register.

−= 1

4
1][

speed

osc

Clock
FSSPADD

If we plug in 20MHz as Fosc and 100kHz as Clockspeed, then the content of SSPADD is:

75.491
000,100

000,000,20
4
1][=

 −=SSPADD .

The number 49.75 is approximated to 49, and its hexadecimal equivalent is 0x31. The following
lines show the initialization of SSPADD register with 100kHz speed of data
transmission/reception between 16F877 and 24LC16B, the 16Kbit serial EEPROM.

movlw 0x31 ;100KHz speed
banksel SSPADD
movwf SSPADD ;write baud rate of 100KHz

In case one wants to use the high speed data transmission of 400kHz, all he or she has to do is to
change the content of SSPADD registers to 0x0B.

Lastly, we take care the SSPSTA register by putting 0x80.

movlw 0x80 ;1000 0000
banksel SSPSTAT
movwf SSPSTAT ;100KHZ (no slew rate control)

Writing a byte of data to the serial EEPROM
 Now the initialization process is finished and the MSSP module is geared for 2-wire I2C
operation. For simplicity, we will first discuss how to write a byte of data into the serial
EEPROM. The schematic for 24LC16B EEPROM connection to PIC 16F877 is illustrated

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

401

below.

Fig. 89 24LC16B EEPROM connection to PIC 16F877

The byte writing takes numerous steps we discuss here and don't ask why these many steps: it's
the combination of hardware and communication protocol, and much more. But if you follow all
the steps described here, you surely get your 1 byte data at the designated address location inside
the serial EEPROM.

Step 1: Clear SSPIF bit of the PIR1 register. SSPIF bit (synchronous serial port (SSP) interrupt
flag), the bit number 3 of PIR1 register, PIR1<3>, is set when SSP interrupt condition occurred.
This SSPIF is routinely monitored in the writing process since the flagging of SSPIF shares
many different interrupt conditions. By monitoring this bit we can see the internal SSP module
operational status and move to another step of byte writing operation. In I2C operation in master
mode, which is the mode we are applying in this example case, any of the following conditions
sets SSPIF bit:

• A transmission or reception has taken place.
• The initiated start condition was completed by the SSP module
• The initiated stop condition was completed by the SSP module
• The initiated restart condition was completed by the SSP module
• The initiated acknowledge condition was completed by the SSP module

Once the SSPIF is set, it must be cleared by software (meaning that you have to clear the bit in
the code). So it is apparent that we start our routine by clearing the SSPIF bit since no interrupt
condition has occurred when we start.

Step 2: Enable the start condition by setting the SEN bit of SSPCON2 register. The SEN (Start
Condition Enable) bit, the bit 0 of SSPCON2 register, SSPCON2<0>, in I2C master mode, when
set, initiates Start condition on SDA and SCL pins. The clearing is done by hardware so we do

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

402

not have to worry about it once we set to start I2C operation.

Step 3: Wait until the SSPIF bit of PIR1 register is set, then clear it. As mentioned in the step 1,
one of the several conditions that set the SSPIF bit is when the initiated start condition is
completed by the SSP module. This step is nothing but waiting for the completion of the start
condition initiated in step 2. When it is completed, SSPIF bit would be set, and therefore we,
not the hardware, have to clear it. Simple enough. There may be a collision in the process when
a writing is attempted before the start initiation is completed.

Step 4: Send 0xA0 to SSPBUF. This is to establish I2C protocol from 16F877 to 24LC16B. As
we discussed in the section 3, a byte code must be sent followed by the start condition. The byte
code consists of the 4-bit code for serial EEPROM, which is 1010, 3 bits of block selection,
followed by 1 bit of read/write selection. The reason we put 000 for block address is, in the
example code, we try to access the first block (block address 0) of the 8 block 24LC16B. The
R/W bit is cleared since we are reading from the serial EEPROM. Again, the following
illustration would serve to give you clear understanding of the step. Anyway, that's why we send
10100000 or its hexadecimal equivalent 0xA0 to the SSP buffer register SSPBUF.

Step 5: Wait until SSPIF bit of PIR1 is set, then clear it. The purpose of this step is similar to
step 3. The only difference is, here, we wait until the transmission of the byte code in step is
completed. This is, in other words, waiting for an acknowledgment from the serial EEPROM
that it received the control byte. Now EEPROM is ready to send a byte data from a designated
address which will be received in the next step.

Step 6: Load the address byte of the serial EEPROM to SSPBUF. This step is to select an address
in the block we selected in the above steps. If the address to which write a byte data is 0, then
we put 00000000 or 0x00 to the SSP buffer register SSPBUF.

Step 7: Wait until SSPIF bit of PIR1 is set, then clear it. Exactly the same purpose as step 5.

Step 8: Load the byte data into SSPBUF. Now finally we are sending the data byte we want to
store to the serial EEPROM at the address 0 of the block 0.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

403

Step 9: Wait until SSPIF bit of PIR1 is set, then clear it. Exactly the same purpose as step 7.

Step 10: Enable stop condition by setting the PEN (Stop Condition Enable) bit of SSPCON2
register. PEN bit, the second bit of SSPCON2, SSPCON2<2>, in I2C master mode, when set,
initiates the stop condition on SDA and SCL pins. It is automatically cleared when the stop
condition is completed. So this closes the writing process by stopping the I2C operation mode.

Step 11: Wait until SSPIF bit of PIR1 is set, then clear it. Exactly the same purpose as step 3.
The only different here is that we are waiting the stop is completed instead of start.

Step 12: One last step ending the writing process: wait for at least 10ms so that 24LC16 has
enough time of writing. As you see here, the writing process takes time and even it extends after
the end of stop condition.

As we saw above, there are similar steps in the process, the waiting of SSPIF bit in particular.
And it is apparent we do check the SSPIF bit after each step of sending start/stop condition,
control byte, or writing a byte data. Therefore, we can include this SSPIF bit checking at the
enc of each process, and we can reduce the number of steps.

Steps 1- 3 are then called a start event which send start condition for I2C bus operation
("START"). Steps 4- 5 transmit control byte (code + block address + R/W) to the serial
EEPROM and wait for acknowledgement from the serial EEPROM ("CONTROL"). Steps 6 - 7
transmit the address, where we are going to store a byte data, to the serial EEPROM, and wait for
acknowledgment ("ADDRESS"). Steps 8 -9 transmit the 1-byte data to the serial EEPROM, and
wait of acknowledgment ("DATA"). Steps 10 -11 transmit the stop condition so that we close
the I2C operation mode, and wait until the stop initiation is completed ("STOP"). Finally, step
12 is to give time to the serial EEPROM for actually writing the byte data into the memory space
("TIME"). Then, the simplified steps are in the order of:
START>CONTROL>ADDRESS>DATA>STOP>TIME.

Now let's discuss about coding the byte writing process. Let's make a small subroutine for each
step. First, the START step. We set the SEN bit of SSPCON2 register and wait for SSPIF of
PIR1 to be set, and just to be cleared again. The START subroutine, i2cStart is shown
below.

;subroutine I2CSTART =====
I2Cstart

banksel SSPCON2
bsf SSPCON2, SEN ;START
banksel PIR1

Swait
btfss PIR1, SSPIF
goto Swait ;wait for SSPIF to be set
bcf PIR1, SSPIF ;then clear it
return

The CONTROL step transmits the control byte, which is in the example 0xA0, to indicate: (a)

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

404

accessing serial EEPROM 24LC16B, (b)accessing the block 0 of the 8-block memory space, and
(c) accessing in order to write. However, we notice that CONTROL, ADDRESS, and DATA
steps are putting data/address/code into the SSP buffer register SSPBUF. So instead of making
three separate subroutines, we make just one subroutine for all three steps called i2cSend. One
thing you have to know here is you have to store the code/address/data into the W register before
calling the i2cSend subroutine. In the subroutine, we put what's in the W register into
SSPBUF and wait for the completion of the transmission. The i2cSend subroutine is as simple
as indicated below.

;subroutine i2cSend for putting code/address/data to SSPBUF register
;Note: The code/address/data must be placed in W register
;before this subroutine is called.
i2cSend

banksel SSPBUF
movwf SSPBUF
banksel PIR1

cwait
btfss PIR1, SSPIF
goto cwait
bcf PIR1, SSPIF
return

Then, the only step left is the STOP. The STOP is to set the PEN bit of SSPCON2 register, and
of course, wait for the completion of the stop initiation. The STOP subroutine i2cStop is also
simple enough.

;SUBROUTINE I2CSTOP ===
i2cStop

banksel SSPCON2
bsf SSPCON2, PEN
banksel PIR1

Pwait
btfss PIR1, SSPIF
goto Pwait
bcf PIR1, SSPIF
return

Final word in byte writing before a complete code. The writing or reading (which is the subject
of our discussion after the example code) is actually a protocol or handshaking between PIC
16F877 (as mater) and the serial EEPROM 24LC16B (as slave). The sequence and handshake
are illustrated for better understanding the writing process to a serial EEPROM.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

405

Ok. Let's jump to the actual code of the 1-byte data writing to address 0 of the block 0 of
24LC16B serial EEPROM. Since we already discussed about all the necessary subroutines for
the writing process, we ignore them in the code listed below.

;I2Cwrite.asm
;
;i2C Master Mode Program
;for use in 24LC16B Serial EEPROM access by 16F877
;in I2C Master Mode Operation of SSP Module of 16F877 (with Fosc = 20 MHz)
;
;1-byte data writing to 24LC16B
;
;

list p=16f877

INTCON EQU 0x0B
STATUS EQU 0x03
ZERO EQU 0x00 ;for STATUS
PIR2 EQU 0x0D ;I2C Modules
PIR1 EQU 0x0C
SSPIF EQU 0x03 ;SSP Interrupt Flag (must be cleared for next I2C)
PIE1 EQU 0x8C
PIE2 EQU 0x8D

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

406

SSPCON EQU 0x14
SSPEN EQU 0x05 ;SSP Enable bit
SSPCON2 EQU 0x91
PEN EQU 0x02
SEN EQU 0x00
SSPSTAT EQU 0x94
SMP EQU 0x07 ;SMP=1 for 100KHz, SMP=0 for 400KHz (Choose 100KHZ)
SSPADD EQU 0x93
baud100 EQU 0x31 ;100KHZ standard speed
baud400 EQU 0x0B ;400KHz fast speed ($0B)
TRISC EQU 0x87
SSPBUF EQU 0x13
;
;

org 0x0000 ;line 1
goto START
org 0x05

START
;i2c operation INITIALIZATION
;PORTC setup - SDA and SCL both as inputs

movlw 0x18 ;0001 1000
bankselTRISC
movwf TRISC ;RC4 (SDA) and RC3(SCL) as inputs

;MSSP Module Setup
movlw baud100 ;100KHz speed
bankselSSPADD
movwf SSPADD ;write baud rate

;
movlw 0x80 ;1000 0000
bankselSSPSTAT
movwf SSPSTAT ;100KHZ (no slew rate control)

;selection with I2C mode
;

movlw 0x28 ;0010 1000 (SSPEN=1, SSPM3:0= 1000) master mode
bankselSSPCON
movwf SSPCON

;===
;WRITING for a byte data
;Sequence
;1. Start event <S>
;2. Send Control Byte for EPEROM with Write Op <C>
; CONTROL BYTE STRUCTURE OF 24LC16B
; 1 0 1 0 A2 A1 A0 R/W
; The first 4-bit code is establisihed for serial EEPROM by the I2C Bus
Specification
; Next 3 bits are for Block Select (26LC16B has 8 blocks, with each block
having 256 Bytes)
; R/W = 1 for reading
; R/W = 0 for writing
;3. Wait for ACK from EEPROM (Use SSPIF of PIR1)<K>
;4. Send the address in a block of EEPROM<A>
;5. Wait for ACK from EEPROM<K>
;6 Send a byte of data<D>
;7. Wait for ACK from EEPROM <K>
;8. STop EVENT<P>

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

407

;9. Give 24LC16 a few ms to write the data
;==
; SEQUENCE IN WRITING
; PIC (master Side)>S>> >C>> >A>> >D>> >P>>
; 24LC16 (slave side) <<K< <<K< <<K<
;==
;
;Flag Clear

banksel PIR1
bcf PIR1, SSPIF ;clear the SSP flag

;>S>> START
call i2cStart

;>C>> CONTROL
movlw 0xA0
call i2cSend ;block code write to 24LC16

;>A>> ADDRESS
movlw 0x00 ;address info
call i2cSend

;>D>> DATA
movlw 'm' ;1 byte data
call i2cSend

;>P>> STOP
call i2cStop

call delay10ms ;Give 24LC16B time to write the data

;your subroutines here

;your subroutines here
END

Reading Randomly 1-byte Data from serial EEPROM
The first three steps of writing are used without any change in the reading process. In other
words, we proceed START>CONTROL>ADDRESS as we did above. Then, comes the
RESTART step.

In the RESTART step, we set the RSEN bit of SSPCON2 register. The RSEN (Repeated Start
Condition Enable) bit, in I2C mater mode, when set, initiates repeated start condition on SDA
and SCL pins. This bit will be cleared automatically by hardware. Why do we need this
RESTRAT in the reading process? My best answer is "Accept it just as a part of 2-wire I2C
protocol." The RESTART subroutine, i2cRstart is shown below.

;subroutine I2CRSTART (Repeated Start. Use in READING)
i2cRstart

banksel SSPCON2
bsf SSPCON2, RSEN ;REPEATED START
return

After RESTART, according to the specification of I2C protocol with 24LC16B, we have to wait
for 100us. Then, comes the CONTROL_R step.

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

408

This CONTROL_R is the same as CONTROL except that the R/W bit (the LSB of the control
byte) must be set to indicate that we intend to read from the serial EEPROM. Therefore, we can
use the same i2cSend subroutine. The value to be sent to SSPBUF is then 10100001 (or
0xA1) this time. However, this CONTROL_R step unlike the CONTROL does not need
acknowledgment from 24LC26B. By the way, the above step of RSTART does not need
acknowledgment either. In CONTROL_R, we give a short time delay so that this process
finishes without collision. Therefore instead of using the subroutine, we can simply have the
following lines to satisfy the COTROL_R step:

;>C>> CONTROL_R
; Control Byte = 10100001=0xA1 for READ

movlw 0xA1
banksel SSPBUF
movwf SSPBUF
call delay100us

The next step is the actual READ step. Here we have enable the receive condition be setting the
RCEN bit of SSPCON2 register. RCEN (Receive Enable) bit, the 3rd bit of SSPCON2,
SSPCON2<3>, in I2C master mode, when set, enables receive mode for I2C. After initiating the
receive mode, we have to make sure if the initiation is completed by monitoring the SSPIF bit of
SSPCON2 as usual. The READ subroutine i2cRead is shown below.

;SUBROUTINE i2cREAD READ event =============
i2cRead

banksel SSPCON2
bsf SSPCON2, RCEN
banksel PIR1 ;read event completion check

Rwait btfss PIR1, SSPIF
goto Rwait
bcf PIR1, SSPIF
return

Then comes the NACK step. This step is necessary since, after reading a byte from 24LC16B,
the serial EEPROM waits for acknowledgment from master, 16F877. This acknowledgment
process is initiated by setting the ACKEN (Acknowledge sequence enable: SSPCON2<4>) bit of
SSPCON2, which initiates the acknowledge sequence on SDA and SCL pins. However, since
we are reading, randomly (meaning: you can read a byte data from any address you set in the
ADDRESS step), only one byte, there is no further connection is necessary between 16F877 and
24LC16B. Therefore, we just disconnect without actually acknowledging. This "Not
Acknowledge" is enabled by setting the ACKDT (Acknowledge Data: SSPCON2<5>) of the
SSPCON2 register. This whole thing is realized by a step NACK. And the subroutine for
NACK, i2cNack is shown below. As you see below, it monitors the SSPIF bit for the
completion of the initiation.

;subroutine
i2cNack

banksel SSPCON2
bsf SSPCON2, ACKDT
bsf SSPCON2, ACKEN
banksel PIR1

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

409

nwait btfss PIR1, SSPIF
goto Nwait
bcf PIR1, SSPIF
return

The last step is the STOP step we used in the writing process. We use the same subroutine
i2cStop here without change. Then, we move the content stored in the SSPBUF register to W
register, and this content is the data retrieved from the serial EEPROM.

Writing and Reading a Byte to/from 24LC16B - A complete code
Without printing (or displaying) the content retrieved from 24LC16B, we do not know if our
reading process is correct or incorrect. Therefore, even though cumbersome it is, we have to
add (or borrow from previous chapters) serial communication routine to send the data to the
screen of PC. So the code shown below write letter 'm' into the address 0 of the block 0, then
read from the address 0 of the block 0, and print out the retrieved letter to the computer screen.
If you see 'm' on the screen, you know your code is properly working. Then, you can revise the
code so that you send as many bytes of data as possible, and read them all or just a few of them.

;I2C.asm
;
;i2C Master Mode Program
;for use in 24LC16B Serial EEPROM access by 16F877
;in I2C Master Mode Operation of SSP Module of 16F877 (with Fosc = 20 MHz)
;
;
; I2C Master Mode Operation for EEPROM (slave) Access
; EEPROM SPEC:
; 1.Microchip 24LC16B (16K Bits or 2KBytes)
; 2.8 Internal blocks (256 Bytes for each block)
; I2C ADDRESS SPEC:
; 1. I2C Spec code for EEPROM SELECTION: 1010 must be the highest 4 Bits in
; the Higher Address
; 2. 3-bit Block Code (from 000 to 111) follows the EEPROM SELECTION bits
; 3. R/W bit follows to Complete the 8-bit Higher Address
; 4. Actual EEPROM address is selected by the 8-bit Lower Address
;
;
; ===

list p=16f877

INTCON EQU 0x0B
STATUS EQU 0x03
ZERO EQU 0x00 ;for STATUS
PIR2 EQU 0x0D ;I2C Modules
BCLIF EQU 0x03 ;Bus Interrupt Flag
PIR1 EQU 0x0C
SSPIF EQU 0x03 ;SSP Interrupt Flag (must be cleared for next I2C)
PIE1 EQU 0x8C
PIE2 EQU 0x8D
BCLIE EQU 0x03 ;bUS iNTERRUPT Enable

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

410

SSPCON EQU 0x14
WCOL EQU 0x07 ;Write Collision detect
SSPSOV EQU 0x06 ;Receive Overflow Indicator
SSPEN EQU 0x05 ;SSP Enable bit
SSPCON2 EQU 0x91
ACKSTAT EQU 0x06
RCEN EQU 0x03
PEN EQU 0x02
RSEN EQU 0x01
SEN EQU 0x00
ACKEN EQU 0x04
ACKDT EQU 0x05
SSPSTAT EQU 0x94
SMP EQU 0x07 ;SMP=1 for 100KHz, SMP=0 for 400KHz (Choose 100KHZ)
SSPADD EQU 0x93
baud100 EQU 0x31 ;100KHZ standard speed
baud400 EQU 0x0B ;400KHz fast speed ($0B)
TRISC EQU 0x87
SSPBUF EQU 0x13
;
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RXREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)

;
;
;

CBLOCK 0x20
temp
Kount20us
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC
;===

org 0x0000 ;line 1
goto START
org 0x0005

START
call ASYNC_MODE ;for RS232

;i2c operation
;PORTC setup - SDA and SCL both as inputs

movlw 0x18 ;0001 1000

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

411

banksel TRISC
movwf TRISC ;RC4 (SDA) and RC3(SCL) as inputs

;MSSP Module Setup
movlw baud100 ;100KHz speed
banksel SSPADD
movwf SSPADD ;write baud rate

;
movlw 0x80 ;1000 0000
banksel SSPSTAT
movwf SSPSTAT ;100KHZ (no slew rate control)

;selection with I2C mode
;

movlw 0x28 ;0010 1000 (SSPEN=1, SSPM3:0= 1000) master mode
banksel SSPCON
movwf SSPCON

;===
;WRITING for a byte data
;Sequence
;1. Start event <S>
;2. Send Control Byte for EPEROM with Write Op <C>
; CONTROL BYTE STRUCTURE OF 24LC16B
; 1 0 1 0 A2 A1 A0 R/W
; The first 4-bit code is establisihed for serial EEPROM by the I2C Bus
Specification
; Next 3 bits are for Block Select (26LC16B has 8 blocks, with each block
having 256 Bytes)
; R/W = 1 for reading
; R/W = 0 for writing
;3. Wait for ACK from EEPROM (Use SSPIF of PIR1)<K>
;4. Send the address in a block of EEPROM<A>
;5. Wait for ACK from EEPROM<K>
;6 Send a byte of data<D>
;7. Wait for ACK from EEPROM <K>
;8. STop EVENT<P>
;9. Give 24LC16 a few ms to write the data
;==
; SEQUENCE IN WRITING
; PIC (master Side)>S>> >C>> >A>> >D>> >P>>
; 24LC16 (slave side) <<K< <<K< <<K<
;==
;
;Flag Clear

banksel PIR1
bcf PIR1, SSPIF ;clear the SSP flag

;>S>>
call i2cStart

;>C>>
movlw 0xA0
call i2cSend ;block code write to 24LC16

;>A>>
movlw 0x00 ;address info
call i2cSend

;>D>>
movlw 'm' ;1 byte data
call i2cSend

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

412

;>P>>
call i2cStop

call delay10ms

; END OF WRITING
;==
;Sequence of Data (random) Read operation

; >S>> >C>> >A>> >RS>> >C>> <<D< >P>>
; <<K< <<K< <<K<
;1. Start Event >S>>
;2. Send Control Byte to Slave (with RW=0 i.e., write) >C>>
;3. Check for ACK from slave <<K<
;4. send actual EEPROM address in a block >A>>
;5. Wait for ACK <<K<
;6. Repeated Start Event >RS>>
;7.Send Control Byte to EEPROM again (with RW=1 i.e. now we read) >C>>
;8. wait for ACK <<K<
;9. Read a byte of data <<D<
;10. STop event >P>>

;===

;>S>>
call i2cStart

;>C>>
movlw 0xA0
call i2cSend

;>A>>
movlw 0x00
call i2cSend

;>RS>> REPEATED START
call i2cRstart
call delay100us

;>C>>
; Control Byte = 10100001=0xA1 for READ

movlw 0xA1
banksel SSPBUF
movwf SSPBUF
call delay100us

;<<D<
call i2cRead

; Send NACK to 24LC16
call i2cNack

;>P>>
call i2cStop

banksel SSPBUF
movf SSPBUF,0 ;EEPROM data --> W
call TXpoll
movlw 0x0D ;CR
call DTXpoll
movlw 0X0A ;LF

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

413

call TXpoll

FINI nop
goto FINI ;idling

;subroutine I2CSTART =====
I2Cstart

banksel SSPCON2
bsf SSPCON2, SEN ;START
banksel PIR1

Swait btfss PIR1, SSPIF
goto Swait
bcf PIR1, SSPIF
return

;--
;subroutine i2cblock for write

i2cSend
banksel SSPBUF
movwf SSPBUF
banksel PIR1

cwait btfss PIR1, SSPIF
goto cwait
bcf PIR1, SSPIF
return

;--
;subroutine I2CRSTART (Repeated Start. Use in READING =====
i2cRstart

banksel SSPCON2
bsf SSPCON2, RSEN ;REPEATED START
return

;--

;SUBROUTINE i2cREAD READ event =============
i2cRead

banksel SSPCON2
bsf SSPCON2, RCEN
banksel PIR1 ;read event completion check

Rwait btfss PIR1, SSPIF
goto Rwait
bcf PIR1, SSPIF
return

;---
;SUBROUTINE I2CSTOP ===
i2cStop

banksel SSPCON2
bsf SSPCON2, PEN
banksel PIR1

Pwait btfss PIR1, SSPIF
goto Pwait
bcf PIR1, SSPIF
return

;---------------------------------------
;subroutine
i2cNack

banksel SSPCON2

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

414

bsf SSPCON2, ACKDT
bsf SSPCON2, ACKEN
banksel PIR1

nwait btfss PIR1, SSPIF
goto Nwait
bcf PIR1, SSPIF
return

;--------------------------------
;==subroutine TXpoll
;W contains the data to be transferred to PC
TXpoll

banksel PIR1
btfss PIR1, TXIF
goto TXpoll ;if full, wait
banksel TXREG
movwf TXREG
return

;==
Async_mode

banksel SPBRG
movlw BAUD
movwf SPBRG ;Baud Rate Setup
movlw TXMODE
movwf TXSTA
banksel RCSTA
movlw RXMODE
movwf RCSTA
return

;===
;==
;DELAY SUBROUTINES

; 1 instruction cycle for 20MHz clock is 0.2 us
; Therefore 120 uS delay needs 600 instuction cycles
; 600 =199*3 +3 ---->Kount=199=0xC7
; or =198*3 +6 ---->Kount=198=0xC6
; or =197*3 +9 ---->Kount=197=0xC5

Delay20us
banksel Kount20us
movlw H'1F' ;D'31'
movwf Kount20us

R20us decfsz Kount20us
goto R20us
return

;
;
Delay120us

banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

R120us decfsz Kount120us
goto R120us
return

;

Chapter 14. SSP module and I2C Bus for External EEPROM Access

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

415

;100us delay needs 500 instruction cycles
; 500 =166*3 +2 ---->Kount=166=0xA6
; or =165*3 +5 ---->Kount=165=0xA5
; or =164*3 +8 ---->Kount=164=0xA4
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us decfsz Kount100us
goto R100us
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto 10ms
return

;
;==

END

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

