
Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

369

Chapter 13. CCP Module and PWM

This chapter covers the CCP (Capture/Compare/PWM) module of PIC 16F877, however, our
main focus is on PWM (Pulse Width Modulation). PWM is a technique of controlling analog
circuits using digital output from microcontroller. In other words, PWM a digital encoder of
analog signal level. The duty cycle of a square wave generated by microcontroller is modulated
to encode a specific analog signal level. The analog signal level is determined by means of a
repeating series of on and off pulses of the square wave. The on-time is the time during which
the digital value is applied, and the off-time is the period during which that supply is switched
off. The duty-cycle is defined as the ratio of on-time and the sum of on-time and off-time, which
is the pulse width. Once can control motor speed and light dimmer among other applications
using PWM technique.

The focus of this chapter on PWM is how to generate different duty-cycle of different pulse
width using the built-in module of CCP in 16F877. We first discuss about CCP module and then
concentrate our discussion on the PWM mode of the module.

1. CCP (Capture/Compare/PWM) Module of 16F877

As noted above, CCP module has 3 different modes of operation. Before we proceed, we list
necessary file registers for the operations of the CCP module. First we have to know that
16F877 has two CCP modules: CCP1 and CCP2. As noted in the pin diagram, there are two
CCP pins: CCP1 and CCP2 pin. When CCP1 module is used for PWM mode, for example, the
digital pulse would be generated from the CCP1 pin.

Fig. 85 CCP pins of PIC 16F887

Each CCP module has a 16-bit register which can operate as 16-bit capture register (in Capture
Mode), or 16-bit compare register (in Compare Mode), or 16-bit PWM duty cycle register. As

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

370

we know there could not be a 16-bit register in 16F877 since the microcontroller is an 8-bit
processor. Therefore, two 8-bit register are used to form a 16-bit register:CCPR1H and CCPR1L
for upper and lower byte of the 16-bit register for CCP1 module, and CCPR2H and CCPR2L for
CCP2 module.

CCP modules are controlled by CCP control registers: CCP1CON for CCP1, and CCP2CON for
CCP2. In this chapter, when we refer any one of the modules without specifying either CCP1 or
CCP2, then we use 'x' to indicate either one. For example, the generic symbol CCPx indicates
either one of two CCP modules. Similarly, CCPxCON can be either CCP1CON or CCP2CON,
depending upon with module you use.
The RAM addresses of the CCP register are listed below:

Address Register Name Functions
0C PIR1 Peripheral Interrupt Request 1
0D PIR2 Peripheral Interrupt Request 2
8C PIE1 Peripheral Interrupt Enable 1
8D PIE2 Peripheral Interrupt Enable 2
11 TMR2 Timer2 Module
92 PR2 Timer2 Module Period
12 T2CON Timer2 Module Control
15 CCPR1L Lower Byte of CCP1 Register
16 CCPR1H Upper Byte of CCP2 register
17 CCP1CON CCP1 Module Control
18 CCPR2L Lower Byte of CCP2 Register
1C CCPR2H Upper Byte of CCP2 Register
1D CCP2CON CCP2 Module Control

The details of CCP1CON register is illustrated here. As we can see, CCPM3:CCPM0 decide the
three modes in CCP module. Also, DCB1:DCB0 are used only for PWM as the last two LSBs
for 10-bit PWM duty cycle.

CCP1CON Register

--- --- DCB1 DCB0 CCPM3 CCPM2 CCPM1 CCPM0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bits 7:6 Not Used

Bits 5:4 DCB1:DCB0 Used only for PWM mode. These two bits
 are the two LSB bits of 10-bit PWM duty cycle.
 The upper 8 bits are found in CCPR1L.

Bits 3:0 CCPM3:CCPM0 CCP1 Mode Selection Bits
 0000 CCP off

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

371

 0100 Capture Mode, every falling edge
 0101 Capture Mode, every rising edge
 0110 Capture Mode, every 4th rising edge
 0111 Capture Mode, every 16th rising edge
 1000 Compare Mode, CCP Low in initialization
 1001 Compare Mode, CCP High in initialization
 1010 Compare Mode, Software Interrupt
 1011 Compare Mode, trigger Special Event
 11xx PWM Mode

2. Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 register when an
event occurs on pin CCPx. An event is defined as:
• Every falling edge
• Every rising edge
• Every 4th rising edge
• Every 16th rising edge

An event is selected by control bits CCPxM3:CCPxM0 (CCPxCON<3:0>). When a capture is
made, the interrupt request flag bit, CCPxIF of PIRx register, is set. The CCPxIF bit must be
cleared in software. If another capture occurs before the value in register CCPRxL and CCPRxH
is read, the previous captured value will be lost.

A capture does not reset the 16-bit TMR1 register. This is because Timer1 can also be used as
the time base for other operations. The time between two captures can easily be computed as the
difference between the value of the second capture that of the first capture. When Timer1
overflows, the TMR1IF bit of PIR1 register will be set, and if enabled an interrupt will occur,
allowing the time base to be extended to greater than 16-bits.

When the Capture mode is changed, a capture interrupt may be generated. The user should
keep the CCPxIE bit of PIEx register clear to disable these interrupts and should clear the
CCPxIF flag bit of PIRx register following any such change in operating mode.

3. Compare Mode

In Compare mode, the 16-bit CCPRxH and CCPRxL register value is constantly compared
against the TMR1register pair value. When a match occurs, the CCPx pin is:
• Driven High
• Driven Low
• Remains Unchanged

The action on the pin is based on the value of control bits CCPxM3:CCPxM0
(CCPxCON<3:0>). At the same time, a compare interrupt is also generated.

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

372

The user must configure the CCPx pin as an output by clearing the appropriate TRISC bit.
Selecting the compare output mode, forces the state of the CCPx pin to the state that is opposite
of the match state. So if the Compare mode is selected to force the output pin low on match,
then the output will be forced high until the match occurs (or the mode is changed).

4. PWM Mode

In PWM mode, the CCPx pin of 16F877 produces up to a 10-bit resolution PWM output. Since
the CCPx pin is multiplexed with the PORTC data latch, the corresponding TRISC bit
must be cleared to make the CCPx pin an output. A PWM output has a time-base (i.e., pulse
period) and a time that the output stays high (i.e., duty cycle). The frequency of the PWM is the
inverse of the period (1/period). The PWM period is specified by writing to the PR2 register.
PWM period in second, Tpwm, is determined by the following formula:

]2[4)1]2([psoscpwm TMRTPRT ⋅⋅+= [sec],

where TMR2ps is the TMR2 pre-scale value, and Tosc is the oscillation period.

Let's explain the basis of the equation above. Since one instruction takes four oscillation periods
we have the term 4Tosc. Also, since the PR2 register content will increase by 1 every instruction
cycle, we have the term [PR2]+1. Again, the pre-scale further increase the number of actual
oscillation cycles to the 4Tosc multiplied by the pre-scaler of TMR2, we have the term TMR2ps.
All together, we have the PWM period.

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

• TMR2 is cleared
• The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
• The PWM duty cycle is latched from CCPRxL into CCPRxH

The PWM duty cycle is specified by writing to the CCPRxL register and to the DCxB1:DCxB0
(CCPxCON<5:4>) bits. The CCPRxL contains the eight MSbs and CCPxCON<5:4> contains
the two LSbs. This 10-bit value is represented by DCxB9:DCxB0 in the equation below. The
PWM duty cycle in second, Dpwm, is given by the following formula:

][]0:9[psoscpwm TMRSTDBDBD ⋅⋅= [sec]

where [DB9:DB0] is the 10-bit value which comes from CCPRxL<8:0> for eight MSBs
concatenated by CCPxCON<5:4> for two LSbs.

The DCxB9:DCxB0 bits can be written to at any time, but the duty cycle value is not latched into
CCPRxH until after a match between PR2 and TMR2 occurs (which is the end of the current
period). In PWM mode, CCPRxH is a read-only register. The CCPRxH register and a 2-bit
internal latch are used to double buffer the PWM duty cycle. This double buffering is essential
for glitch-less PWM operation. When CCPRxH and 2-bit latch match the value of TMR2

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

373

concatenated with the internal 2-bit Q clock (or two bits of the TMR2 prescaler), the CCPx pin is
cleared. This is the end of the duty cycle.

Let's consider the maximum PWM resolution, Rpwm. This is to decide how small a duty cycle
can be determined. First consider the period of PWM, Tpwm, with relation with the period of the
oscillator clock, Tosc. We have to know that the period of PWM is determined a multiple of the
period of oscillation. In other words, in a PWM period there must be n number of the oscillation
period: oscpwm TnT ⋅= . By the way, the resolution in bits for a number n is determined by the
power of 2 of the number n. (Remember that, in ADC, the 10-bit resolution has the value in the
range of 1 – 1024 or 20 - 210. In other words, the resolution in bits is the power of 2 for the
maximum value it can provide.)

Therefore, the above equation can be changed to: osc

pwmR
pwm TT ⋅= 2 where Rpwm is the maximum

PWM resolution in bits. Therefore, the equation for Rpwm can be rewritten as:

2log
)log(

log2
oscpwm

osc

pwm
pwm

TT
T
T

R =

= .

This equation can be further altered in terms of frequencies of PWM and oscillation:

2log
)log(pwmosc

pwm

ff
R = .

Let's have an example. The following example I got from one of the Microchip Technology's
manual of Mid-Range Microcontrollers. Assuming that the desired PWM frequency is
78.125KHz (i.e., PWM period of 12.8µs) with oscillation speed of 20MHz, and TMR2 prescale
1. First thing we have to find is the content of PR2 register. From the PWM period equation,

]2[4)1]2([psoscpwm TMRTPRT ⋅⋅+= , we can draw an equation for [PR2], the content for PR2

register: 1
]2[4

]2[−
⋅

=
psosc

pwm

TMRT
T

PR .

Since, Tpwm=12.8µs, 05.01020

1
6 =×=oscT µs, and TMR2ps=1 (since prescale is set to 1),

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

374

631641
1)05.0(4

8.12]2[=−=−
⋅

=PR

Let's calculate the maximum resolution we get from PWM duty cycle under the example case.

From the maximum resolution equation,

=

osc

pwm
pwm T

T
R 2log , since Tpwm=12.8µs and

Tosc=0.05µs, we can get 8256log
05.0
8.12loglog 222 ===

=

osc

pwm
pwm T

T
R . So the maximum

resolution of the PWM duty cycle in the example is 8. What does this mean?

What maximum resolution being 8 means that, simply put, the 10-bit PWM values determined
by DCxB9:DCxB0 is less than or equal to 28. In other words, even though PWM duty cycle can
get you maximum 10-bit resolution, it does not mean that it provides you with 10-bit resolution
every time. In the example case, it provides only 8-bit resolution. In analogy with a one-foot
ruler which has 12 divisions of 1 inch scale, and 12 divisions inside each inch scale, we can say
that the ruler has maximum resolution of 192 (or 7-bit resolution). This means you can dive one
foot by 192 equally divided scales. And the resolution is therefore, 0.0052 in. In analogy to
PWM, for a given pulse period, to have 8-bit resolution is to have a total number of 256 division
scales in the pulse period. In our example, the pulse period is 12.8µs, therefore the each scale is
0.05 µs. In other words, there is no way to reduce the scale to, for example, 12.8/512 =0.025µs,
since this scale is close to 1 instruction execution time. Duty cycle is simple the multiple of the
minimum scale.

In other words, any value in DCxB9:DCxB0 greater than 255, would be regarded as if the same
as 255. In order to achieve higher resolution, the PWM frequency must be decreased. Or, in
order to achieve higher PWM frequency, the resolution must be decreased. The following table
(also adopted from the Microchip Technology's Mid-Range PIC Family Microcontroller) lists
example PWM frequencies and resolutions for fosc = 20 MHz. The TMR2 prescaler and PR2
values are also shown.

PWM frequency 1.22KHz 4.88KHz 19.53KHz 78.12 KHz 156.3KHz 208.3KHz
TMR2 prescaler 16 4 1 1 1 1
[PR2] value FFh FFh FFh 3Fh 1Fh 17h
Maximum Resolution [bits] 10 10 10 8 7 5.5

Now let's further discuss about the PWM duty cycle formulae with the given example. Assume
that we want to have a 50% duty cycle, on for the half the pulse period and off for the rest of the
pulse period. From the PWM duty cycle equation,][]0:9[[sec] psoscpwm TMRSTDBDBD ⋅⋅= ,
(note that the duty cycle is given with [sec] not in[%]), we get the equation for [DB9:DB0]:

][
]0:9[

psosc

pwm

TMRST
D

DBDB
⋅

= .

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

375

Since 50% of the PWM pulse period is (0.5)(12.8µs)=6.4µs, and with Tosc=0.05µs and

TMR2ps=1, we get 80128
11005.0

104.6]0:9[6

6

==
⋅×

×= −

−

DBDB h.

Therefore 0010000000800]0:9[== xDBDB .

In practice, we have to write B'0010000' (or 0x20 as the upper 8 digits)to CCP1L register, and
the last two digits 00 to DCxB1:DCxB0 bits (CCPxCON<5:4>). If we follow all these steps, the
pin CCP1 would generate +5V pulse with its period 12.8µs with on-period of 6.4 µs and off-
period 6.4 µs.

5. PWM Application with 16F877

Configuration Steps for PWM
The following steps configure the CCP module for PWM operation. Before we start the first
step, we have to have a clear picture in the pulse period and duty cycle, applying the formula we
discussed before.

The first step is to write the PWM period to PR2 register. Let's have a practical example of
period of 0.5ms. Since 16F877 clock frequency is 20 MHz, Tosc=0.05µs. With the selection
of TMR2 prescale value 16, then we have the following PR2 value:

15525.1551
)16)(1005.0(4

1051
]2[4

]2[6

4

≈=−
×
×=−

⋅
= −

−

psosc

pwm

TMRT
T

PR =0x9B

So we can have the following lines of code for PWM period:

; PWM Period Setting

banksel PR2
movlw 0x9b ;0.5ms Period
movwf PR2

Second, we establish the PWM duty cycle by writing to the DCxB9:DCxB0 bits. Let's assume
that we want to generate 50% duty cycle pulse. Since we have to express the duty of PWM,
Dpwm, in terms of second, we have the half the period, 0.25ms, as Dpwm (50% of the period of
0.5ms): 4105.2 −×=pwmD . Remember that the second step is to find the value for [DB9:DB0].
From the equation for [DB9:DB0], we have the value for it:

3135.312
)16)(1005.0(

105.2
][

]0:9[6

4

≈=
×
×=

⋅
= −

−

psosc

pwm

TMRST
D

DBDB =139h

In binary, [DB9:DB0] should have: 01 0011 1001. Since the highest 8 bits are to be stored in
CCPR1L register (the content of CCPR1L is then 0x4E), and the two least significant bits are to
be stored in to CCP1CON<5:4> (the bit 5 must be cleared while the bit 4 set for this case), we
have the following lines of code for the second step:

;PWM duty cycle 50% setting

movlw 0x4E

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

376

movwf CCPR1L
bcf CCP1CON, B5 ;B5 EQU 0x05 must be declared above
bsf CCP1CON, B4 ;B4 EQU 0x04

Third step is to properly allocate the CCP1 pin, which shares with RC2 pin of PORTC. Since
the CCP1 pin is an output pin, PORTC<2> must be set as an output by clearing the TRISC<2>
bit. In the following lines of code, PWM1 must be declared as 2 for CCP1 pin.

;TRISC Setting for output

banksel TRISC
bcf TRISC, PWM1

Four, we establish the TMR2 prescale value and enable Timer2 by T2CON register
configuration. Let's look at TMR2 before its control register T2CON in detail for use in the
fourth step. TMR2 consists of 3 components: pre-scaler, period register, and post-scaler. The
pre-scaler is to decide how often TMR2 counts in terms of the oscillation frequency. There are 3
different scales- 1:1, 1:4, and 1:16. If 1:1 is selected, TMR2 counts at every oscillation cycle
(i.e. 0.2µs in 20MHz oscillator). The ratio of 1:4 makes TMR2 count at every 4th oscillation
cycle. This means the counting frequency is four timer slower than 1:1 ratio. Then, the ratio of
1:16 slows the counting further to 16 times of the oscillation cycle. The content of TMR2
register is continuously compared with PR2 register. Note that PR2 stores the PWM period
information. When they are matched, and internal interrupt is generated to indicate the overflow.
The post-scaler is to control the frequency of the interrupt flagging. If ratio of 1:1 is selected for
postscale, the interrupt flag is issued every time TMR2 and PR2 are matched. If for example 1:16
is selected, the flag will be issued at every 16th time they are matched.

T2CON register shown in the figure is to control the ratios of pre-scaler and post-scaler. Also,
there is a bit (bit2, TMR2ON) which controls the On/Off of the TMR2 module.

T2CON Register

--- TPS3 TPS2 TPS1 TPS0 TMR2ON T2PS1 T2PS0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Bit 7: Unused

Bit 6:3 Timer2 Output Postscale Select Bits
 0000 = 1:1
 0001 = 1:2
 .
 .
 1111 = 1:16

Bit 2 Timer2 ON bit
 1 = Timer2 ON
 0 = Timer2 OFF

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

377

Bit 1: 0 Timer2 Clock Prescale Select Bits
 00 = 1
 01 = 4
 1x = 16

Since we already selected our pre-scale as 16, we choose the 1:16 ratio by selecting bits 1 and 0
of T2CON as 11 or 10. For post-scale, we choose 1:1 ratio by selecting TPS3:TPS0 as 0000.
Finally we turn on TMR2 module by setting the TMR2ON bit. In all, the proper byte data for
T2CON is then, 00000111=0x07. We selected 0 for the bit 7 and 1 for the last bit. The fourth
step can be realized by the following lines of code:

banksel T2CON
;TMR2 Prescale selection and TMR2 Turn On

movlw 0x07
movwf T2CON

Fifth and the last step in the PWM setting is to select the PWM mode from CCP module by
CCP1CON register bit selection. In CCP1CON, the last four bits, CCPM3:CCPM0 are assigned
for mode selection, and 11xx bit formation is for PWM mode. So the following simple lines
would suffice for the fifth step:

;PWM module selection from CCP1CON
;PWM module is selected 11xx of the lower nibble of CCP1CON

banksel CCP1CON ;PWM Turn ON
bsf CCP1CON, 0x03 ;11xx<3:0> is PWM mode
bsf CCP1CON, 0x02

Example Code of PWM
The following code shows a complete PWM program which generates a pulse of 0.5ms period
with duty cycle of 50% at CCP1 pin of 16F877. The pulse we can see is a continuous stream of
0.25ms long +5V DC signal followed by 0.25 ms long 0V signal. Readers would appreciate the
many line of comments at the upper part of the code in particular.

;PWM-1.ASM
;
;This program uses CCP1 module with TMR2 for
;PWM signal generation at ccp1 (RC2) pin
;
; PWM with 0.5 ms period with 50% duty cycle
; |-----|
;---| |-----
;
;

list P = 16F877

STATUS EQU 0x03
INTCON EQU 0x0b
TMR2 EQU 0x11
PIE1 EQU 0x8c

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

378

PIR1 EQU 0x0c
PR2 EQU 0x92 ;
CCP1CON EQU 0x17
CCPR1L EQU 0x15
T2CON EQU 0x12
TRISC EQU 0x87
B5 EQU 0x05
B4 EQU 0x04
PWM1 EQU 0x02
TMR2IF EQU 0x01

CBLOCK 0x20 ; RAM AREA for USE at address 20h
FIFTY

ENDC ;end of ram block
;
;===

org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;==
; 16F877 Clock Frequency = 20 MHz
; Tosc = 1/[Clock Frequency]
; PWM Period = 2000Hz = 0.0005 Sec
; TMR2 Prescale = 16
; PR2 = (period / [4*Tosc*Prescale]) - 1
; = 155
; = 0x9b
; PWM Ducty Cycle = 50% of the PWM period
; = 0.5 *(0.0005)=0.00025
; --->[0.00025]/[5*10^(-8)*16]=312.5 ---> 313--->0x139
; CCPR1L CCP1CON
; 76|5432|10 76|54|3210
; 01|0011|10 |01|
; CCPR1L:CCP1CON<5:4>=(PWM Duty Cycle)/(Tosc*Prescale)=139h
; CCPR1L = 0x4e
; CCP1CON<5:4>=b'01'
;

org 0x0005
START

banksel PIE1
clrf PIE1
banksel CCP1CON
clrf CCP1CON
clrf TMR2
clrf INTCON
clrf PIR1
movlw 0x4e ;50% Duty Cycle
movwf FIFTY

; PWM Period Setting
banksel PR2
movlw 0x9b ;2000Hz Period
movwf PR2
banksel FIFTY

;PWM Duty Cycle
;50% is selected for 5 seconds

movf FIFTY, 0 ;Move 50% Duty Data to W reg.
movwf CCPR1L

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

379

bcf CCP1CON, B5
bsf CCP1CON, B4

;TRISC Setting for output
banksel TRISC
bcf TRISC, PWM1
banksel T2CON

;TMR2 Prescale selection and TMR2 Turn On
movlw 0x07
movwf T2CON

;CCP1CON Module Setting
;

banksel CCP1CON ;PWM Turn ON
bsf CCP1CON, 0x03 ;11xx<3:0> is PWM mode
bsf CCP1CON, 0x02

END

Next example code is the continuation and extension of the 0.5ms 50% duty PWM signal
generation. This code is to generate PWM of 0.5ms period with 50% duty cycle for 5 seconds,
2 second delay, followed by 5 seconds of same PWM but with 20% duty cycle. Readers are
encouraged to pay attention to the comments line in the upper part of the code. The first PWM is
generated for 5 seconds, the PWM is off for 2 seconds, and then with 20% duty cycle it is ON
again for the next 5 seconds before it goes off. Time delay subroutines are those developed with
'time delay without using timer module.'

;PWM-2.ASM
;
;This program uses CCP1 module with TMR2 for
;PWM signal generation at ccp1 (RC2) pin
;
; PWM with 2KHz 50% duty cycle for 5 seconds, with 2 sec delay
; followed by 5 seconds of 20% duty cycle
;

list P = 16F877

STATUS EQU 0x03
INTCON EQU 0x0b
TRISD EQU 0x88
PORTD EQU 0x08
TMR2 EQU 0x11
PIE1 EQU 0x8c
PIR1 EQU 0x0c
PR2 EQU 0x92 ;
CCP1CON EQU 0x17
CCPR1L EQU 0x15
T2CON EQU 0x12
TRISC EQU 0x87
B5 EQU 0x05
B4 EQU 0x04
PWM1 EQU 0x02
TMR2IF EQU 0x01
LED1 EQU 0x01
LED0 EQU 0x00

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

380

CBLOCK 0x20 ; RAM AREA for USE at address 20h
FIFTY
TWENTY
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC ;end of ram block
;
;
;===

org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;==
;IF
; 16F877 Clock Frequency = 20 MHz
; Tosc = 1/[Clock Frequency]
; PWM Period = 2000Hz = 0.0005 Sec
; TMR2 Prescale = 16
;THEN,
; PR2 = (period / [4*Tosc*Prescale]) - 1
; = 155
; = 0x9b
;-----
;IF
; PWM Ducty Cycle = 50% of the PWM period
; = 0.5 *(0.0005)=0.00025
; --->[0.00025]/[5*10^(-8)*16]=312.5 ---> 313--->0x139
; CCPR1L CCP1CON
; 76|5432|10 76|54|3210
; 01|0011|10 |01|
;THEN
; CCPR1L:CCP1CON<5:4>=(PWM Duty Cycle)/(Tosc*Prescale)=139h
; CCPR1L = 0x4e
; CCP1CON<5:4>=b'01'
;--
;IF
; PWM Ducty Cycle = 20% of the PWM period
; = 0.2 *(0.0005)=0.0001
; --->[0.0001]/[5*10^(-8)*16]=125 --->0x7D
; CCPR1L CCP1CON
; 76|5432|10 76|54|3210
; 00|0111|11 |01|
;THEN
; CCPR1L:CCP1CON<5:4>=(PWM Duty Cycle)/(Tosc*Prescale)=7dh
; CCPR1L = 0x1f
; CCP1CON<5:4>=b'01'
;
;

org 0x0005
START

banksel TRISD
clrf TRISD
banksel PORTD

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

381

clrf PORTD
banksel PIE1
clrf PIE1
banksel CCP1CON
clrf CCP1CON
clrf TMR2
clrf INTCON
clrf PIR1
movlw 0x4e ;50% Duty Cycle
movwf FIFTY
movlw 0x1f ;20% Duty Cycle
movwf TWENTY

; PWM Period Setting
banksel PR2
movlw 0x9b ;2000Hz Period
movwf PR2
banksel FIFTY

;PWM Duty Cycle
;50% is selected for 5 seconds
DUTY

movf FIFTY, 0 ;Move 50% Duty Data to W reg.
banksel PORTD
bsf PORTD, LED1

movwf CCPR1L
bcf CCP1CON, B5
bsf CCP1CON, B4

;TRISC Setting for output
banksel TRISC
bcf TRISC, PWM1
banksel T2CON

;TMR2 Prescale selection and TMR2 Turn On
movlw 0x07
movwf T2CON

;CCP1CON Module Setting
banksel CCP1CON ;PWM Turn ON
bsf CCP1CON, 0x03 ;11xx<3:0> is PWM mode
bsf CCP1CON, 0x02
banksel PORTD
bsf PORTD, LED1
call delay1s
call delay1s
call delay1s
call delay1s
call delay1s ;Pulse is generated during this period
banksel CCP1CON
bcf CCP1CON, 0x03 ;PWM off
bcf CCP1CON, 0x02
bcf CCP1CON, 0x01
bcf CCP1CON, 0x00
banksel PORTD
bcf PORTD, LED1
call delay1s
call delay1s ;PWM is off during this period

banksel TWENTY
movf TWENTY,0

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

382

banksel PORTD ;20% duty
bsf PORTD, LED0
banksel CCPR1L
movwf CCPR1L
bcf CCP1CON, B5
bsf CCP1CON, B4
banksel CCP1CON ;PWM Turn ON
bsf CCP1CON, 0x03 ;11xx<3:0> is PWM mode
bsf CCP1CON, 0x02
call delay1s
call delay1s
call delay1s
call delay1s
call delay1s ;PWM with 20% duty generated
banksel PORTD
bcf PORTD, LED0
banksel CCP1CON
bcf CCP1CON, 0x03 ;PWM off
bcf CCP1CON, 0x02
bcf CCP1CON, 0x01
bcf CCP1CON, 0x00
call delay1s
call elay1s ;PWM off for 2 seconds
goto DUTY ;Do it again

;
;==
;DELAY SUBROUTINES

; 1 instruction cycle for 20MHz clock is 0.2 us
; Therefore 120 uS delay needs 600 instuction cycles
; 600 =199*3 +3 ---->Kount=199=0xC7
; or =198*3 +6 ---->Kount=198=0xC6
; or =197*3 +9 ---->Kount=197=0xC5

Delay120us
banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

R120us
decfsz Kount120us
goto R120us
return

;
;100us delay needs 500 instruction cycles
; 500 =166*3 +2 ---->Kount=166=0xA6
; or =165*3 +5 ---->Kount=165=0xA5
; or =164*3 +8 ---->Kount=164=0xA4
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

Chapter 13. CCP Module and PWM

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

383

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;10 s delay
;call 10 times of 1 s delay
Delay10s

banksel Kount10s
movlw H'0A' ;10
movwf Kount10s

R10s call Delay1s
decfsz Kount10s
goto R10s
return

;
;1 min delay
;call 60 times of 1 sec delay
Delay1m

banksel Kount1m
movlw H'3C' ;60
movwf Kount1m

R1m call Delay1s
decfsz Kount1m
goto R1m
return

;==

END

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

