
Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

311

Chapter 11. A Voice-Synthesizer Project

This chapter is the extension of the previous chapter so that we generate voice from the typed
words from the keyboard, using a voice synthesizer board. Imagine that a person communicate
in a written form and wants it to be spoken. So the person can see what is s typed and the party
can hear what the person intends to say. This feature needs a voice synthesizer which does the
text-to-voice conversion.

1. DoubleTalk RC8650 Voice Synthesizer

The DoubleTalk RC8650 is versatile voice and sound synthesizers, integrating a sophisticated
text-to-speech processor, audio recording and playback, musical and sinusoidal tone generators,
telephone dialer and A/D converter, all in easy to use chipsets. This chipset translate plain
English text into speech in real time, without the assistance of a PC or high-powered processor.
It enables us to add text-to-speech capability to virtually any design, quickly and painlessly.

In addition, integrated tone generators provide telephone dialing, music, and programmable
signaling tones. Up to 3.5 MB of built in, flash-based recording memory can store up to 15 minutes
of sound files, which can be played back on demand by the host.

The RC8650 chip set is comprised of two surface-mounted devices: the RC8650 and RC4651.
Both operate from a +5 V supply and consume very little power. In many cases, all that is needed
to build a fully functional system is a low pass filter and audio amplifier (which can often be
combined into the same circuit).

As text messages are sent to the RC8650, the RC8650 automatically converts the messages into
speech using an integrated text-to-speech processor. The TTS processor utilizes RC Systems'
DoubleTalk TTS technology, which is based on a patented voice concatenation technique using
real human voice samples. Voice control parameters, such as speed, volume, tone, pitch and
expression, can also be embedded within the text stream for dynamic on-the-fly voice control.
RS-232 compatible serial and 8 bit bus interfaces are included to allow the chipset to interface
to virtually any CPU or microcontroller.

Fig. 79 RC8650FP

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

312

Fig. 80 RC4651FP

The DoubleTalk RC8650 Evaluation Kit enables you to experiment with the RC Systems
RC8650 voice synthesizer chip set. Included in the kit are:

• Evaluation board containing the RC8650 chip set
• Speaker with volume control
• Serial cable
• RC8650 Studio software

The evaluation board is a complete, versatile voice synthesizer which can be used with the
RC8650 Studio software as well as in stand-alone applications. The board includes the RC8650
voice synthesizer chip set, audio power amplifier, voltage regulator, RS-232C interface, and
parallel I/O port. The chip set's I/O lines are made accessible through header connectors near the
edge of the board. SW1 in the evaluation board is the Reset switch. Press once when we meet
some problem.

Fig. 81 RC8650 Evaluation board

The RC8650 Studio software is NOT required, however, in order to use the evaluation board.
The board can be used "stand-alone" if desired by simply printing the desired text and commands
to it via the board's serial or parallel ports.

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

313

So we directly tap the RXD and TXD pin of RC8650 chip set for direct serial communication
with 16F877 without passing through RS-232 level converter such as MAX232. In this stand-
alone application, a text word typed is voiced after a CR key is provided to RC8650 voice
synthesizer.

2. Operating Modes of RC8650 Chip Set
The RC8650 has six primary operating modes and two low-power modes designed to achieve
maximum functionality and flexibility. The operating mode can be changed anytime, even on the
fly. Note The RC8650 does not make any distinction between uppercase and lowercase
characters. Text and commands may be sent as all uppercase, all lowercase, or any combination
thereof.

Text mode. In this mode, all text sent to the RC8650 is spoken as complete sentences.
Punctuation is also taken into consideration by the intonation generation algorithms. The
RC8650 will not begin speaking until it receives a CR (ASCII 13) or Null (ASCII 00)
character—this ensures that sentence boundaries receive the proper inflection. This is the default
operating mode.

Character mode. This mode causes the RC8650 to translate input text on a character-by-character
basis; i.e., text will be spelled instead of spoken as words. The RC8650 does not wait for
a CR/Null in this mode.

Phoneme mode. This mode disables the RC8650’s text-to-phonetics translator, allowing the
RC8650’s phonemes to be directly accessed. Phonemes in the input buffer will not be spoken
until a CR or Null is received.

Real Time Audio Playback mode. In this mode, data sent to the RC8650 is written directly to its
audio buffer. This results in a high data rate, but provides the capability of producing the highest
quality speech, as well as sound effects. PCM and ADPCM data types are supported.

Prerecorded Audio Playback mode. This mode allows recorded speech and sound effects to be
stored on-chip and played back at a later time. PCM and ADPCM data types are
supported.

Tone Generator modes. These modes activate the RC8650’s musical tone generator, sinusoidal
generator, or DTMF generator. They can be used to generate audible prompts, music, signaling
tones, dial a telephone, etc.

Idle mode. To help conserve power in battery-powered systems, the RC8650 automatically
enters a reduced-power state whenever it is inactive. Data can still be read and written to the
RC8650 while in this mode. Current draw in this mode is typically 1 mA.

Standby mode. This mode powers down the RC8650, where current draw is typically only 2 µA.
Standby mode can be invoked from either the STBY# pin or with the Sleep command. Data can-
not be read from or written to the RC8650 in this mode.

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

314

3. Commands of RC8650
The commands described in the following pages provide a simple yet flexible means of
controlling the RC8650 under software control. They can be used to vary voice attributes, such
as the volume or pitch, to suit the requirements of a particular application or listener’s
preferences. Commands are also used to change operating modes. Commands can be freely
intermixed with the text that is to be spoken, allowing the voice to be dynamically controlled.
Commands affect only the data that follows them in the data stream.

The command character. The default RC8650 command character is Control-A (ASCII 01). The
command character itself can be spoken by the RC8650 by sending it twice in a row: Control-A
Control-A. This special command allows the command character to be spoken without affecting
the operation of the RC8650, and without having to change to another command character and
then back again.

Command Syntax. All RC8650 commands are composed of the command character, a parameter
n comprised of a one to three-digit number string, and a single string literal that uniquely
identifies the command. Some commands simply enable or disable a feature of the RC8650 and
do not require a parameter. The general command format is:
<command character>[<number string>]<string literal>
If two or more commands are to be used together, each must be prefaced with the command
character. This is the only way the RC8650 knows to treat the remaining characters as a
command, rather than text that should be spoken. For example, the following commands
program pitch level 40 and volume level 7 (Control-A is the default command character):

Control-A "40P" Control-A "7V"

4. Some Global Commands of RC8650

Voice (nO). The text-to-speech synthesizer has eight standard voices and a number of individual
voice controls that can be used to independently vary the voice characteristics. Voices are
selected with the commands 0O through 7O, shown in Table 2.3. Because this command alters
numerous internal voice parameters (pitch, expression, tone, etc.), it should precede any
individual voice control commands.

n Voice Name

0
1
2
3
4
5
6
7

Perfect Paul(default)
Vader
Big Bob
Precise Pete
Ricochet Randy
Biff
Skip
Robo Robert

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

315

Volume (nV). This is a global command which controls the RC8650’s output volume level, from
0V through 9V. 0V yields the lowest possible volume; maximum volume is attained at 9V. The
default volume is 5V. The Volume command can be used to set a new listening level, create
emphasis in speech, or change the output level of the tone generators.

DTMF Generator (n*). The DTMF (Touch-Tone) generator generates the 16 standard tone pairs
commonly used in telephone systems. Each tone pair generated by the RC8650 is 100 ms in
duration, more than satisfying the telephone signaling requirements (this can be extended to 500
ms with the Protocol Options Register command). The mapping of the command parameter n to
the buttons on a telephone is shown below. The “pause” tone is used to generate the inter-digit
delay in phone number strings. The generator’s output level can be adjusted with the Volume
command (nV). DTMF commands are buffered, and may be intermixed with text and other
commands without restriction.

n Button

0
-
-
9
10
11
12
13
14
15
16

0
-
-
9
*

A
B
C
D

pause

5. Coding Example for RC8650

As mentioned above we tap the RXD (pin#35) and TXD (pin# 36) of RC8650 chip for serial
communication with 16F877. Since we need the hardware implemented serial communication
and the MAX232 for hex code download from the PC we work for coding, we utilize the
software implemented serial communication (refer to Chapter 6) for the connection with
RC8650, and we pick RD5 and RD4 for RX and TX pins for 16F877, respectively.

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

316

Fig. 82 RC8650 connection to PIC 16F877

The example code is to simply dial a number and generate the voice for a text of "I LOVE
YOU." We will test all 8 different voices supported by the chip set and control volume of the
voice.

First we can set the volume to 4 by the following routine. Since every command should start with
the command character Control-A, we start with it and use the global command format for
volume. Note that every command and attribute is entered as character. CTRLA is declared as
0x01 ASCII code. Subroutine TXSW is 19200 bps software generated serial communication
(transmission) routine that we already discussed in Chapter 6.

;

movlw CTRLA
call TXSW
movlw '4'
call TXSW
movlw 'V'
call TXSW ;Send CTRL-A > 4 > V

For voice, we want to apply all 8 different voices, so we first assign 0 to a register, VOICE, and
increase by 1 after we generate the sound of the text "I Love You". By the way, the default
operational mode of RC8650 chip set is the text-mode which coverts text to voice.

The phone dialing precedes the "I Love You" message. The phone dialing, or DTMF generation,
is done by the following order of command and each digit of phone number:

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

317

CTRL-A > Digit_1>*>CTRL-A>Digit_2>*CTRL-A>Digit_n>*.
In other words, the CTRL-A should come before the number and it should be followed by the
star (*) mark.

The following instructions dial and generate DTMF of the author's office number:202-806-4821
with preceding '1' for long distance call indication.

movlw CTRLA
call TXSW
movlw '1'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '2'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '0'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '2'
call TXSW
movlw TXSW

movlw CTRLA
call TXSW
movlw '8'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '0'
call TXSW
movlw '*'
call TXSW

movlw CTRLA

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

318

call TXSW
movlw '6'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '4'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '8'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '2'
call TXSW
movlw '*'
call TXSW

movlw CTRLA
call TXSW
movlw '1'
call TXSW
movlw '*'
call TXSW

This long lines of the code can be simplified by developing a subroutine and a table. First, let's
make a table for the phone number:

;=== Phone Number Table=
PhoneTable

movf PHONEdigit,0
addwf PCL

;PC+0
DT "12028064821" ;11 numbers
retlw 0

As we see above it looks very clean and simple with table format. Now let's have a dialing
subroutine which dials the numbers stored in the PhoneTable table. In the Dialing
subroutine, the PhoneTable is called 11 times, and at each time, with PC increased, the next
number is restored to W register for writing to RC8650. The command CTRL-A and star mark
(*) are wrapping the phone number for DTMF generation.

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

319

Dialing movlw 0x0B ;11 phone digits

movwf Ptemp
clrf PHONEdigit

Dagain movlw CTRLA
call TXSW
call PhoneTable ;get the number
call TXSW
movlw '*'
call TXSW
incf PHONEdigit
decfsz Ptemp
goto Dagain
return

The burst duration of the DTMF is 100ms in the default setting of the chip set. We can change
the duration to 500ms by changing the content of Protocol Options Register of the chip set.
Details on this subject is left to the readers, and here goes the command for 500ms burst
duration:
CTRL-A >"1">"6">"0">"G".

Selection of a voice comes with CTRL-A followed by the voice number, 0 through 7, and the
letter O, as shown below

movlw CTRLA
call TXSW
movf VOICE,0 ;write the VOICE
call TXSW
movlw 'O'
call TXSW

Since the text mode is the default mode of RC8650, write a message is pretty simple. For "I
Love You! " message, we go like this:

movlw 'I'
call TXSW
movlw ' ' ;space
call TXSW
movlw 'L'
call TXSW
movlw 'o'
call TXSW
movlw 'v'
call TXSW
movlw 'e'
call TXSW
movlw ' ' ;space
call TXSW
movlw 'Y'
call TXSW
movlw 'o'
call TXSW
movlw 'u'

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

320

call TXSW
movlw 'I'
call TXSW

As we did in phone number, the text message can also be simplified by a subroutine and a table.
First, the message table looks like this:

MessageTable

movf MESSAGEdigit,0
addwf PCL
DT "I LOVE YOU!" ;11 texts
retlw 0

And the subroutine for text message writing goes as shown below. There are 11 character
readings and writings without any other commands and command characters. When all
characters in the text message are read, then CR is written to RC8650 to signal the end of the text
message and to request for conversion to voice.

;Subroutine Message
Message

movlw 0x0B ;11 characters
movwf Mtemp
clrf MESSAGEdigit

Magain
call MessageTable ;read a text
call TXSW
incf MESSAGEdigit
decfsz Mtemp
goto Magain
movlw 0x0D
call TXSW ;CR key for voicing after 11 readings
return

Since this is the first incidence of RC8650 voice synthesizer application, the following code lists
the full program. When you run this, you would hear very quick digital dialing sound from the
speaker (100ms per each digit) followed by a voice saying "I Love You." This dialing and
message repeats for 8 different voices.

;RC8650.asm
;
;TABLE IS USED TO SIMPLIFY THE PROGRAM
; FOR PHONE NUMBER
;AND
;TEXT MESSAGE
;
;This program is to:
; 1. test the RCS8650 voice synthesizer evaluation board
; 2. Send ASCII word followed by CR key
; 3. Then the sound must be generated from the speaker attached to the board
; 4. Connection
; DB9 of 16F877 to DB9 of RC6850 Board
;
; This connection is made without using MAX232 chips at both sides

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

321

;Direct connection between 16F877 and RC8650

; Baud rate for this is set as 19200
;
;This program is asynchronous communication using software method
;
;F = 20 MHz
;B = Baud Rate
;For B=19200, one Baud cycle (BC) is about 52uS
;
;
;TRANSMIT MODE
;First START bit is sent by setting the TX pin to LOW for (BC) seconds
;And, from then on, the TX Pin is Set/Cleared corresponding to the data bit
;every (BC) seconds.
;8N1 format
;
;TX Pin = RD4
;RX Pin = RD5
;
;Terminal set up: 8N1 19200
;
;

list P = 16F877

PCL EQU 0x02
STATUS EQU 0x03
CARRY EQU 0x00
TRISD EQU 0x88
PORTD EQU 0x08
TXPIN EQU 0x04 ;RD4
RXPIN EQU 0x05 ;RD5
MSB EQU 0x07
CTRLA EQU 0x01 ;RC8650 Command Character
;
;note

;RAM for DELAY SUBROUTINE
CBLOCK 0x20 ; RAM AREA for USE at address 20h

PHONEdigit
Ptemp
MESSAGEdigit
Mtemp
VOICE
Kount52us
Kount100us
Kount10ms
Kount100ms
Kount1s
RCSreg ;data to RCS's RC8650
Bitcount ;data bit count
Kount ;Delay count (number of instr cycles for delay)

ENDC

;===

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

322

org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;==
org 0x05

START

banksel TRISD
; Port setting (1 for input and 0 for output)
; 1110 0000

movlw 0xE0
movwf TRISD
banksel PORTD
bcf PORTD,0x00
bcf PORTD,0x01

;RD4 - TXPin (out) RD5 - RXPin (in)

;TEXT MODE is DEFAULT MODE

;Default mode of RC8650 is Text mode
;So keep this
;Change the volume by nV command
;n = [0,9] with 5 as default
;Change to 4

movlw CTRLA
call TXSW
movlw '4'
call TXSW
movlw 'V'
call TXSW

movlw 0x30
movwf VOICE ;starting from 0

BEGIN
banksel RCSreg
clrf RCSreg

;Change the Voice to nO command
;0 for Perfect Paul (Default)
;1 for Vader
;2 for Big Bob
;3 for Precise Pete
;4 for Ricochet Randy
;5 for Biff
;6 for Skip
;7 for Robo Robert
;
;Apply all 8 voices one at a time

movlw CTRLA
call TXSW
movf VOICE,0 ;write the VOICE
call TXSW
movlw 'O'

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

323

call TXSW
;

call Dialing
call delay1s
call delay1s

;Text Message

call Message
call delay1s
call delay1s

;next voice
incf VOICE
btfss VOICE,0x03 ;third bit =1 means VOICE=8
goto BEGIN
movlw 0x30
movwf VOICE ;again with 0
call delay1s
call delay1s
goto BEGIN

;=== Phone Number Table=
PhoneTable

movf PHONEdigit,0
addwf PCL

;PC+0
DT "12028064821" ;11 numbers
retlw 0

;
MessageTable

movf MESSAGEdigit,0
addwf PCL
DT "I LOVE YOU!" ;11 texts
retlw 0

;
;Subroutine Dialing

;DTMF Generation (command is n*)
;Call the following Number
;1-202-806-4821
;DTMPF usual (default) burst duration is 100ms
;this could become 500ms by changing the Protocol Options Register
;by nG command
; CTRLA>"1">"6">"0">"G" would change it to 500ms
;Fro details see the RC8650 data sheet
Dialing

movlw 0x0B ;11 phone digits
movwf Ptemp
clrf PHONEdigit

Dagain
movlw CTRLA
call TXSW
call PhoneTable

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

324

call TXSW
movlw '*'
call TXSW
incf PHONEdigit
decfsz Ptemp
goto Dagain
return

;
;Subroutine Message
Message

movlw 0x0B ;11 characters
movwf Mtemp
clrf MESSAGEdigit

Magain
call MessageTable
call TXSW
incf MESSAGEdigit
decfsz Mtemp
goto Magain
movlw 0x0D
call TXSW ;CR key for voicing
return

;Software TX routine
;The data to be sent is stored in W
TXSW

banksel RCSreg
movwf RCSreg
movlw 0x08 ;8 --->W
movwf Bitcount ;8 data bits

;send a START bit
bcf PORTD, TXPin

;delay for 1*(BC) cycles
call Delay52us ;Keep this!

TXNEXT
bcf STATUS, CARRY
rrf RCSreg ;LSB first mode (normal)
btfsc STATUS,CARRY
bsf PORTD, TXPin
btfss STATUS,CARRY
bcf PORTD, TXPin
call Delay52us
decfsz Bitcount
goto TXNEXT

;send STOP bit
bsf PORTD, TXPin
call Delay52us ;

;wait until the end of STOP bit
return

;
;===SUBROUTINES ====
;delay 52us for one baud cycle of 19200 bps
Delay52us

movlw 0x54

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

325

movwf Kount52us
R52us decfsz Kount52us

goto R52us
return

;==
;DELAY SUBROUTINES
;
;100us delay needs 500 instruction cycles
; 500 =166*3 +2 ---->Kount=166=0xA6
; or =165*3 +5 ---->Kount=165=0xA5
; or =164*3 +8 ---->Kount=164=0xA4
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;END OF CODE

END

3. Coding for a Complete System of Voice Synthesizer, LCD, and Keyboard

Now, it's about time to connect the keyboard, the LCD module, and the RC8650 evaluation
system for the final version of this application. Our scheme here is that the keyed characters are
displayed to the LCD module and that the texts are pronounced as text message when CR key is
entered. As we know, the CR key also moves the cursor to the first position of the next line of

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

326

the current cursor position. The schematic for the connections and pin assignments are as
shown below.

Fig. 83 Keyboard and LCD module connection to RC8650 evaluation system

Before we examine an example code for this final version, let's consider some new stuffs we
bring to the project compared with the previous version. First, we have to have a storage space
to store texts so that, when CR is pressed, we retrieve them and write to the RC8650 chip set for
text-to-voice conversion. Second, we have to accommodate the BS key. When BS key is
pressed, we have to not only move the cursor on LCD module to move back by one space but
also change the stored text so that the keys after the BS overrides the text previously entered in to
a storage location.

Let's discuss about saving the entered characters. Since we have general purpose register spaces
in Bank 1 (Bank 0 spaces are usually occupied by the variables defined in the program.) of the
RAM, we will going to use the first 80 bytes of the free space in Bank 1. Since we have 4x20
(total of 80 characters), the first 80 spaces, starting from address A0h, completely fit to our
purpose. For this allocation, we will use an indirect addressing mode by using INDF and FSR
registers. INDF register is the indirect file register to hold a byte data and FSR is the file register
selection register. The content of FSR is the address of INDF. INDF is not a physical register
and FSR is the address pointer for INDF. In other words, if FSR contains A0h, and if you have
the following instruction:

movlw 'A'
movwf INDF

Then, the hex number 41h (for 'A') would be written to the address A0h indicated by FSR. If you
want to write 'B' at the address A1h, you increase FSR by 1 and write it to INDF:

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

327

incf FSR
movlw 'B'
movwf INDF

So, as we wee here, there is no direct contact or control with INDF register, instead, they are
performed via FSR.

In example code, we store any character to the storage space staring at A0h until we receive a
CR key. When CR is entered, we send the whole text to RC8650 chip set followed by CR
(which triggers the text to voice conversion). After the conversion, we move the FSR to the
original A0h address so that the next can be overwritten.

So, whenever a text (other than CR or BS) is entered, it is interpreted to ASCII character using
the table of NoSHiftKeyTable, ShiftKeyTable, or CAPKeyTable, depending upon
the pressing of Shift or Caps Lock key, or not. Then, it is displayed on the LCD module, and at
the same time, the storage address for the text is increased by 1 and the count for number of texts
entered is also increased by 1. The variable Nchar in the instruction below monitors the
number of texts stored for the voice conversion.

An example code when no Shift or Caps Lock key is pressed.

call NoShiftKeyTable ;(X) display
movwf INDF ;store the character at INDF
incf FSR
incf Nchar
call LCDisplay

An example code when Caps Lock key is pressed.

call CAPKeyTable
movwf INDF ;store the character at INDF
incf FSR
incf Nchar
call LCDisplay

The subroutine for converting the stored texts into voice is shown below. The subroutine
VoiceText changes the RC8650 mode to text mode (this is not required since the default mode is
the text mode), then write the stored texts as numbered by the content of Nchar in the software
implemented, asynchronous serial communication routine TXSW. After writing all the texts
stored, it then sends CR to trigger the RC8650 to convert the texts to voice. Once the job is
done, it moves the storage starting address to A0h.

;subroutine
VoiceText
;if Nchar=0 return (nothing to display)

movlw CTRLA
call TXSW
movlw 'T'
call TXSW ;text mode

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

328

banksel Nchar
movf Nchar,0
clrf STATUS
xorlw 0x00
btfsc STATUS,ZERO
return
movlw 0xA0
movwf FSR

NextChar
movf INDF,0
call TXSW
decfsz Nchar
goto domore
movlw 0x0D ;voice ON
call TXSW
movlw 0xA0
movwf FSR
return

DOmore
incf FSR
goto NextChar

When BS key in entered, the address pointer for the text must be decreased by 1 and the number
of texts must be also decreased by 1:

decf FSR
decf Nchar

Even though we discussed in detail about the LCD display of the keyboard keys, since this final
version involves very important part of voice conversion, the following code lists the full
program for the connection of a AT or PS/2 type keyboard, an 20x4 LCD module with 4-bit
interfacing scheme, and a voice synthesize chip set of RC8650. Check for the changes in the
PCLATH related instruction at the tables.

;kbd6.asm
;
;kbd-LCD-Voice Synthesizer connection
;CR key will start the text-voice conversion
;
;texts tpyed are stored at the RAM space (bank 1) starting @A0
;using FSR pointer and INDF register
;FSR directs the INDF register
;When CR is entered, then the text-voice routine is called
;to make sounds.
;
; Baud rate for this is set as 19200 for SW enabled Serial Communication
; to RC8650 Chip Set
;
;This program is asynchronous communication using software method

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

329

;
;F = 20 MHz
;B = Baud Rate
;For B=19200, one Baud cycle (BC) is about 52uS
;
;
;TRANSMIT MODE
;First START bit is sent by setting the TX pin to LOW for (BC) seconds
;And, from then on, the TX Pin is Set/Cleared corresponding to the data bit
;every (BC) seconds.
;8N1 format
;
;TX Pin = RD4
;RX Pin = RD5
;
; LCD is with 4-bit interfacing
;
;CR key would change the line
;
; Pin Connection from LCD to 16F877
; LCD (pin#) 16F877 (pin#)
;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;E (6) ------RB2(35)
;RW (5) -----RB3(36)
;RS (4) -----RB1(24)
;Vo (3) -----GND
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;KEYBOARD Interfacing
;CLOCK -----RD7 (input)
;DATA ------RD6 (input)
;
;==RC8650 pin connection ==
;RD4 - TXPin (out)
;RD5 - RXPin (in)

list P = 16F877
INDF EQU 0x00 ;indirect register
FSR EQU 0x04 ;Pinter of INDF
STATUS EQU 0x03
PCL EQU 0x02 ;For Key Table Calling
PCLATH EQU 0x0A ;upper part of PC
CARRY EQU 0x00
BORROW EQU 0x00
ZERO EQU 0x02
PORTB EQU 0x06
TRISB EQU 0x86
RS EQU 0x01 ;RB1
E EQU 0x02 ;RB2
RW EQU 0x03 ;RB3
TRISD EQU 0x88
PORTD EQU 0x08
CARRY EQU 0x00

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

330

MSB EQU 0x07
CLOCK EQU 0x07 ;from Keyboard (RD7)
KDATA EQU 0x06 ;from Keyboard (RD6)
TXPIN EQU 0x04 ;to RC8650
RXPIN EQU 0x05 ;RD5
MSB EQU 0x07
CTRLA EQU 0x01 ;RC8650 Command Character

;RAM Area

CBLOCK 0x20
RCSreg ;RC8650
VOICE

;
CURSOR ;tracking the current display position

;CURSOR (tracking purpose) (Decimal)
;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 line1
;21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 line 2
;41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 line 3
;61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 line 4
;
;DDADDR CONTENT read from LCD Module (HEX)
;00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 line1
;40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 line 2
;14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 line 3
;54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 line 3

DDaddr ;Display address (cursor pos)
DDtemp1
DDtemp2
Nchar

Dkey ;Key character to be displayed
DATAreg
Bitcount
Kstat
Kount52us
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount100ms
Kount1s
Kount10s
Kount1m
Temp ;temp storage

ENDC

;program should start from 0005h
;0004h is allocated to interrupt handler

org 0x0000
goto START

org 0x05

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

331

Start

banksel TRISD
; 1100 0000

movlw B'11100000' ;Rd7 for CLOCK and Rd6 for DATA as inputs
;rd5 as RX from RC8600
;rd4 as TX to RC8600

movwf TRISD

call delay1s ;Give Keyboard to send STATUS to the host

BANKSEL TRISB
movlw 0x00
movwf TRISB ;All output

banksel PORTB
clrf PORTB ;RW set LOW here

clrf CURSOR ;Current Display Location
incf CURSOR ;Home cursor position (1, 1)

;LCD routine starts
call delay10ms
call delay10ms

banksel PORTB
clrf PORTB ;RW set LOW here

;give LCD module to reset automatically
call LCD4INIT

;END OF LCD INITIALIZATION
;RC8600 setup
;TEXT MODE is DEFAULT MODE

;Default mode of RC8650 is Text mode
;So keep this
;Change the volume by nV command
;n = [0,9] with 5 as default
;Change to 6

movlw CTRLA
call TXSW
movlw '6'
call TXSW
movlw 'V'
call TXSW

;VOICE TYpE SELECTION
;Change the Voice to nO command
;0 for Perfect Paul (Default)
;1 for Vader
;2 for Big Bob
;3 for Precise Pete
;4 for Ricochet Randy
;5 for Biff
;6 for Skip
;7 for Robo Robert

movlw CTRLA

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

332

call TXSW
movwf '1' ;perfect Paul
call TXSW
movlw 'O'
call TXSW

;
movlw 0xA0
movwf FSR ;data pointer @A0 in Bank 1

;receiving data
banksel Nchar
clrf NCHAR ;number of data entered

;===
;KBD Monitoring
BEGIN

banksel DATAreg
clrf DATAreg
clrf DDADDR ;DD RAM ADDRESS READ from LCD

;
; CHECK IF THE CLOCK is HIGH at least for 10mS

banksel PORTD
btfss PORTD, CLOCK
goto BEGIN ;if CLOCK is LOW, start again
call Delay10ms ;10mS delays

;check again for CLCOK
btfss PORTD, CLOCK
goto BEGIN

;READY FOR CLOCK PULSES

clrf KSTAT
KEYIN
;X reading

call RX11bit ;
clrf STATUS
movf DATAreg,0 ;Break Code?
xorlw 0xF0
btfss STATUS,ZERO
goto CAT

;BREAK is detected. Abort It. Resume It
goto BEGIN

;Category detection
CAT clrf STATUS

movf DATAreg,0
xorlw 0xE0
btfsc STATUS,ZERO
goto Begin ;E0 keys (CAT2) are ignored
clrf STATUS
movf DATAreg,0
xorlw 0x12
btfsc STATUS,ZERO
goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x59
btfsc STATUS,ZERO

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

333

goto LRSHIFT
clrf STATUS
movf DATAreg,0
xorlw 0x58 ;CAPS LOCK
btfsc STATUS,ZERO
goto CAPS
movf DATAreg,0
clrf STATUS ;CR check
xorlw 0x5A
btfsc STATUS,ZERO
goto CRhandle
movf DATAreg,0
clrf STATUS
xorlw 0x66
btfsc STATUS,ZERO
goto BShandle ;Back Space Handling

;L Shift ===>12 | F0 12
;R Shift ===>59 | F0 59

;CAT1 has the format of (X)|(F0)(X)
CAT1 movf DATAreg,0
;check if the key in is CR
;Then we have to move the next line

call NoShiftKeyTable ;(X) display
movwf INDF ;store the character at INDF
incf FSR
incf Nchar
call LCDisplay

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO

;Key is not broken. Still pressed,
goto CAT1

;Key is broken
;Last (X) reading

call RX11bit ;(X) after F0

goto BEGIN

;L-SHIT and R-SHIFT has the form
;L-SHIFT and a character 12 X | F0 X |F0 12
;R-SHIFT and a character 59 X | F0 X |F0 59

LRSHIFT ;12 or 59 entered

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfsc STATUS,ZERO
goto BEGIN

;X

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

334

clrf STATUS ;if (12) do not display
movf DATAreg,0
xorlw 0x12
btfsc STATUS, ZERO
goto LRSHIFT

clrf STATUS ;if (59) do not display
movf DATAreg,0
xorlw 0x59
btfsc STATUS, ZERO
goto LRSHIFT

;a Key (X) is entered
movf DATAreg,0
call ShiftKeyTable
movwf INDF ;store the character at INDF
incf FSR
incf Nchar
call LCDisplay

;(F0) detection
call RX11bit
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto LRSHIFT

;Last (X) reading
call RX11bit
movf DATAreg,0
clrf STATUS ;check if (X) or (12) entered after F0
xorlw 0x12
btfsc STATUS,ZERO
goto BEGIN
goto LRSHIFT

;
CAPS ;caps lock (58) entered

;(F0) detection
call RX11bit ;this must be F0
call RX11bit ;this must be (58) again

CAPnext
call RX11bit ;Check if (58) or other
clrf STATUS
movf DATAreg,0
xorlw 0x58
btfss STATUS,ZERO
goto CAPtwo ;End of CAP session
call RX11bit ;F0
call RX11bit ;(58)
goto BEGIN

;a Key (X) is entered
CAPtwo

movf DATAreg,0

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

335

call CAPKeyTable
movwf INDF ;store the character at INDF
incf FSR
incf Nchar
call LCDisplay

;(F0) detection
call RX11bit ;this
clrf STATUS
movf DATAreg,0
xorlw 0xF0
btfss STATUS,ZERO
goto CAPtwo

;Last (X) reading ;F0 is read
call RX11bit ;(X) again and ignore
goto CAPnext

;CR handling
CRhandle

call RX11bit ;F0 read
call RX11bit ;CR reading again

; text-voice conversion
call VoiceText

;
;read the current cursor position

call readad4
;DDADDR has the content
;NOTE: MSB must be 1 in the cursor command

bsf DDADDR, MSB
;if DDADDR<94, then new cursor position is C0
;if DDADDR<E8, then 80
;if DDADDR<C0, then D4
;if DDADDR<D4, then 94

clrf STATUS
movf DDADDR,0
sublw 0x94 ;k-W -->W
btfsc STATUS,Borrow ;No borrow means that k>W
goto CR94 ; is less than 94
clrf STATUS
movf DDADDR,0
sublw 0xC0
btfsc STATUS,Borrow
goto CRC0

clrf STATUS
movf DDADDR,0
sublw 0xD4
btfsc STATUS,Borrow
goto CRD4

clrf STATUS
movf DDADDR,0
sublw 0xE8
btfsc STATUS,Borrow

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

336

goto CRE8
goto BEGIN

CR94 call posline12
goto begin

CRC0 call posline14
goto BEGIN

CRD4 call posline13
goto BEGIN

CRE8 call LCDclearhome ;clear screen first
call posline11
goto BEGIN

;CRE8 call posline11
; goto BEGIN

;BS Handling
BShandle

movf DATAreg,0 ;W holds $66
call RX11bit ;F0 read
call RX11bit ;BS break code

;read the current cursor position
call readad4

;DDADDR has the content
; SO move the current to the left
;NOTE: MSB must be 1 for commanding of the cursor position

bsf DDADDR, MSB
;if DDADDR = 94, then new cursor position is D3
;if DDADDR = C0, then new position is 93
;if DDADDR = D4, then new position is A7
;if DDADDR = 80, then new position is 80 (NO CHANGE)
; all other cases, new position is (DDADDR - 1)

clrf STATUS
movf DDADDR,0
xorlw 0x94
btfsc STATUS, ZERO
goto DD94
clrf STATUS
movf DDADDR,0
xorlw 0xC0
btfsc STATUS,ZERO
goto DDC0
clrf STATUS
movf DDADDR,0
xorlw 0xD4
btfsc STATUS,ZERO
goto DDD4
clrf STATUS
movf DDADDR,0
xorlw 0x80
btfsc STATUS,ZERO
goto DD80

;all others

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

337

decf DDADDR
decf CURSOR
movf DDADDR,0
call instw4
decf FSR
decf Nchar
goto BEGIN

DD94 movlw 0xD3
decf CURSOR
call instw4
decf FSR
decf Nchar
goto BEGIN

DDC0 movlw 0x93
decf CURSOR
call instw4
decf FSR
decf Nchar
goto BEGIN

DDD4 movlw 0xA7
decf CURSOR
call instw4
decf FSR
decf Nchar
goto BEGIN

DD80 movlw 0x80
call instw4
decf FSR
decf Nchar
goto BEGIN

;

;==
;SUBROUTINE LCD4INIT
;Function for 4-bit (only one write must be done)
;In other words, send only the high nibble
LCD4INIT
;IMPORTANT PART

movlw 0x28
call hnibble4

;Function for 4-bit, 2-line display, and 5x8 dot matrix
movlw 0x28
call instw4

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink
call instw4

;DDRAM address increment by one & cursor shift to right
movlw 0x06
call instw4

;DISPLAY CLEAR
CLEAR

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

338

movlw 0x01
call instw4

;
call posline11 ;pos1 and line 1

;now CURSOR=1
return

;===

;LCD DISPLAYING SUBROUTINE
LCDisplay

call dataw4
incf CURSOR ;every time of display, increase cursor

;CURSOR is automatically incremented by 1 from LCDisplay
;if CURSOR is 20 (0x14), change to posline12
;if CURSOR is 40 (0x28), change to posline13
;if CURSOR is 60 (0x3C), change to posline14
;if CURSOR is 80 (0x50), change to posline11

clrf STATUS
movf CURSOR,0
xorlw 0x15
btfsc STATUS, ZERO
goto Toline2

clrf STATUS
movf CURSOR,0
xorlw 0x29
btfsc STATUS,ZERO
goto Toline3

clrf STATUS
movf CURSOR,0
xorlw 0x3D
btfsc STATUS,ZERO
goto Toline4

clrf STATUS
movf CURSOR,0
xorlw 0x51
btfsc STATUS,ZERO
call LCDClearhome ;delete all and move to (1,1)
return

Toline2
call posline12
return

Toline3
call posline13
return

Toline4
call posline14
return

;SUBROUTINE
;DISPLAY CLEAR and Cursor to Home position (line 1, position 1)
LCDclearhome

movlw 0x01

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

339

call instw4
;Now let's move the cursor to the home position (position 1 of line #1)
;and set the DDRAM address to 0. This is done by the "return home"
instruction.

movlw 0x02
call instw4

;home position
movlw 0x80
call instw4
movlw 0x01
movwf CURSOR
return

;====SUBROUTINES =====
posline11
;Position to pos 1 and line 1

movlw 0x80
call instw4
movlw 0x01
movwf CURSOR
return

posline12 ;pos 1 and line 2
movlw 0xC0
call instw4
movlw 0x15 ;21
movwf CURSOR
return

posline13 ;pos1 and line3
movlw 0x94
call instw4
movlw 0x29 ;41
movwf CURSOR
return

posline14 ;pos 1 and line 4
movlw 0xD4
call instw4
movlw 0x3D ;61
movwf CURSOR
return

;
;high nibble only write for the first step of 4-bit set up
hnibble4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xF0 ; get upper nibble
movwf PORTB ; send data to lcd
call delay1ms
bcf PORTB, RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

340

call delay10ms ;end of high nibble for 4-bit setup
return

;
;subroutine instw (4-bit interface instruction write)
;instruction to be written is stored in W before the call
instw4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xF0 ; get upper nibble
movwf PORTB ; send data to lcd
call delay1ms
bcf PORTB, RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xf0
movwf PORTB ;Write to LCD
call delay1ms
bcf PORTB, RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E ;end of lower nibble
call delay10ms
return

;subroutine dataw (4-bit interface data write)

dataw4
movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xF0 ; get upper nibble
movwf PORTB ; send data to lcd
call delay1ms
bsf PORTB, RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xF0
movwf PORTB ;Write to LCD
call delay1ms
bsf PORTB, RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E ;end of lower nibble
call delay10ms
return

;
;subroutine reading the cursor position
;RW Must be High

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

341

;RS Must be Low
;the 7th bit is BF flag (so ignire this one, or make MSB 0)
;PORTB <7:4> as inputs
;High then Low nibbles of ADDRESS
;The content of DDADDR read from LCD module (HEX Numbers)
;Line 1: 00 01 02 13
;Line 2: 40 41 42 53
;Line 3: 14 15 16 27
;Line 4: 54 55 56 67

readad4
banksel TRISB ;set Rb7 - DR4 as inputs
movlw 0xF0 ;upper 4 bits as inputs
movwf TRISB
banksel PORTB
bsf PORTB, RW ;READING MODE
call delay1ms
bcf PORTB,RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E ;Reading starts here now

;upper byte first

movlw 0xF0
andwf PORTB,0
movwf DDtemp1

bcf PORTB,RS
call delay1ms
bsf PORTB, E
call delay1ms
bcf PORTB, E

;reading starts now
;for lower byte

movlw 0xF0
andwf PORTB,0
movwf DDtemp2
swapf DDtemp2

;add DDtemp1 and DDtemp2 for DDADDR
;

movf DDtemp1,0
addwf DDtemp2,0
movwf DDADDR ;The DD Ram ADDRESS

banksel TRISB
movlw 0x00
movwf TRISB ;all outputs again
banksel PORTB
bcf PORTB,RW ;back to writing mode
return

;===
;subroutine
VoiceText
;if Nchar=0 return (nothing to display)

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

342

movlw CTRLA
call TXSW
movlw 'T'
call TXSW ;text mode

banksel Nchar
movf Nchar,0
clrf STATUS
xorlw 0x00
btfsc STATUS,ZERO
return
movlw 0xA0
movwf FSR

NextChar
movf INDF,0
call TXSW
decfsz Nchar
goto domore
movlw 0x0D ;voice triggered
call TXSW
movlw 0xA0
movwf FSR
return

DOmore
incf FSR
goto NextChar

;==
;DELAY SUBROUTINES

Delay120us
banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

R120us
decfsz Kount120us
goto R120us
return

;
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;1ms delay
Delay1ms

banksel Kount1ms
movlw 0x0A ;10
movwf Kount1ms

R1ms call delay100us
decfsz Kount1ms
goto R1ms
return

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

343

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;
;SUBROUTINE RX11bit
;RX Routine for 11-bit read
;1 Start
;8 Data (LSB first)
;1 Parity (Odd)
;1 Stop (HIGH)
;KSTAT Bit Info
; KSTAT<0> : parity
; KSTAT<2>:kBD Error
RX11bit

clrf DATAreg
banksel PORTD

;Let it have at least 500us CLOCK high period
btfss PORTD, CLOCK
goto RX11bit ;if CLOCK is LOW, start again
call Delay100us ;200uS delays
call DElay100us

;check again for CLCOK
btfss PORTD, CLOCK
goto RX11bit

;Clock Check
Scheck

btfsc PORTD,CLOCK
goto Scheck
call delay5us ;wait for 5us for data stabilization
btfsc PORTD, KDATA
goto KERROR ;if START BIT is not Zero ERROR

;START Detected
;8-bit Data Check

movlw 0x08

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

344

movwf Bitcount ;8 data bits
RXNEXT

bcf STATUS, CARRY ;Clear the Carry Bit
rrf DATAreg ;rotate to the right

CKHIGH
btfss PORTD, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH

CKLOW btfsc PORTD, CLOCK ;wait for CLOCK now to LOW
goto CKLOW
call delay5us ;5us delay
btfsc PORTD, KDATA ;0 or 1
bsf DATAreg, MSB ;1? Then set the MSB
decfsz Bitcount
goto RXNEXT

;Check for Parity Bit
;Wait for CLOCK bacj to High
CKHIGH2

btfss PORTD, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH2

CKLOW2
btfsc PORTD, CLOCK ;wait for CLOCK now to LOW
goto CKLOW2
call delay5us ;5us delay
btfsc PORTD, KDATA ;Parity Bit
goto OneP ;Pbit=1
bcf Kstat,0x00 ;Pbit=0
goto Stopcheck

Onep bsf Kstat, 0x00 ;Pbit=1
Stopcheck
;wait for CLOCK back to High
CKHIGH3

btfss PORTD, CLOCK ;Wait for CLOCK to back to High
goto CKHIGH3

CKLOW3
btfsc PORTD, CLOCK ;wait for CLOCK now to LOW
goto CKLOW3
call delay5us ;5us delay
btfss PORTD, KDATA ;STOP bit
goto KERROR ;if STOP=0 , ERROR
return

KERROR
bsf KSTAT, 0x02
return

;==
;Software TX routine for RC8650
;The data to be sent is stored in W
TXSW

banksel RCSreg
movwf RCSreg
movlw 0x08 ;8 --->W
movwf Bitcount ;8 data bits

;send a START bit
bcf PORTD, TXPin

;delay for 1*(BC) cycles
call Delay52us ;Keep this!

TXNEXT

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

345

bcf STATUS, CARRY
rrf RCSreg ;LSB first mode (normal)
btfsc STATUS,CARRY
bsf PORTD, TXPin
btfss STATUS,CARRY
bcf PORTD, TXPin
call Delay52us ;KEEP THIS!
decfsz Bitcount
goto TXNEXT

;send STOP bit
bsf PORTD, TXPin
call Delay52us ;keep tHIS!

;wait until the end of STOP bit
return

delay5us
;need total 10 instructions

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
return

;delay 52us for one baud cycle of 19200 bps
Delay52us

movlw 0x54
movwf Kount52us

R52us decfsz Kount52us
goto R52us
return

;100ms delay

Delay100ms
banksel Kount100ms
movlw 0x0A ;10
movwf Kount100ms

R100ms
call delay10ms
decfsz Kount100ms
goto R100ms
return

;
Delay500ms

call delay100ms
call delay100ms
call delay100ms
call delay100ms
call delay100ms

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

346

return

;TABLES
;==

org 0x0300 ;So that all the table

;Without Shift (or CAPs Lock) Key Table
NoshiftKeyTable

bsf PCLATH, 0x00
bsf PCLATH, 0x01
addwf PCL

;
retlw 0 ;PC+0
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x60 ;+0E MAKE/BREAK= 0E ---->ASCII = 0x60 Apostrophe
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "q1" ;+15, 16
retlw 0 ;+17
retlw 0
retlw 0
DT "zsaw2" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "cxde43" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "vftr5" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "nbhgy6" ;+31, 32, 33, 34,35,36
retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT "mju78" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT ",kio09" ;+41, 42,43,44,45,46
retlw 0 ;+47

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

347

retlw 0 ;+48
DT "./l;p-" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x27 ;+52 single quote
retlw 0 ;+53
DT "[=" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw ']' ;+5B
retlw 0 ;+5C
retlw 0x5C ;+5D \
retlw 0 ;+5E
retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63
retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;With Shift Key Table
shiftKeyTable

bcf PCLATH, 0x00
bsf PCLATH, 0x01
addwf PCL

retlw 0 ;PC+0
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x7E ;+0E MAKE/BREAK= 0E ---->ASCII 7E (~)
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "Q!" ;+15, 16
retlw 0 ;+17
retlw 0

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

348

retlw 0
DT "ZSAW@" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "CXDE$#" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "VFTR%" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "NBHGY^" ;+31, 32, 33, 34,35,36
retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT "MJU&*" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT "<KIO)(" ;+41, 42,43,44,45,46
retlw 0 ;+47
retlw 0 ;+48
DT ">?L:P_" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x22 ;+52 double quote
retlw 0 ;+53
DT "{+" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw '}' ;+5B
retlw 0 ;+5C
retlw 0x7C ;+5D |
retlw 0 ;+5E
retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63
retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;CAPs Lock Key Table
org 0x0400

CAPKeyTable
bsf PCLATH, 0x02
bcf PCLATH, 0x01
bcf PCLATH, 0x00
addwf PCL
retlw 0 ;PC+0
retlw 0 ;PC+1
retlw 0 ;+2
retlw 0

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

349

retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0
retlw 0 ;+0D
retlw 0x60 ;+0E MAKE/BREAK= 0E ---->ASCII = 0x60 Apostrophe
retlw 0 ;+0F
retlw 0
retlw 0
retlw 0
retlw 0 ;+13
retlw 0 ;+14
DT "Q1" ;+15, 16
retlw 0 ;+17
retlw 0
retlw 0
DT "ZSAW2" ;+1A, 1B, 1C, 1D, 1E
retlw 0 ;+1F
retlw 0 ;+20
DT "CXDE43" ;+21, 22, 23, 24, 25, 26
retlw 0 ;+27
retlw 0 ;+28
retlw ' ' ;+29 Space
DT "VFTR5" ;+2A, 2B, 2C, 2D, 2E
retlw 0 ;+2F
retlw 0 ;+30
DT "NBHGY6" ;+31, 32, 33, 34,35,36
retlw 0 ;+37
retlw 0 ;+38
retlw 0 ;+39
DT "MJU78" ;+3A, 3B, 3C, 3D, 3E
retlw 0 ;+3F
retlw 0 ;+40
DT ",KIO09" ;+41, 42,43,44,45,46
retlw 0 ;+47
retlw 0 ;+48
DT "./L;P-" ;+49, 4A, 4B, 4C, 4D, 4E
retlw 0 ;+4F
retlw 0 ;+50
retlw 0 ;+51
retlw 0x27 ;+52 single quote
retlw 0 ;+53
DT "[=" ;+54, 55
retlw 0 ;+56
retlw 0 ;+57
retlw 0 ;+58
retlw 0 ;+59
retlw 0x0D ;+5A Return
retlw ']' ;+5B
retlw 0 ;+5C
retlw 0x5C ;+5D \
retlw 0 ;+5E

Chapter 11. Voice Synthesizer Project

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

350

retlw 0 ;+5F
retlw 0 ;+60
retlw 0 ;+61
retlw 0 ;+62
retlw 0 ;+63
retlw 0 ;+64
retlw 0 ;+65
retlw 0x08 ;+66 Backspace

;END OF CODE
END

I hope you have enough patience to learn about this new board and coding for 16F877 chip.

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

