
Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

170

Chapter 8. A/D Conversion and Data Acquisition

A/D conversion (or analog-to-digital conversion) is to read analog values from, for example,
temperature or voltage level, into the PIC chip in the form of digital value. PIC 16F877 has an
internal built-in module for this A/D conversion. A/D conversion has many applications: reading
from a temperature senor and displaying in on a PC screen of an LCD display; reading from a
pressure sensor for blood pressure and acquiring the pressure data into a text file in a PC; reading
a current value through an electric wire and alerting a circuit protection device for an above-
normal power consumption, etc. In this chapter, we thoroughly study the built-in A/D module
and practice of A/D conversion coding with a few practical applications.

1. A/D Conversion Module

A/D conversion is well utilized for external analog signal reading such as voltage, current,
temperature, pressure, distance, or even color information. 16F877 has a A/D module. In this
chapter, we will study the details of A/D converter module and its application. As need arises,
some explanation on general A/D Conversion is discussed occasionally.
There is an 8 channel A-to-D (or A/D) converter module inside a 16F877: AN7 – AN0. These
pins are not as well organized as other I/O pins. The lower four channels, AN0 – AN3, are
arranged in the pin nos. 2 – 5, and AN4 – AN7 arrange with the pin Nos. of 7 through 10.
The A/D module allows conversion of an analog input signal to a corresponding 10-bit digital
number. The output of the sample and hold is the input into the converter, which generates the
result via successive approximation.
The analog reference voltages (positive and negative supply) are software selectable to either
the device’s supply voltages (AVDD, AVss) or the voltage level on the AN3/VREF+ and
AN2/VREF-pins.

There are three types of registers we have to well control for A/D conversion. They are: A/D
Result Registers (ADRESH and ADRESL), A/D Control Register0 (ADCON0), and A/D
Control Register1 (ADCON1). The ADCON0 register controls the operation of the A/D module.
The ADCON1 register configures the functions of the port pins. ADRESH and ADRESL
registers contain the 10-bit results. Since each register is 8-bit register, we see that only one of
the registers would be fully filled while the other would be partially filled by the A/D conversion
result. Which register we configure to be fully filled, and which one to be partially filled is
controlled by 'result justification': left- or right- justified.

Let's examine ADCON0 register first for the A/D operation.

The first two bits are assigned to select the A/D conversion clock. For correct A/D conversion,
as the electrical specification of 16F877 states, the minimum A/D conversion clock must be
selected to ensure a minimum of 1.6 µs. With 20MHz crystal oscillation, the pre-scaled clock of
Fosc/2 would be 100 ns, while the pre-scaled clock of Fosc/8 would be 400ns. So either selection
would violate the minimum conversion clock of 1.6 µs. The Fosc/32 with 1.6 µs would satisfy
the minimum clock. However, the internal RC source has typical 6 µs of clock pulse. So, in
20MHz oscillator, selection of RC is safer and may be the only safe option for the A/D clock.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

171

The next three bits select which one channel we use to read analog signal from, external world.
Similar channel selection is done in ADCON1 to determine which channels are for analog input
and which are for digital I/Os. Anyway, for ADCON0, select one channel you want to read. If
you have multiple analog signals, you still have to select one channel for reading and then select
another for another reading, etc. CS2:CS0=(000) would select the AN0 for the analog signal
reading channel. The second bit (GO/~DONE) indicates the A/D conversion status: 1 indicates
the process is still going on and 0 for no process. By setting the bit, we can start the A/D
process. This bit is automatically cleared, when a process is finished, there is no need to clear
the bit in program code. The last bit ADON works as a switch to turn on/off the A/D module:
setting would make the A/D module ready for a conversion process. However, the final say is
reserved to the GO/~DONE bit for actually starting the conversion.

For the ADCON1 register, we use only five bits: ADFM and PCFG3:PCFG0.

ADFM is to decide how we store the 10-bit A/D conversion result to the two A/D result
registers: ADRESH and ADRESL. When set, the "Right Justification" is selected which stores
the 8 LSBs of the result are stored to ADRESL and the 2 MSBs of the results are stored to 2 LSB
positions of ADRESH. On the other hand, with its bit cleared, the "Left Justification" is
selected which stores the 8 MSBs of the result into ADRESH register and the 2 LSBs of the
result to the 2 MSB positions of ADRESL register. See the diagram below for illustration.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

172

ADCON 1Register (9Fh)

---- ---- ADFM ---- PCFG3 PCFG2 PCFG1 PCFG0

Read as ‘0’ Read as ‘0’ Read as ‘0’
 ADFM: A/D Result format select

 1 = Right justified
 0 = left justified

PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 VREF+ VREF- C / R

0000 A A A A A A A A AVDD AVSS 8 / 0
0001 A A A A VREF+ A A A AN3 AVSS 7 / 1
0010 D D D A A A A A AVDD AVSS 5 / 0
0011 D D D A VREF+ A A A AN3 AVSS 4 / 1
0100 D D D D A D A A AVDD AVSS 3 / 0
0101 D D D D VREF+ D A A AN3 AVSS 2 / 1
011x D D D D D D D D --- --- 0 / 0
1000 A A A A VREF+ VREF- A A AN3 AN2 6 / 2
1001 D D D A A A A A AVDD AVSS 6 / 0
1010 D D D A VREF+ A A A AN3 AVSS 5 / 1
1011 D D D A VREF+ VREF- A A AN3 AN2 4 / 2
1100 D D D A VREF+ VREF- A A AN3 AN2 3 / 2
1101 D D D D VREF+ VREF- A A AN3 AN2 2 / 2
1110 D D D D D D D A AVDD AVSS 1 / 0
1111 D D D D VREF+ VREF- D A AN3 AN2 1 / 2

Fig. 58 AD Result Justification

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

173

By the way, how much difference do the different justifications make? For example, with left
justification, let's assume that we ignore the ADRESL and use only the content of ADRESH. In
other words, by this, we ignore the 2 LSBs of the result, and get only the 8 MSBs. Since the last
two bits are not used, the resolution would be reduced by 4.

Fig. 59 Graph of FF against 3FF

However, except the resolution, it still can show some reasonable linear relationship of the result.
As illustrated below, a value in the range 000 – 003h in 10-bit result would be just 00h in higher
8-bit only. Similarly, any value in the range of 008 – 00Bh in 10-bit result would be just 01h in
the ADRESH only scheme with left justification. But coarse may be, the ADRESH only with
the left justification still has the enough resolution power of analog value differentiation.

If you need very high resolution, you have to go with all 10-bit result. However, when high
resolution is not needed, it is OK with the upper 8-bit result only. However, using all 10 bits is
not difficult a matter in programming. It is only a matter of convenience or inconvenience. We
will see the actual differences of the above two schemes with actual voltage reading.

The lowest 4 bits are allocated to decide the pin configuration, for analog pins or digital pins.
For example, with PCFG3:PCFG0 = 0000, all the pins are assigned as analog input pins, i.e.,
A/D conversion pins. However, PCFG3:PCFG0=0110 or 0111 would make all the pins as digital
I/O pins. Other combinations mix the analog and digital pins of the 8 channels. Another
configuration included in these four bits is the selection of positive reference (VREF+) and
negative reference voltage (VREF-) for A/D conversion. For example, PCFG3:PCFG0 = 0000
would select the logic power voltage (VDD, or +5V, namely) as VREF+ and Ground, VSS, as VREF-.
A reference voltage sets the maximum input voltage the A/D converter can convert. In other
words, any voltage above the positive reference voltage, or any voltage below the negative
reference voltage, would be saturated (or cut-off) to the reference voltage level. Therefore, with
PCFG3:PCFG0 = 0000, any negative voltage would be treated as 0 volt or ground, and +5V is
the maximum voltage can be converted. When we want to change the reference voltages, and

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

174

expand or shrink the voltage range of the analog input, we have to select appropriate
combination of the 4 bits of ADCON1. For example, PCFG3:PCFG0 = 1000 allocates AN3 and
AN2 for VREF+ and VREF-, respectively.

The reference voltage, along with the number of bits used for conversion result, determines the
step size of the converter, i.e., converter's resolution. For example, with positive reference
voltage +5V and negative reference at the ground, the conversion range is 5V. This 5V is now
divided by 210 =1024 (maximum binary value of a 10-bit number) steps. Therefore, the step
size is 5/1024=0.0048V or 4.88mV. Therefore the weight of each bit of the 10 bit results,
therefore, has the multiple of the step voltage: bit 0 represents 20x4.88mV=4.88mV; bit 1
represents 21x4.88mV=9.76mV; bit 2 for 22x4.88mV=19.52mV; and bit 9 for 29x4.88mV=2,5V.
Therefore, a result of 1000100010 would be interpreted as: 664.200488.0)222(159 =×++ V.
As the equation shows, the maximum resolution we could get is 4.88mV. The resolution
defines the smallest voltage change that can be measured. Every voltage below 4.88mV is read
as 0 and any voltage above 4.88mV and below 9.76mV would be read as 4.88mV.

The last two registers involved in the A/D conversion are PIE1 (Peripheral Interrupt Enable 1)
register and PIR1 (Peripheral Interrupt Request 1) register. PIE1 register is to grant or deny a
peripheral interrupt and PIR1 register indicates the completion of a peripheral's process. From
the both registers, we use only the 6th bit (ADIE from PIE1 and ADIF from PIR1) for A/D
conversion control. Setting ADIF would trigger an interrupt whenever an A/D conversion is
completed. Interrupt will be discussed later. In this chapter, we disable the interrupt for the
time being. Clearing ADIE would not trigger an interrupt. Therefore, a completion of the A/D
conversion should be checked by a "completion flag" bit. ADIF bit indicates the status of an
A/D conversion process: ADIF=1 for completion and ADIF=0 for incompletion. The
completion flag bit must be cleared, after a completion of an A/D conversion, by software. Note
that we do not use ADIF as an A/D conversion status bit, instead we use GO/~DONE bit of
ADCON0 as the conversion status bit. ADIF bit is only to be cleared after GO/~DONE indicates
the completion of A/D conversion.

PIE1 REGISTER (8Ch)

PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D converter interrupt
0 = Disables the A/D converter interrupt

PIR1 REGISTER (0Ch)

PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed
0 = The A/D conversion is not complete

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

175

Here goes the A/D conversion procedure in software perspective:
1. Make PORTA as inputs by setting all bits of TRISA register.
2. Disable A/D interrupt by clearing ADIE bit of PIE1 register.
3. Configure ADCON0 register.
4. Configure ADCON1 register.
5. Start A/D conversion by setting GO/~DONE bit of ADCON0 register.
6. Monitor GO/~DONE bit for a completion of the conversion. If the bit is cleared go to 7.
7. Conversion completed. Clear ADIF bit.
8. Move the content of ADRESH to a temporary space.
9. Move the content of ADRESL to another temporary space.

2. First Example of A/D Conversion

Let's have a simple voltage reading example with 16F877 by connecting a variable resistor
between the +5V voltage source and the ground. Then connect the wiper terminal, which
changes the terminal resistance and the terminal voltage from the ground, to AN0 channel of
A/D conversion. We will read the voltage while changing the wiper position and display the
value on a PC monitor. The first example is to display with two decimal point value for the
voltage at the wiper terminal like. 2.50 or 1.96V by using only 8 MSBs of the result. The second
example will use all 10 bit results and display with 3 decimal points like 2.496 or 1.962V.

Since we use only one channel (AN0) with the positive reference voltage and the negative
reference voltage as +5 V and the ground, respectively, the configuration of ADCON0 goes like
ADCON0=11000001 for internal RC clock, channel 0 (AN0), with A/D switch on. However, no
conversion is started yet.

banksel ADCON0 ;KKCCCGXO
movlw 0xC1 ;11000001
movwf ADCON0 ;initialize ADC (RA0 is ADC port)

For ADCON1, every bit is cleared to indicate "Left Justification" of the result and channel
assignment along with reference voltage levels: ADCON1=00000000. We are going to ignore
the 2 LSBs of the result stored in ADRESHL. Instead, we will take only ADRESH as if it comes
from 8-bit A/D converter.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

176

movlw 0x00
banksel ADCON1
movwf ADCON1 ;PORT A is for ADC channel

;With LEFT JUSTIFICATION
;We will ignore two least significant
;bits without much loss

The above lines are just a part of initialization. So now let's discuss about how to actually read
and store the data, and then send to a PC for a display.

Fig. 60 A/D Conversion Example

Getting a conversion result would be much more convenient in a subroutine form since we are
going to convert consecutively. The conversion routine starts from some delay to give the A/D
module time to warm up. Then, we GO the conversion, and check the GO/~DONE bit is
cleared indicating the completion of the conversion. When the conversion is finished, we clear
ADIF bit, then, move the result in ADRESH to a temporary location.

;subroutine getADC
;The conversion result will be stored in W register
getADC

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

177

call delay10ms ;warm up
banksel ADCON0
bsf ADCON0, GO ;start conversion

ADCloop
btfsc ADCON0, GO ;wait for completion
goto ADCloop
bcf PIR1, ADIF ;clear conversion complete flag
movf ADRESH,0 ;store the result to W register
return

Now, we have to determine the read value from AN0 by calling getADC subroutine. As we
discussed in the section of A/D reference voltage, the 10-bit A/D conversion has, for [0, 5]V
range, 4.88mV per conversion step. Therefore, the final measured voltage from the ADRESH
can be simply formulated by:

23456789 22222222 ×+×+×+×+×+×+×+×= nnnnnnnnmea BBBBBBBBV
where, Bn, n = 0, ...7, are the bit values of ADRESH register ignoring the 2 LSBs in ADRESL.

The equation above looks too simple for a high-level language programmer, but it's not that
simple in16F877 programming. First, 29=512 and 28=256 are bigger than 1 byte value, which is
the size of calculation and storage in 8-bit microcontroller. Of course, we can split the result
into to registers, but still some burden we already feel. Second, after all the burdens we take for
the bigger numbers, we still have problem to covert them into decimal point numbers. This
problem is much bigger than the first one.

In 16F877 with Assembly language programming environment, it is much wiser to solve a
problem by examining the bit pattern. Let's consider the 8-bit excepts as the 8-bit result. Then
consider a value of the 8-bit result only when one bit is set.

1000 0000 =27=128
0100 0000 = 26= 64
0010 0000 =25=32
0001 0000 =24=16
0000 1000 =23=8
0000 0100 =22=4
0000 0010 =21=2
0000 0001 =20=1

Therefore, when all the bits are set, which occurs when the voltage reading is 5V, the numeric
sum would be 255. Since our intention is to display in two decimal point format, we could say
the value must correspond to 5.00. Let's name the single digit before the decimal point as D1
(digit 1), and two digits trailing the decimal point D2 (digit 2) and D3 (digit 3). But we can
ignore the decimal point in the interpretation of the conversion result. Therefore, when we set the
highest voltage as 500 instead of 5.00, there is no change or influence on the conversion result
interpretation. The easiest way to convert the numerical values to 3 digit equivalent numbers so
that the highest number corresponds to 500 is to double the numerical value for the 3-digit
equivalent.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

178

1000 0000 =27=128 → 256
0100 0000 = 26= 64 →128
0010 0000 =25=32 →064
0001 0000 =24=16 →032
0000 1000 =23=8 →016
0000 0100 =22=4 →008
0000 0010 =21=2 →004
0000 0001 =20=1 →002

However the sum of the 3 digit equivalents does not add up to 500, because the numerical sum is
255, not 250. The sum reaches at 510. So we need some minor massage around the numbers.
What can be acceptable is shown as follows for a conversion of an 8-bit result to a two decimal
point voltage value.

1000 0000 =27=128 → 250
0100 0000 = 26= 64 →125
0010 0000 =25=32 →063
0001 0000 =24=16 →032
0000 1000 =23=8 →016
0000 0100 =22=4 →008
0000 0010 =21=2 →004
0000 0001 =20=1 →002

Now, we check each bit of the 8-bit result stored in ADRESH. When the LSB is set, for
example, the D3 must be increased by 2. If MSB is set, the D1 must be increased by 2. The
highest digit D1 has its maximum at 5, so there is no reason to worry if the sum would be bigger
9. For example, an A/D conversion result is reached at ADRESH and its content is 00001110.
Since we would have increased D3 by total 14 times, the value of D3 is 14 in decimal. This
decimal number must be changed to 4 with carry 1 to the upper digit D2.

How do we automatically find if a sum is bigger than 9 and add the carry to the one upper digit?
This procedure could be borrowed from BCD (Binary Coded Decimal) arithmetic. In BCD
when sum of two BCD numbers (A digit BCD number occupies 4 binary bits) are bigger than 9,
we add 6. For us, we would check the value of, say, D1, and if the value is equal to or greater
than 10 (in decimal), we increase the one upper digit, D2, by one, subtract 10 from D1. If the
value is 9 or less, we do not do anything at all. The same philosophy can be applied to D2. That
means we can build a subroutine to check a value in a digit if it is below 10 or not. As we
display 4 bit numbers from 7 – 15 as below, the numbers equal to or greater than 10 have:
(bit3=1 and bit2=0) OR (bit3=1 and bit2=0 and bit1=1).

;subroutine to check >=10 or <10 ==================
;W holds the value of a digit (D 1 or D2)
;HILO is a flag register to indicate the result
; >=10 ---> HILO=0
;<10 ---> HILO =0
TEN

banksel HILO

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

179

clrf HILO
movwf TEMPTEN ;the content D1 (or D2) now to TEMPTEN
btfss TEMPTEN, 0x03 ;3rd bit check (8 or above)
return ;if third bit is zero, it is <10
btfss TEMPTEN, 0x02 ;if third bit is 1, check bit 2
goto nextbit
bsf HILO,0x00 ;if bit3=1 & bit2=1 it is >10
return

nextbit
btfss TEMPTEN,0x01 ;if bit3=1 & bit2=0, then we check bit 1
return
bsf HILO, 0x00 ;if bit3=1 &bit2=0 &bit1=1, it is >10
return

The example code shown below displays the three digit voltage values on a monitor of a PC. In
the example, a complete listing is provided. But I warn you here that the initialization of serial
communication is not included in the code. In other words, the subroutine Asynic_mode
which was discussed in Chapter 5 must be included, and it must be called at the very first part of
the code. Otherwise, you do not get anything on your screen.

;ADC-V1.asm
;
;This program is to read voltage output from a rheostat
; and display the value on a PC terminal (current is updated every 2 seconds)
;
; AN0 is connected to the rheostat wiper
;;
;USE ONLY most significant 8 bits stored in ADRESH
;Max 5.00 V
;min 0.00 V
;
;PC's Hyper Terminal Set-Up: 8N1 19200
;Baud: 19200
;Data Bit: 8
;Parity: None
;Stop Bit: 1
;Control: None

list P = 16F877

STATUS EQU 0x03
ZERO EQU 0x02 ;Z flag
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
PORTD EQU 0x08
TRISD EQU 0x88

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

180

PORTA EQU 0x05
TRISA EQU 0x85
ADCON0 EQU 0x1f
ADCON1 EQU 0x9f
ADRESH EQU 0x1e ;High Byte Result
ADRESL EQU 0x9E ;Low Byte Result
PIE1 EQU 0x8c
GO EQU 0x02
ADIE EQU 0x06
ADIF EQU 0x06

;DISPLAY FORMAT (with two decimal points)
;
;----- ---- ----
;| | | | | |
;| | | | | |
;-----. ---- ----
;

CBLOCK 0x20
temp
tempten
HIGHBYTE
LOWBYTE
HILO ;flagging for 1(10 or bigger) or 0 (less than 10)
DIGIT1
DIGIT2
DIGIT3 ;D1. D2 D3 (display format)
ASCIIreg
AD1
AD2
AD3 ;final 3 ASCII digits to be displayed
Kount20us
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC
;=
;===

org 0x0000
GOTO START
org 0x05

;===

START
movlw 0xFF
banksel TRISA
movwf TRISA ;PORTA all inputs

banksel PIE1
bcf PIE1, ADIE ;disable ADC interrupt

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

181

banksel ADCON0 ;KKCCCGXO
movlw 0xC1 ;11000001
movwf ADCON0 ;initialize ADC (RA0 is ADC port)

movlw 0x00
banksel ADCON1
movwf ADCON1 ;PORT A is for ADC channel

;With LEFT JUSTIFICATION
;We will ignore two least significant

bits
;without much loss

AGAIN
banksel PIR1
bcf PIR1, ADIF ;clear conversion complete flag

banksel TEMP
clrf TEMP
clrf DIGIT1
clrf DIGIT2
clrf DIGIT3
clrf AD1 ;ASCII code for Digit1
clrf AD2 ;ASCII code for Digit2
clrf AD3 ;ASCII code for Digit3
clrf HILO

call GetADC ;get the AD conversion result
banksel TEMP
movwf TEMP ;Now TEMP holds the 8-bit ADC result

;
; No conversion to Max +5.00 Min 0.00 value
;pattern check
; 1000 0000 -->128 --->250
; 0100 0000 -->64 --->125
; 0010 0000 -->32 ---->063
; 0001 0000 -->16 ---->032
; 0000 1000 -->8 ---->016
; 0000 0100 -->4 ----->008
; 0000 0010 -->2 ----->004
; 0000 0001 -->1 ----->002

movlw 0x00
B0 btfss TEMP,0x00 ;check the bit 0 of the ADC result

goto B1
incf DIGIT3 ;DIGIT3=DIGIT3+2
incf DIGIT3

B1 btfss TEMP, 0x01 ;bit 1 check
goto B2
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=digit3+4

B2 btfss TEMP, 0x02 ;bit 2 check
goto B3
incf DIGIT3

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

182

incf DIGIT3
incf DIGIT3
incf DIGIT3 ;
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=digit3+8

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto B3 ;Less than 10
movlw 0x0A
subwf DIGIT3 ;f - 10 -->f
incf DIGIT2 ;Digit2=Digit2+1
clrf HILO

B3 btfss TEMP, 0x03 ;bit 3 check
goto B4
incf DIGIT3
incf DIGIT3 ;
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=digit3+6
incf DIGIT2 ;Digit2=Digit2+1

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto B4 ;Less than 10
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

B4 btfss TEMP, 0x04 ;bit 4 check
goto B5
incf DIGIT3
incf DIGIT3 ;Digit3=Digit3+2
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+3

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto B5 ;Less than 10
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

B5 btfss TEMP, 0x05 ;bit 5 check
goto B6

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

183

incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=Digit3+3
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+6

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto D2A ;Less than 10
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

; Check DIGIT2 for 10 or above
D2A movf DIGIT2, 0

call TEN
btfss HILO, 0x00
goto B6
movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

B6 btfss TEMP, 0x06 ;bit 6 check
goto B7
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=Digit3+5
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+2
incf DIGIT1 ;DIgit1=Digit1+1

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto D2B ;Less than 10
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

; Check DIGIT2 for 10 or above
D2B movf DIGIT2, 0

call TEN
btfss HILO, 0x00
goto B7
movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

184

B7 btfss TEMP, 0x07 ;bit 7 check
goto FINI
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+5
incf DIGIT1
incf DIGIT1 ;DIgit1=Digit1+2

; check if it is bigger than 10

movf DIGIT2, 0
call TEN
btfss HILO, 0x00
goto FINI
movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

FINI
movf DIGIT1,0
call HTOA ;ASCII conversion of Digit1
movwf AD1 ;final digit to be displayed
movf DIGIT2,0
call HTOA ;ASCII conversion of Digit2
movwf AD2
movf DIGIT3,0
call HTOA ;ASCII conversion of Digit3
movwf AD3

;
;ready to display

movf AD1, 0 ;First Digit
call TXPOLL
movlw '.' ;Decimal Point
call TXPOLL
movf AD2,0
call TXPOLL ;Second Digit
movf AD3,0
call TXPOLL ;Third Digit
call CRLF ;Line Change and Carriage Return

;delay 2s
call delay1s
call delay1s

goto AGAIN

;===
;subroutine to check >=10 or <10 ==================
; >=10 ---> HILO=0
;<10 --->HILO =0

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

185

TEN
banksel HILO
clrf HILO
movwf TEMPTEN
btfss TEMPTEN, 0x03 ;3rd bit
return
btfss TEMPTEN, 0x02
goto nextbit
bsf HILO,0x00
return

nextbit
btfss TEMPTEN,0x01
return
bsf HILO, 0x00
return

;--
;Subroutine GetADC =========================
getADC

call delay10ms ;warm up
banksel ADCON0
bsf ADCON0, GO ;start conversion

ADCloop
btfsc ADCON0, GO ;wait for conversion to finish
goto ADCloop
bcf PIR1, ADIF ;clear conversion complete flag
movf ADRESH,0
return

;---
;RS232 TX subroutine ============
TXPOLL

banksel PIR1
btfss PIR1, TXIF ; Check if TX buffer is empty
goto TXPOLL
banksel TXREG
movwf TXREG ; Place the character to TX buffer
return

;-------------------------
;To send CR and LF ===============
CRLF

movlw H'0d' ;CR
call TXPOLL
movlw H'0a' ;LF
call TXPOLL
return

;-----------------------------
;; === hex to ascii conversion subroutine
;move the content to W before call this routine
;final result will be stored back to W
HTOA

movwf ASCIIreg
;check 0-9 or A-F

btfsc ASCIIreg, 0x03 ;0 - 7
goto RECHK

THIRTY
movlw 0x30
addwf ASCIIreg
movf ASCIIreg,0

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

186

return

RECHK andlw 0x06 ;
btfsc STATUS,ZERO
goto THIRTY
movlw 0x37
addwf ASCIIreg
movf ASCIIreg,0
return

;----------------------
;DELAY SUBROUTINES

Delay20us
banksel Kount20us
movlw H'1F' ;D'31'
movwf Kount20us

R20us decfsz Kount20us
goto R20us
return

;
;
Delay120us

banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

R120us
decfsz Kount120us
goto R120us
return

;
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

187

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;10 s delay
;call 10 times of 1 s delay
Delay10s

banksel Kount10s
movlw H'0A' ;10
movwf Kount10s

R10s call Delay1s
decfsz Kount10s
goto R10s
return

;
;1 min delay
;call 60 times of 1 sec delay
Delay1m

banksel Kount1m
movlw H'3C' ;60
movwf Kount1m

R1m call Delay1s
decfsz Kount1m
goto R1m
return

;==
END

;END OF PROGRAM

How do you feel about this rather a long line of code for just displaying a simple number? As
we see most of the code are devoted to interpretation and display, rather than A/D conversion
itself. If you do not have to display the measured voltage, but instead compare with a threshold
value, code would be much shorter and simpler. Anyway, see of you have the result like
illustrated below as you change the wiper position of the variable resistor.

Now let's use all 10-bit result for the same variable resistor setting we used for 8-bit result
calculation. With a similar pattern observation and interpretation, we can relate the 10-bit result
to three decimal digit voltage. The maximum voltage (without displaying the decimal point)
would be, then, 5000.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

188

10 0000 0000 = 29= 512 →2500
01 0000 0000 =28=256 →1250
00 1000 0000 =27=128 → 0625
00 0100 0000 =26= 64 →0312
00 0010 0000 =25=32 →0158
00 0001 0000 =24=16 →0080
00 0000 1000 =23=8 →0040
00 0000 0100 =22=4 →0020
00 0000 0010 =21=2 →0010
00 0000 0001 =20=1 →0005

The only difference in the 3 decimal digit case is that we have to have one more digit value D4
(or digit 4) and its ASCII equivalent (AD4). The subroutines for A/D conversion, check for a
digit value if it is below 10 or not, hex to ASCII conversion, and time delay are all the same,
except a minor change in the getADC subroutine, since we have to store the values of ADRESH
and ADRESL. So slightly revised subroutine, getADC2, is shown below.

;Subroutine GetADC2 =========================
getADC2

call delay10ms ;warm up
banksel ADCON0
bsf ADCON0, GO ;start conversion

ADCloop btfsc ADCON0, GO ;wait for conversion to finish
goto ADCloop
bcf PIR1, ADIF ;clear conversion complete flag
movf ADRESH,0
banksel tempHIGH
movwf tempHIGH ;tempHIGH <--ADRESH
banksel ADRESL
movf ADRESL,0
banksel tempLOW
movwf tempLOW ;tempLOW <--ADRESL
return

Another slight change in the code is the justification of the A/D conversion result: we select this
time "Right Justification" so that lower 8 bits are stored in ADRESL and the upper 2 bits of the
results are stored at the lowest 2 LSB positions of ADRESH. The example code, without
subroutines, is displayed below.

;ADC-V2.asm
;
;This program is to read voltage output from a rheostat
; and display the value on a PC terminal (current is updated every 2 seconds)
;
; AN0 is connected to the rheostat wiper
;
;USE whole 10 bits
;MAX 5.000 V

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

189

;Min 0.000 V
;PC's Hyper Terminal Set-Up: 8N1 19200
;Baud: 19200
;Data Bit: 8
;Parity: None
;Stop Bit: 1
;Control: None

list P = 16F877

STATUS EQU 0x03
ZERO EQU 0x02 ;Z flag
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
PORTD EQU 0x08
TRISD EQU 0x88
PORTA EQU 0x05
TRISA EQU 0x85
ADCON0 EQU 0x1f
ADCON1 EQU 0x9f
ADRESH EQU 0x1e ;High Byte Result
ADRESL EQU 0x9E ;Low Byte Result
PIE1 EQU 0x8c
GO EQU 0x02
ADIE EQU 0x06
ADIF EQU 0x06

;DISPLAY FORMAT (with three decimal points)
;
; ---- ---- ---- ----
;| | | | | | | |
;| | | | | | | |
;-----. ---- ---- ----
;
;

CBLOCK 0x20
tempHIGH ;storage space of ADC result
tempLOW
tempTEN
HILO ;flagging for 1(10 or bigger) or 0 (less than 10)
DIGIT1
DIGIT2
DIGIT3
DIGIT4 ;D1. D2 D3 (display format) Double precision
ASCIIreg
AD1

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

190

AD2
AD3
AD4 ;final 4 ASCII digits to be displayed
Kount20us
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC
;
;===

org 0x0000
GOTO START
org 0x05

;==

START
movlw 0xFF
banksel TRISA
movwf TRISA ;PORTA all inputs

banksel PIE1
bcf PIE1, ADIE ;disable ADC interrupt

banksel ADCON0
movlw 0xC1
movwf ADCON0 ;initialize ADC (RA0 is ADC port)

movlw 0x80 ;
banksel ADCON1
movwf ADCON1 ;PORT A is for ADC channel

;With RIGHT JUSTIFICATION
;ADRESH(B9 and B8)
;ADRESL (B7 - B0)

AGAIN
banksel PIR1
bcf PIR1, ADIF ;clear conversion complete flag

banksel TEMPHIGH
clrf TEMPHIGH
clrf TEMPLOW
clrf DIGIT1
clrf DIGIT2
clrf DIGIT3
clrf DIGIT4
clrf AD1
clrf AD2
clrf AD3
clrf AD4
clrf HILO

call GetADC2

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

191

;Now tempLOW holds the lower 8-bit ADC result
;tempHIGH for the upper 2 bits

;
; Conversion to Max +5.000 Min 0.000 value
; 98 7654 3210 (bit)
; 10 0000 0000 -->512 --->2500
; 01 0000 0000 -->256 --->1250
; 00 1000 0000 -->128 --->0625
; 00 0100 0000 -->64 --->0312
; 00 0010 0000 -->32 ---->0158
; 00 0001 0000 -->16 ---->0080
; 00 0000 1000 -->8 ---->0040
; 00 0000 0100 -->4 ----->0020
; 00 0000 0010 -->2 ----->0010
; 00 0000 0001 -->1 ----->0005

movlw 0x00
banksel tempLOW

B0 btfss TEMPLOW,0x00 ;check the bit 0 of the ADC result
goto B1
incf DIGIT4 ;DIGIT4=DIGIT4+5
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4

B1 btfss TEMPLOW, 0x01 ;bit 1 check
goto B2
incf DIGIT3 ;Digit3=digit3+1

B2 btfss TEMPLOW, 0x02 ;bit 2 check
goto B3
incf DIGIT3
incf DIGIT3 ;Digit3=digit3+2

B3 btfss TEMPLOW, 0x03 ;bit 3 check
goto B4
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=digit3+4

B4 btfss TEMPLOW, 0x04 ;bit 4 check
goto B5
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;DIGIT3=DIGIT3+8

; check if it is bigger than 10
movf DIGIT3, 0 ; to W
call TEN
btfss HILO,0x00
goto B5 ;Less than 10

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

192

movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

B5 btfss TEMPLOW, 0x05 ;bit 5 check
goto B6
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4 ;Digit4=Digit4+8
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;Digit3=Digit3+5
incf DIGIT2 ;Digit2=Digit2+1

; check if it is bigger than 10
movf DIGIT4, 0 ; to W
call TEN
btfss HILO,0x00
goto D5A ;Less than 10
movlw 0x0A
subwf DIGIT4
incf DIGIT3
clrf HILO

; Check DIGIT2 for 10 or above
D5A movf DIGIT3, 0

call TEN
btfss HILO, 0x00
goto B6
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

B6 btfss TEMPLOW, 0x06 ;bit 6 check
goto B7
incf DIGIT4
incf DIGIT4 ;digit4=digit4+2
incf DIGIT3 ;Digit3=Digit3+1
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+3

; check if it is bigger than 10
movf DIGIT4, 0 ; to W
call TEN
btfss HILO,0x00
goto D6A ;Less than 10
movlw 0x0A
subwf DIGIT4

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

193

incf DIGIT3
clrf HILO

; Check DIGIT2 for 10 or above
D6A movf DIGIT3, 0

call TEN
btfss HILO, 0x00
goto B7
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

B7 btfss TEMPLOW, 0x07 ;bit 7 check
goto B8
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4
incf DIGIT4 ;digit4=digit4+5
incf DIGIT3
incf DIGIT3 ;digit3=digi3+2
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+6

; check if it is bigger than 10

movf DIGIT4, 0
call TEN
btfss HILO, 0x00
goto D7A
movlw 0x0A
subwf DIGIT4
incf DIGIT3
clrf HILO

; check if it is bigger than 10

D7A movf DIGIT3, 0
call TEN
btfss HILO, 0x00
goto D7B
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

; check if it is bigger than 10

D7B movf DIGIT2, 0
call TEN
btfss HILO, 0x00
goto B8

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

194

movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

B8 btfss TEMPHIGH, 0x00 ;bit 8 check
goto B9
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3
incf DIGIT3 ;digit3=digi3+5
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+2
incf DIGIT1 ;digit1=digit1+1

; check if it is bigger than 10

movf DIGIT3, 0
call TEN
btfss HILO, 0x00
goto D8A
movlw 0x0A
subwf DIGIT3
incf DIGIT2
clrf HILO

; check if it is bigger than 10

D8A movf DIGIT2, 0
call TEN
btfss HILO, 0x00
goto B9
movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

B9 btfss TEMPHIGH, 0x01 ;bit 9 check
goto FINI
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2
incf DIGIT2 ;Digit2=Digit2+5
incf DIGIT1
incf DIGIT1 ;digit1=digit1+2

; check if it is bigger than 10

movf DIGIT2, 0
call TEN
btfss HILO, 0x00
goto FINI

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

195

movlw 0x0A
subwf DIGIT2
incf DIGIT1
clrf HILO

FINI
movf DIGIT1,0
call HTOA
movwf AD1 ;final digit to be displayed
movf DIGIT2,0
call HTOA
movwf AD2
movf DIGIT3,0
call HTOA
movwf AD3
movf DIGIT4,0
call HTOA
movwf AD4

;
;ready to display

movf AD1, 0
call TXPOLL
movlw '.'
call TXPOLL
movf AD2,0
call TXPOLL
movf AD3,0
call TXPOLL
movf AD4,0
call TXPOLL
call CRLF ;Line Change

;delay 2s
call delay1s
call delay1s

goto AGAIN

As your run the code while changing the wiper position of the variable resistor, we expect to see
the following or similar display.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

196

3. A/D Application to Infrared Ranger for Distance Measurement

IR ranger is a general purpose distance measuring sensor which usually consists of IR emitting
dides, position sensitive detector, and signal processing circuit. Basically it measure the distance
by the time elapsed between an IR transmission and IR reception.

SHARP's GP2D12 sensor takes distance reading and reports the distance as an analog voltage
with a distance range of 10cm (~4") to 80cm (~30"). The interface is 3-wire with power, ground
and the output voltage and requires a JST 3-pin connector which is included with each detector
package. This is a common, robust, inexpensive sensor.

As the Distance vs. Voltage curve shows the output voltage is gradually decreased as the
distance increases. So even though the specification says that the maximum distance the
GD2D12 can measure is 80cm, we could extend the range further, since the voltage further
reduces as the distance increases. The big problem of this ranger is that there is one
discontinuity point: below 10cm the voltage change is revered to decrease. Therefore, when
you have, say, 2.8 V, you are not sure whether the distance is 15cm or 5 cm. When you use this
ranger as many do, you have to be very careful that your application platform, robot or vehicle,
should not approach an obstacle too close, less than 10 cm. Easiest solution is to give much
more clearance from the obstacle, like 30cm, and if the output voltage from the range further
increases, then you back off your robot or vehicle.

Fig. 61(a) Distance vs. Voltage curve Fig. 61(b) SHARP GP2D12 Detector

As described, the ranger application is just another example of A/D conversion. Since the
maximum voltage is less than +5V, we use the same configuration we used for the variable
resistor. Except that we are going to connect the GD2D12 to AN1, instead. Since the voltage-
distance relationship is nonlinear, we have to have a kind of table to interpret the voltage we get
from A/D conversion to actual distance between the ranger and an obstacle. We will apply the
same 8-bit result only approach for this example. Also we will display the distance on a PC
monitor. The distance display format is with 3 digits.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

197

Fig. 62 Sharp GR2D12 Detector connection to PIC 16F877

For the conversion, we use the same logic we used for the variable resistance and the wiper
voltage measurement. However the sum of the 3 digit equivalents does not add up to 500,
because the numerical sum is 255, not 250. The sum reaches at 510. So we need some minor
massage around the numbers. What can be acceptable is shown as follows for a conversion of an
8-bit result to a two decimal point voltage value.

1000 0000 =27=128 → 2.50 [V]
0100 0000 = 26= 64 →1.25 [V]
0010 0000 =25=32 →0.63 [V]
0001 0000 =24=16 →0.32 [V]
0000 1000 =23=8 →0.16 [V]
0000 0100 =22=4 →0.08 [V]
0000 0010 =21=2 →0.04 [V]
0000 0001 =20=1 →0.02 [V]

From the test of the output voltage vs. distance using an oscilloscope and an obstacle, we found
that nonlinear relationship of voltage and current as follows.

Distance [cm] 10 20 40 50 60 80 100 >100
Output Voltage [V] 2.4 1.25 0.7 0.58 0.5 0.42 0.34 <0.33

For 2.4 V for 10cm, since we are not aiming for very accurate (actually we cannot do that with

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

198

the ranger), we use the value of 1.25V as an approximate value with the bit pattern of 10000000.
Also, since the 10cm is the closest distance measurement, higher than this value can be ignore.
For 1.25V for 20cm matches well with the bit pattern of 01000000. The 0.7 V for 40cm can also
be approximated by 0.63V or bit pattern of 00100000. However, making 0.58V for 50cm is
impossible by just one bit information. Instead, since 0.58 = 0.32+0.16+0.8, we can use the three
bit information for 40 cm: 00011100 as a conclusion. In a similar manner, we can have the
following simple distance interpretation pattern from the output voltage of the ranger.

1xxx xxxx -->128 --->250----->010cm
01xx xxxx -->64 --->125----->020cm
001x xxxx -->32 ---->063----->040cm
0001 11xx -->28 ---->056----->050cm
0001 10xx -->24 ---->048----->060cm
0001 01xx -->20 ---->040----->080cm
0001 00xx -->16 ---->032----->100cm
0000 xxxx -->8 ---->016 ---->Out of Range

The Pseudo-Code for voltage to distance interpretation is shown below. The label 'cm' followed
by a three digit number indicates the place for displaying the distance of the number. The label
'cmqqq' is for displaying out of range distance situation.

if B7=1 goto cm010, else goto B ;<B7>=1 for 10cm
B: if B6=1 goto cm020, else goto C ;<B7:B6>=01 for 20cm
C: if B5=1 goto cm040, else goto D ;<B7:B5>=001 for 40cm
D: if B4=1 goto D1, else goto E

D1: if B3=1 goto D2, else goto D3
D2: if B2=1 goto cm050, else goto cm060 ;<B7:B2>=000111 for 50cm
 ;<B7:B2>=000110 for 60cm
D3: if B2=1 goto cm080, else goto cm100 ;<B7:B2>=000101 for 80cm
 ;<B7:B2>=000100 for 100cm

E: goto cmqqq ;<B7:B4>=0000 for Out of Range

The following example code is a full program for Sharp GP2D12 without listing subroutine. The
subroutines needed this code are the same ones we used in the first example of A/D conversion
reading the wiper voltage from the variable resistor.

;GP2D12.asm
;
;This program is to read voltage output from
; a Sharp Ranger GP2D12D
; and display the value on a PC terminal (updated every half second)
;
; AN1 is connected to the Ranger
;;
;USE ONLY most significant 8 bits
;Max 5.00 V
;min 0.00 V
;

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

199

list P = 16F877

STATUS EQU 0x03
ZERO EQU 0x02 ;Z flag
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;0x0F (19200), 0x1F (9600)
PORTD EQU 0x08
TRISD EQU 0x88
PORTA EQU 0x05
TRISA EQU 0x85
ADCON0 EQU 0x1f
ADCON1 EQU 0x9f
ADRESH EQU 0x1e ;High Byte Result
ADRESL EQU 0x9E ;Low Byte Result
PIE1 EQU 0x8c
GO EQU 0x02
ADIE EQU 0x06
ADIF EQU 0x06

;DISPLAY FORMAT
;
;XXX CM (3 digit)
;
;

CBLOCK 0x20
temp
tempten
HIGHBYTE
LOWBYTE
HILO ;flagging for 1(10 or bigger) or 0 (less than 10)
DIGIT1
DIGIT2
DIGIT3 ;D1. D2 D3 (display format) Double precision
ASCIIreg
AD1
AD2
AD3 ;final 3 ASCII digits to be displayed
Kount20us
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount100ms
Kount500ms
Kount1s
Kount10s

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

200

Kount1m
ENDC

;
;The Next
;Bootloader first execute the first 4 addresses
;===

org 0x0000
goto START
org 0x05

;==
START

movlw 0xFF
banksel TRISA
movwf TRISA ;PORTA all Inputs

banksel PIE1
bcf PIE1, ADIE ;disable ADC interrupt

banksel ADCON0 ;KKCCCGXO
movlw 0xC9 ;11001001
movwf ADCON0 ;initialize ADC (AN1 is ADC port)

movlw 0x00
banksel ADCON1
movwf ADCON1 ;PORT A is for ADC channel

;With LEFT JUSTIFICATION
;We will ignore two least significant

bits
;without much loss

AGAIN
banksel PIR1
bcf PIR1, ADIF ;clear conversion complete flag

banksel TEMP
clrf TEMP
clrf AD1
clrf AD2
clrf AD3

call GetADC ;voltage reading
banksel TEMP
movwf TEMP ;Now TEMP holds the 8-bit ADC result
movlw '0'
movwf AD3 ;AD3=0
movwf AD1 ;AD2=0
movwf AD2 ;Ad1=0

;Distance = 000 now
;
; Max +5.00 Min 0.00
;Conversion to Distance (See the nonlinear graph for GP2D12)
;Experimental results
;
; 2.70 [V] 9 cm
; 2.4 10
; 1.25 20
; 1.1 25

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

201

;0.9 30
;0.8 35
;0.7 40
;0.62 45
;0.58 50
;0.52 55
;0.5 60
;0.48 65
;0.46 70
;0.44 75
;0.42 80
;0.4 85
;0.38 90
;0.36 95
;0.34 100
;0.32 110
;0.3 140
;0.28 150

;FROM ADC with LEFT JUSTIFIED
; 1 0000 0000 -->256 --->500
; 0 1xxx xxxx -->128 --->250----->010cm
; 0 01xx xxxx -->64 --->125----->020cm (B)
; 0 001x xxxx -->32 ---->063----->040cm (C)
; 0 0001 11xx -->28 ---->056----->050cm (D, D1)
; 0 0001 10xx -->24 ---->048----->060cm (D2)
; 0 0001 01xx -->20 ---->040----->080cm (D3)
; 0 0001 00xx -->16 ---->032----->100cm (D3)
; 0 0000 xxxx -->8 ---->016 ---->Out of Range (E)

;Pseudo-Code
;
; if B7=1 goto cm010, else goto B
; B: if B6=1 goto cm020, else goto C
; C: if B5=1 goto cm040, else goto D
; D: if B4=1 goto D1, else goto E
; D1: if B3=1 goto D2, else goto D3
; D2: if B2=1 goto cm050, else goto cm060
; D3: if B2=1 goto cm080, else goto cm100
; E: goto cmqqq

btfss TEMP, 0x07
goto BB
goto cm010

BB btfss TEMP, 0x06
goto CC
goto cm020

CC btfss TEMP, 0x05
goto DD
goto cm040

DD btfss TEMP, 0x04
goto EE

D1 btfss TEMP, 0x03
goto D3

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

202

goto D2

D2 btfss TEMP, 0x02
goto cm060
goto cm050

D3 btfss TEMP, 0x02
goto cm100
goto cm080

EE goto cmqqq ;end of interpretation

cm010 movlw '1'
movwf AD2 ;Distance = 010
goto FINI

cm020 movlw '2'
movwf AD2 ;Distance = 020
goto FINI

cm040 movlw '4'
movwf AD2 ;040
goto FINI

cm050 movlw '5'
mmovwf AD2 ;050
goto FINI

cm060 movlw '6'
movwf AD2 ;060
goto FINI

cm080 movlw '8'
movwf AD2 ;080
goto FINI

cm100 movlw '1'
movwf AD1 ;100
goto FINI

cmqqq movlw '>'
movwf AD1
movwf AD2
movwf AD3 ;>>> to indicate out-of-range

FINI

;ready to display
movf AD1, 0
call TXPOLL
movf AD2,0
call TXPOLL
movf AD3,0
call TXPOLL
call CRLF ;Line Change

;delay 2s
call delay100ms

goto AGAIN ;repeat every 100ms

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

203

We expect to see the following display when we move an object away from the ranger.

4. Current Measurement Applications using A/D converter Module

As the last example of A/D conversion in data acquisition, a few current sensors are introduced
here. Some are good for smaller current and others are better for rather a larger current. A
simple thermister is also introduced for a simple temperature measurement using the A/D
module.

CSA-1V hall effect current sensor measures a current through itself by the principle of the
magnetic field generated by the current flow. The amount of the current will be translated by the
chip and the corresponding value in voltage will be produced.

Fig. 63 How the CSA-1V Sentron works

According to the datasheet, when the current carrying conductor is about 0.1mm, 10A will
produce 4V and the output terminal of the sensor chip. 5A would produce about 3.2 V.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

204

Fig. 64 Sensitivity graph

With the following connection, we can measure the current through the wire using the AN1
channel of 16F877. We apply the same logic and example code. The wire indicated with
different color and different thickness (or AWG number) do not indicate the actual different in
the conductor type on top of the sensor chip. We can use any wire, which can stand the
maximum expected current flowing through, for the measurement. No special wire type is
needed to place it on top (or bottom) of the sensor chip. However, you may want to use
insulated wire to prevent an electric shock or electrocution by accidentally touching a bare wire
carrying very high current.

There are two ways to get the output voltage for current measurement, if we get the output
between pin#1 A_out and the ground, as connected in the drawing, the voltage range is [0,
+5]V. However, if you use the pin#8 CO_out as internal reference, we can read a differential
output voltage between pin #1 and pin#8, in which case the output range is [-2.5, +2.5]V.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

205

Fig. 65 CSA-1V Sentron connection to get output voltage

The next current sensing device is Maxim IC's MAX471/MAX472. MAX471 is a bidirectional,
high-side current-sense amplifiers for portable PCs, telephones, and other systems where
battery/DCpower-line monitoring is critical. High-side power-line monitoring is especially
useful in battery-powered systems, since it does not interfere with the ground paths of the battery
chargers or monitors often found in “smart” batteries.

The MAX471 has an internal 35mΩ current-sense resistor and measures battery currents up to
±3A. For applications requiring higher current or increased flexibility, the MAX472 functions
with external sense and gain-setting resistors. Both devices have a current output that can be
converted to a ground-referred voltage with a single resistor, allowing a wide range of battery
voltages and currents.

An open-collector SIGN output indicates current-flow direction, so the user can monitor whether
a battery is being charged or discharged. Both devices operate from 3V to 36V, draw less than
100µA over temperature, and include a 18µA max shutdown mode.

With the following connection, with 2KΩ resistor at the output side, the current-to-voltage
conversion ration is 1V/A. Therefore, I V reading means 1 A current flow from the battery.
The SIGN pin is to indicate the current flow direction. The Low level indicates that current flows
from RS- to RS+.

Fig. 66 Maxim IC's MAX471

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

206

In the connection diagram above, since the current flows, out of the DC supply voltage source,
from RS+ to RD- to the LOAD to the ground, the SIGN output must be High. When we do not
need the flow direction information, leave the pin open.

Another current sensor is Allegro MicroSystem's ACS750, a fully integrated current sensor.
The Allegro ACS750 family of current sensors provides economical and precise solutions for
current sensing in industrial, commercial, automotive, and communications systems. The device
package allows for easy implementation by the customer. Typical applications include motor
control, load detection and management, switched mode power supplies and over-current fault
protection.

The sensor consists of a precision linear Hall IC optimized to an internal magnetic circuit to
increase device sensitivity. The primary conductor used for current sensing (terminals 4 and 5)
is designed for extremely low power loss. The power terminals are also electrically isolated from
the sensor leads (pins 1 – 3). This allows the ACS750 family of sensors to be used in
applications requiring electrical isolation without the use of opto-isolators or other costly
isolation techniques.

As we see the current vs. output voltage curve, they are linearly related in the range of [0, +5]V
for the current range of [-50, +50]A.

Fig. 67(a) Allegro MicroSystem's ACS750 Fig. 67(b) Graph of Volt vs. Primary Current

The following connection would read the current through the DC load in terms of voltage at the
output pin #3, which is measured by the AN2 channel of the A/D conversion module. We use
the same code we already examined for a wiper voltage measurement of a variable resistor.

Chapter 8. A/D Conversion and Data Acquisition

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

207

Fig. 68 ACS750 connection to read current through DC load

The last item we apply the same A/D conversion is a thermistor, or thermally sensitive resistor.
The resistance value of the thermistor changes according to temperature. This part is used as a
temperature sensor. There are three types of thermistors: negative temperature coefficient
thermistor (NTC), positive temperature coefficient thermistor (PTC), and critical temperature
resister thermistor (CTR). NTC decreases its resistance value continuously as temperature rises.
PTC increases its resistance value suddenly when temperature rises above a specific point. On
the other hand, CTR decreases its resistance value when temperature rises above a certain point.

The thermistor we examine is a very small NTC thermistor, A170. Cool resistance is about
1.5KΩ and hot resistance is about 25 Ω. We may need some type of calibration to accurately
convert the resistance of the thermistor to the ambient temperature. The following connection
would get about 2.5V for normal temperature. As the temperature rises, the output voltage
would also rise. Test the voltage output with the example code we studied for the wiper voltage
of a variable resistor.

Fig. 69 NTC thermistor A170 connection to PIC 16F877

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

