
Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

136

 Chapter 7: Motor Control

*Motor control which needs PWM, such as DC motor speed control and Servo Control,
 is discussed in a separate volume.

The most common motors in microcontroller control for robots and other motion/movement
control are DC motors. They are cheap and easy to control (rotational direction, start/stop, and
speed). However, for robot arm or tracking camera movement control, stepper motor is the only
way to satisfy the requirement since its position is precisely controlled for a desired position. In
this chapter we explore the world of DC motors and stepper motors. A similar one, servo motor,
will be discussed in Chapter 13 while we discuss about the PWM (Pulse Width Modulation)
module of 16F877. Therefore, any control of motors which requires PWM is not discussed here
but later in Chapter 13. So the main theme of control is consistent of: (1) DC motor rotational
direction control and (2) Stepper motor position control.

1. Motors

DC Motor
A DC motor usually means a permanent-magnet, direct-current (DC) motor of the sort used in
toys, models, cordless tools, and robots. These motors are particularly versatile because both
their speed and direction can be readily controlled; speed by the voltage or duty cycle of their
power supply, and direction by its polarity.

Fig. 32 DC motor

Torque is a measurement of the motors power. The higher the torque of the motor the more
weight it can move. DC motors provide different amounts of torque depending on their running
speed, which is measured in RPM (revolutions per minute). At low RPM DC motors produce
poor torque, and generally the higher the RPM, the better the motors torque. However, in high
torque, the speed may be too high for an application. That's why we have to use gears (or geared
motor) to reduce the overall speed of the motor and running at the top speed to get the most
power to, say, a wheel attached to the shaft of the motor.

Stepper Motor
Stepper motors work in a similar way to dc motors, but where dc motors have 1 electromagnetic
coil to produce movement, stepper motors contain many. Stepper motors are controlled by
turning each coil on and off in a sequence. Every time a new coil is energized, the motor rotates
a few degrees, called the step angle. Repeating the sequence causes the motor to move a few
more degrees and so on, resulting in a constant rotation of the motor shaft. For example, a
stepper motor with a step angle of 7.5 degrees requires 48 pulses for a complete revolution.
The diagram below shows how a stepper motor works. The magnet in the middle of the
arrangement is connected to the motor shaft and produces the rotation. The 4 magnets around the
outside represent each coil of the stepper motor. As different coils are energized the central

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

137

magnet is pulled in different directions. By applying the correct sequence of pulses to the coils
the motor can be made to rotate.

Fig. 33 Stepper Motor

This design gives stepper motors the upper hand over DC motors. Varying the speed of the input
sequence can exactly control the speed of the motor. Also, by keeping count of the sequence the
motor can be made to rotate any number of times to any position. The way to activate the coils
determines two classes of the stepper motor: unipolar stepper motor and bipolar stepper motor.
In a unipolar stepper motor the current direction in a coil is unidirectional. In other words, the
polarity of the voltage across a coil is always the same or there is no voltage developed across
the coil. Therefore in unipolar scheme, the motor power's positive polarity must be connected to
the terminals 1 and 2 of the illustration shown below. The control of a unipolar stepper motor is,
thus, to turn on and off the current flow through the four coils in a sequence for the step direction
and speed. As we see a unipolar stepper motors has at least 5 external wires: 5 when terminals 1
and 2 are jointed together into one terminal, and 6 when two are left as separate terminals.

Fig. 34 How a Stepper Motor Works

In bipolar scheme, the coils can be excited by both directions. In other words, in a coil current
can flow both ways. Therefore, the bipolar scheme must provide a way to apply either positive
voltage to one of the coil and ground to the other end, vice versa, at a given sequence. A bipolar
stepper motor therefore has only 4 external wires to excite.

Servo Motor
A Servo is a small device that has an output shaft. This shaft can be positioned to specific
angular positions by sending the servo a coded signal. As long as the coded signal exists on the

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

138

input line, the servo will maintain the angular position of the shaft. As the coded signal changes,
the angular position of the shaft changes. In practice, servos are used in radio controlled (RC)
airplanes to position control surfaces like the elevators and rudders. They are also used in radio
controlled cars, puppets, and of course, robots.

Fig. 35 Servo Motor

Servos are extremely useful in robotic application. The motors are small, and have built with a
motor, control circuitry, a set of gears, and the case, and are extremely powerful for their size. A
standard servo has 42 oz/inches of torque, which is pretty strong for its size. It also draws power
proportional to the mechanical load. A lightly loaded servo, therefore, doesn't consume much
energy. There are 3 wires in it: power, ground, and control.

The control circuitry includes a potentiometer that is connected to the output shaft, which allows
the control circuitry to monitor the current angle of the servo motor. If the shaft is at the correct
angle, then the motor shuts off. If the circuit finds that the angle is not correct, it will turn the
motor the correct direction until the angle is correct. A normal servo is mechanically not capable
of turning any farther due to a mechanical stop built on to the main output gear, and usually set
to control an angular motion of between 0 and 180 degrees.

The amount of power applied to the motor is proportional to the distance it needs to travel. So, if
the shaft needs to turn a large distance, the motor will run at full speed. If it needs to turn only a
small amount, the motor will run at a slower speed.

The control wire is used to communicate the angle. The angle is determined by the duration of a
pulse that is applied to the control wire. In other words, the duration of the pulse dictates the
angle of the output shaft.

The details on servo motor and its control is discussed in Chapter 13, in which we introduce the
PWM module of 16F877.

2. DC Motor Control

Control by Relay (or Electronic Switch)
A relay (or magnetic relay or magnetic switch) is a switch operated by an electromagnetic action.
The relatively small current flowing through a coil of an electromagnet inside pulls (or pushes) a
lead contact to make (or break)a circuit. No current would push (or pull) back the contact by the
mechanical spring attached to the mechanism. The contact lead is made of very low resistive
material it does not consume much power. The major problem with using a relay is that, since
the contact is physically moving from a position to the other, the response time is longer that

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

139

electronic device. It takes 1 few milliseconds. Also, numerous makes and breaks of the contact
would eventually wear out the contact leads. The electrical life of a relay is about 1,000,000
times of switch action.

The minimum current to energize the electromagnet and thus to have switch operation is not the
same. Different relays and relay manufactures have different specifications. The maximum
current 16F877 can provide at its output pin is only 25 mA. Therefore, we can directly operate a
relay whose energizing current is below 25 mA. The energizing current is usually, indirectly,
indicated by the coil voltage across the electromagnet and power consumption. In other words,
if the power consumption by the electromagnet is 100mW with rated coil voltage is 5V, then we
can calculate the nominal current through the coil is 20 mA. But if you get or buy a relay, the
relay comes alone, without a specification. If it does come with a specification, the specification
would be scant and not helping. The best way to test your relay's minimum energizing current is
to apply a DC source, from low voltage to higher, and measure the minimum current when you
hear a tick sound of contact making or breaking. You do not have to apply the rated voltage
across the coil. Staring from 1V you gradually increase the voltage and read the reading of the
current, and get the number when you hear the contact sound. That current is the minimum
driving current we have to supply. For example, for a relay made by American Zellter, AZ831-
2C-5DSE had rated voltage of 5V and 125ohm of coil resistance. A simple calculation says the
nominal coil current is 40mA. But it does mean that the relay does not work with coil current of
under 40mA. The test with the same procedure described above, the minimum current for coil is
found to be only 17mA. So this relay is good for our 16F877 application.

Fig. 36 American Zellter AZ831-2C-5DSE relay

However, there also is the limitation of the maximum current we flow to the coil: above the
maximum coil current would damage the electromagnet coil. However, for our case of using a
microprocessor, this maximum coil current is of no concern except in very rare cases. Another
limitation we have to consider is how much current the contact lead, which would be a part of a
circuit when it makes a circuit, can flow without damaging the contact. This value is usually
called the "maximum contact current" or "maximum carrying current" in the specification. This
value must be higher than your motor current, if you want to use a relay for motor control.

Let's further look at the internal schematic of the AZ831 relay described above. First, we see
the coil between pins 1 and 16. There are two contacts, however, connected to pins 4 and 13,
respectively. So when the coil is energized each contact (or pole) will move to pins 8 and 9,
respectively. When the coil is not energized they will move back to the pins 6 and 11
respectively. In other words, if we use terms used for mechanical switch, the above relay is of
Double Pole Double Throw (DPDT): two contacts and two switching positions.

On the other hand, a normal push button we use for temporary contact, which bounces back
when it is released, is a Single Pole Single Throw (SPST) switch, with 1 contact and 1 position.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

140

Usual On/Off switch is of Single Pole Double Throw (SPDT) with two positions but with one
contact.

 Fig. 37(a) Single Pole Single Fig. 37(b) Single Pole Double

 Throw (SPST) switch Throw (SPDT) switch

Before applying relays to control a DC motor, let's examine the principle of DC motor
operational control, namely, rotational direction and start/stop. Start/Stop control is rather a
simple matter. Turn on or off a SPST switch or a relay of a DC voltage source. However,
changing the polarity of a motor terminal is not that simple and straight. The schematic below is
to control the direction of a DC motor. As you see the motor power supply is connected to pins
9 and 8 for positive polarity, and to pins 8 and 11 for negative polarity. Therefore, when the
DPDT relay is not energized (i.e., no current through the coil between pins 16 and 1, the current
from the motor power supply flows through the pins, in the order of, 6 – 4 – Motor's Positive
terminal – Motor's negative terminal – 13 – 11 – power supply. Therefore, motor runs in
forward motion. When the coil is energized the two contacts move forward to pins 8 and 9,
respectively. In this case, the current from the motor power supply flows, in the order of, pin 9 –
pin 13 – Motor's negative terminal – motor's positive terminal – pin4 – pin 8 – power supply.
Then, the motor turns in reverse motion.

Fig. 38 DC motor operational control

If we add one more DPDT relay (DPDT is not a must. SPDT does well too) for start/stop
operation, we have the following final schematic for motor control. Using two of AZ831-2C
5DSE (by American Zellter) relays, we need only two output pins from 16F877 for Forward,
Reverse, and Stop motion control for a DC motor.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

141

Fig. 39 Motor Power Supply

We choose RD7 (PORTD<7>) and RD6 (PORTD<6>) for On/Off and direction control pins.
We added two LEDs (one green at RD0 and the other amber at RD1) as indicators of the DC
motor status: Lit green LED for reverse running and the lit amber for forward running. When
motor stops, the two LEDs turn off too. Therefore we have the following output table for the
following 3 conditions:

 PORTD Motor Action
RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

Remarks

Forward Motion 1 1 X X X X 1 0 LED1 On /LED0 Off
Reverse Motion 1 0 X X X X 0 1 LED0 On /LED1 Off
Stop 0 X X X X X 0 0 LED0 Off /LED1 Off

Fig. 40 PIC 16F877 connection to Motor Power Supply

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

142

An example code for the above scheme goes like below. The code goes with a sequence of
motor motions: 3 seconds of forward, and 3 seconds of reverse, followed by 1 second of stop
motions. For forward and reverse motions, 1 second of stop is inserted before running the motor,
to give time to stop the on-going motion and its inertia (and reverse electromotive force
development and attenuation). The code contains only the main part: subroutine for 1 second
delay has been covered before.

;DC-RLY.asm
;
;Two DPDT AZ831 relays to control a DC motor
;
; ON/OFF control is connected to RD7
; DIRECTIOn control is connected to RD6
; LED1 is connected to RD1 (FWD motion indication)
; LED0 is connected to RD0 (RVS motion indication)
;
;
; ACTION PORTD
; ============ 7 6 5 4 3 2 1 0 =====
; STOP 0 X X X X X 0 0 (00000000)
; ON/FORWARD 1 1 X X X X 1 0 (11000010)
; ON/REVERSE 1 0 X X X X 0 1 (10000001)

list P = 16F877

STATUS EQU 0x03
TRISD EQU 0x88
PORTD EQU 0x08

;RAM arEA

CBLOCK 0x20
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount200ms
Kount1s
Kount10s
Kount1m

ENDC

;Bootloader first execute the first 4 addresses
;===

org 0x0000
goto START

;===
org 0x05

START

banksel TRISD
movlw 0x00
movwf TRISD ;All ports are outputs
banksel PORTD

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

143

clrf PORTD ;TWO LEDs OFF (STOP)

AGAIN

; action routine
FORWARD

banksel PORTD
movlw B'00000010' ;stop for 1 second
movwf PORTD
call delay1s
banksel PORTD
movlw B'11000010'
movwf PORTD

call delay1s
call delay1s
call delay1s ;3 seconds of forward

REVERSE
banksel PORTD
movlw B'00000001' ;stop for 1 second
movwf PORTD
call delay1s
banksel PORTD
movlw B'10000001'
movwf PORTD
call delay1s
call delay1s
call delay1s ;3 seconds of reverse

HOLDON
banksel PORTD
movlw B'00000000'
movwf PORTD
call delay1s ;at least 1 second of STOP

goto AGAIN

Control by Transistors and H-Bridge Drivers
A small base current in a transistor brings up a larger collector current, in turn makes a circuit. A
Darlington can generate even more current by cascading two transistor. So a transistor (regular
or MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor)) makes a good electronic
switch. However, as we discussed above, a DC motor control requires more than just a switch: it
needs a combination of switches to change the polarity of the motor terminals for direction
control. The most famous transistor control scheme is to use so-called H-bridge. H-bridge is a
combination of four transistors, and the name H-bridge came from the shape of the overall circuit
with a DC motor at the center.

The diodes, called "fly back diodes" in the H-bridge, are very important in preventing voltage
spikes of the motors from destroying the transistors. When a motor rotates and changes
direction, the motor winding coils act as a generator and produce a current. This current is called
the back electromotiveforce (EMF). This current travels back through the circuit in the form of

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

144

powerful voltage spikes to the transistor. Therefore, if this current is particularly large, when
you reverse the direction of the motor, it may blow the transistors. The diode’s job is then to
allow this current to bypass the transistor and travel safely back to the battery.

Fig. 41 Control by Transistors and H-Bridge Drivers

When A is High and B is Low, transistors Q1 and Q4 are turned on and Q2 and A3 are turned
off. Therefore, the current flows from the motor power supply through Q1 to the positive
terminal of the motor and through Q4 to the motor power supply. So with A High and B Low,
the motor turns in forward direction.

On the other hand, when A is Low and B is High, transistors Q2 and Q3 are turned on and Q1
and Q4 are turned off. Therefore, current flow direction is, from the motor power supply,
through Q2 and the negative terminal of the motor to Q3. In this case, the motor turns in reverse
direction.

When both A and B are Low, the motor stops since there is no transistor turned on to flow the
current through the motor.

Fig. 42(a) Motor turning in forward direction Fig. 42(b) Motor turning in reverse direction

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

145

There are numerous transistor types can be formed an H-bridge. The selection criterion must
include how much current one stands and how much current a motor needs.

Nowadays, one or more H-bridges are packaged in a chip or motor driver chip which includes
other functions such as speed control by PWM. A simple H-bridge motor driver chip contains at
least one H-bridge. One of most famous high current (3 A) H-bridge driver is LMD18200 from
National Semiconductor. LMD18200 supports motor supply voltages of 12 to 55V and current
to 3A. As indicated below, LMD18200T (11 lead TO-220 package) two outputs for one DC
motor. The DC motor must be of 12V or above. Motor with lower voltage may not work with
LMD18200. Also is a direction input for forward and reverse motion. There is one speed
control input, PWM input. As mentioned earlier, the discussion and application of PWM is set
aside for a while. Instead, we will supply High (as 100% duty) as a fixed speed. The brake
input is to stop the motor. The current sense output is to monitor the current flowing through the
outputs, and this is to see if the current is too high for a given condition. Thermal flag output is
to indicate the temperature condition of the operation, and is to prevent any excessive operating
temperature conditions.

Fig. 43 LMD18200T (11 lead TO-220 package)

In order to drive a DMOS switch ON, its gate must be driven approximately 10V more positive
than its source voltage. The lower switches of the H-Bridge have their source terminals
connected to ground and their gate drive is derived from the VS motor supply voltage to the
device. The two upper switches however have their source terminals connected to the output
pins which are continually being switched between ground and VS . In order to generate the gate
drive voltage for these switches, a charge pump circuit is used. For higher frequency operation,
faster turn-on of the upper DMOS switches is necessary. This can be obtained through the use of
external bootstrap capacitors. Since bootstrap capacitor CB is much larger than the input
capacitance of the DMOS power transistors, these transistors can turn ON very rapidly, typically
in about 100 ns, thus allowing operating the LMD18200 at switching frequencies up to 500 kHz.
The recommended capacitance of two bootstrap capacitors is 10 nF.

One distinctive feature of LMD18200 is under-voltage lockout, which disables all of the
switches when the DC power supply voltage falls below approximately 10V. The reason for

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

146

this feature is that reliable, well controlled operation of the switches cannot be assured without at
least 10V applied. Again, therefore, we have to use a DC motor of 12V or above.

According to the datasheet of LMD18200, the following logic table can be formed.

PWM pin DIR pin BRAKE pin MOTOR ACTION
H H L Forward run
H L L Reverse run
X X H Stop

Let's connect one LMD18200 to our 16F877 and one 12V DC motor. The three control inputs
are connected to the three pins of PORTD.

Fig. 44 PIC 16F877 connection to LMD 18200

The sample code we will examine is to, without external control inputs, turn the DC motor in
forward motion for 10 seconds and reverse motion for 10 seconds followed by 3 seconds of stop.
In both the forward and reverse motion, 1 second of stop is added at the end to minimize any
reverse EMF effect to the circuit. Also, it's almost impossible to have an instant direction
change because of the inertial force of the motor motion. Again here, two LEDs are connected
to the lower two pins of PORTD to indicate the motor actions. As before, only the main part of
the code is shown here.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

147

;This program is to
; Control a DC (+12 V or abve) motor using LMD18200
; PWM from PIC is not utilized for this program
;
; PWM is connected to RD7 (Keep High for non-PWM used)
; BREAK is connected to RD6 (H means stop L means Go)
; DIRECTIOn control is connected to RD5 (H for FWD)
; LED1 is connected to RD1 (Forward motion indication)
; LED0 is connected to RD0 (Reverse motion indication)
;
;

; ACTION PORTD
; ============ 7 6 5 4 3 2 1 0 =====
; STOP 0 1 0 0 0 0 0 0
; ON/FORWARD 1 0 1 0 0 0 1 0
; ON/REVERSE 1 0 0 0 0 0 0 1

list P = 16F877

STATUS EQU 0x03
TRISD EQU 0x88
PORTD EQU 0x08

;RAM area

CBLOCK 0x20
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount200ms
Kount1s
Kount10s
Kount1m

ENDC
;==

org 0x0000
goto START

;==
org 0x05

START
banksel TRISD
movlw H'00'
movwf TRISD ;All ports are outputs
banksel PORTD
movlw B'01000000'
movwf PORTD ;STOP Condition

AGAIN

; action routine
FORWARD

banksel PORTD
movlw B'10100010'
movwf PORTD

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

148

call delay10s
banksel PORTD
movlw B'01100000'
movwf PORTD ;STOP
call delay1s

REVERSE
banksel PORTD
movlw B'10000001'
movwf PORTD
call delay10s
banksel PORTD
movlw B'01000001'
movwf PORTD
call delay1s

HOLDON
banksel PORTD
movlw B'01000000'
movwf PORTD
call delay1s ;at least 3 seconds of Stop
call delay1s
call delay1s

goto AGAIN ;repeat

DC motor control using another H-Bridge Driver
The H-Bridge motor driver is UDN2916 Dual Full-Bridge PWM Motor Driver from Allegro
MicroSystems. The UDN2916 is designed to drive both windings of a bipolar stepper motor or
bi-directionally control two DC motors, and is capable of sustaining 45 V and include internal
pulse-width modulation (PWM) control of the output current to 750 mA. The driver includes
both ground clamp and flyback diodes for protection against inductive transients. Internally
generated delays prevent cross-over currents when switching current direction. Thermal
protection circuitry disables the outputs if the chip temperature exceeds safe operating limits.
UDN2916 comes with three package types. The UDN2916B is supplied in a 24-pin dual in-line
plastic (DIP) package with a copper lead-frame and heat sinkable tabs for improved power
dissipation capabilities. The UDN2916EB is supplied in a 44-lead power PLCC for surface
mount applications. The UDN2916LB is supplied in a 24-lead surface-mountable SOIC.

Two logic level inputs (I0 and I1) allow digital selection of the motor winding current at 100%,
67%, 33%, or 0% of the maximum level. The 0% output current condition turns OFF all drivers
in the bridge and can be used as an OUTPUT ENABLE function.
 I0 I1 %of Max Current
 0 0 100 Can be used as "Enable" output
 1 0 60%
 0 1 30%
 1 1 0% Can be used as "Disable" output

Output current is sensed and controlled independently in each bridge by

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

149

an external sense resistor (RS), internal comparator, and monostable multivibrator.
When the bridge is turned ON, current increases in the motor winding and it is
sensed by the external sense resistor until the sense voltage (VSENSE) reaches the level
set at the comparator’s input. However, in most application of motor drive, this can be ignored
without any problem. So in our example of a DC motor driving, we will simply ignore the
current sensing part.

Fig. 45 UDN2916B

The PHASE input to each bridge determines the direction motor winding current flows. An
internally generated dead-time (approximately 2 µs) prevents crossover currents that can occur
when switching the PHASE input.
 PHASE OUTA OUTB
 1 H L OUTA terminal is positive
 0 L H OUTB terminal is positive

In this section we will use UDN2916B for a DC motor application. The driver works well with a
wide range of motor supply voltages. The usual 1.5 V or 3 V small DC motors we use often in a
robot project run very well with UDN2916B. Moreover, one UDN2916, since it contains dual
H-Bridges, can control two DC motors. In the section of a stepper motor control, we use the
same UDN1816B for a bipolar stepper motor control.

Here is our strategy of using UDN2916B for a DC motor control. If you want to use two DC
motors, just make the same connection for the other motor as we do here for the first motor.
However, use caution since pins of the same functions are not aligned side by side. Connection
of two DC motors will follow after the discussion of one motor connection and control.

For PWM current control, we will use the I0 and I1 pins for Start (Enable) and Stop (Disable)
inputs. So we tie them together and connect to an output pin of 16F877. PHASE pin is used for
direction control. When we connect the OUTA to the positive terminal of a motor (actually, there

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

150

is no making on a motor. So you decide which terminal is for forward or reverse turn) and OUTB
to the negative terminal of a motor, then High to PHASE input will turn the motor in a forward
motion, and Low in a reverse motion. So the control of a DC motor with a UDN2916 is very
simple.

As shown in the schematic, only the left side of H-Bridge is used for a DC motor control.
On/Off control with two tied lines of I0 and I1 are connected to RD7, and the direction control
PHASE is connected to RD6. The On/Off control is more like an active Low pin in that Low to
the On/Off pin will start the motor, and High would stop the motor. As before, two LEDs are
connected to indicate the motor action status in RD1 and RD0. As in the DC motor control by
a relay, we can get the following control table.

 PORTD Motor Action
RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

Remarks

Forward Motion 0 1 X X X X 1 0 LED1 On /LED0 Off
Reverse Motion 0 0 X X X X 0 1 LED0 On /LED1 Off
Stop 1 X X X X X 0 0 LED0 Off /LED1 Off

Fig. 46 PIC 16F877 connection to UDN2916B

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

151

So the coding is similar and simple. Forward run goes like this.

FORWARD

movlw B'01000010'
banksel PORTD
movwf PORTD
call delay1s
call delay1s ;or as long as you want it to run

And the reverse motion is like this:

REVERSE

movlw B'00000001'
banksel PORTD
movwf PORTD
call delay1s
call delay1s ;or as long as you want it to run

The stopping can be coded like this:

HOLDON

movlw B'10000000'
banksel PORTD
movwf PORTD
call delay1s ;at least 1 second

;or as long as you want it to hold on

With two sets of a dual motor gearbox kit and two 56mm sport tires from Lynxmotion, we can
easily build a platform for a four-wheel driving robot. And control of your robot (without any
sensor, for the time being) is quite easy with two UDN2916B and two 3V battery packs (two 1.5
V battery in series).

Fig. 47(a) Dual motor gearbox kit Fig. 47(b) 56mm sport tires Fig. 4(c) Four-wheel driving robot

The first UDN2916B controls two front motors (Front Left (FL) and Front Right (FR)) and the
second UDN2916B does for two rear motors (Rear Left (RL) and Rear Right (RR)). The
On/Off control and Forward/Reverse (FW/RV) direction control lines from each motor, total 8,
are connected to the PORTD pins. The example here runs all four wheels all the time, however,
for a battery saving measure; you may want to run only two wheels all the time except climbing
a slope or being with a heavy load.

Let's consider the maneuvering of the 4-wheel platform before we consider a coding example for

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

152

16F877. Stopping the platform is easy: turn off all four motors. Going forward is also simple
with turning on all four motors and turning them all forward motions. Backing off is also simple
with turning on all the motors and reversing them all. Turn left or right has many different
operational options but the easiest one is: Run forward two right motors, front and rear, and stop
two left motors, front and rear for "turn left" motion; and run forward two left motors, front and
rear, and stop two right motors, front and rear for "turn right" motion. So here goes the table for
the 4-wheel driving platform.

Front Left Motor Front Right Motor Rear Left Motor Rear Right Motor
ON/OFF FW/RV ON/OFF FW/RV ON/OFF FW/RV ON/OFF FW/RV

RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0
STOP 1 X 1 X 1 X 1 X
GO
FORWARD

0 1 0 1 0 1 0 1

GO
BACKWARD

0 0 0 0 0 0 0 0

TURN LEFT 1 X 0 1 1 X 0 1
TURN
RIGHT

0 1 1 X 0 1 1 X

Fig. 48 Connection of PIC 16F877 to two UDN2916Bs

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

153

Then the initialization of PORTD and the motion of the platform go as follows. First we set the
PORTD pins all as outputs.

banksel TRISD
movlw 0x00
movwf TRISD ;all pins of PORTD set as outputs

We do not want to see motor moving when we turn on the power, so we have to have a stop
condition when power on reset mode.

banksel PORTD
movlw B'10101010' ;all for motors are off
movwf PORTD

Then each motion could be easily coded.

go_fwd movlw B'01010101'
movwf PORTD
return

go_bwd movlw B'00000000'
movwf PORTD
return

r_turn movlw B'01100110'
movwf PORTD
return

l_turn movlw B'10011001'
movwf PORTD
return

stop movlw B'10101010'
movwf PORTD
return

3. Stepper Motor Control

There are two distinctive stepper motors and their control methods and control drivers. Bipolar
stepper motors are to be controlled by bipolar stepper drivers and unipolar steppers are to be
controlled by unipolar drivers. Therefore, before you jump to get a stepper motor, you have to
consider which stepper motor type you get depending upon control difficulties, external circuitry
requirement in addition to a driver, toque, and price. The stepper motors presented here are
strong enough at least to turn a monitor-top camera (for a possible tracking camera application).
If you are considering a stepper motor for a vehicle steering application, you had better consider
a servo instead. For servo, please wait until or jump to Chapter 13 PWM. However, some
steering application for 360degree turn, a stepper motor could be handier than a servo.
As will be shown soon, some drivers are easier to control than others, while another driver is
simpler to implement in terms of necessary external elements such as resistors and capacitors
than others. So, based on your purpose, choose a stepper motor first then get a driver for the
motor and control them.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

154

Bipolar Stepper Motor Control
Biploar stepper motor's distinctive feature is that it has four lead lines. As you see pictures
below (From left to right: Airpax 5V Bipolar Motor LB82773-M1, Symbol Technologies Bipolar
Motor 21-02485, and a 12 V head motor inside a floppy disk driver) the four leads line are
connected to two winding coils inside of the motor.

Fig. 49(a) Airpax 5V Bipolar Fig. 49(b) Symbol Technologies Fig. 49(c) 12 V head motor
 Motor LB82773-M1 Bipolar Motor 21-02485 inside a floppy disk driver

How much angle one step turn covers is provided by stepper motor manufactures. For example,
the Airpax bipolar stepper motor has 7.5 degree/step characteristics. In other words, one step
turns the rotor of the motor 7.5 degrees. Therefore, for a full one turn, it needs 48 steps. Again,
for each step, we have to provide given pulses of polarity for four times following the sequence
depending upon the direction of the turn. Any bipolar driver, therefore, has a way of changing
polarities at its outputs.

The two coils must excited with a given sequence for a turn in a forward/reverse motion. As
illustrated below, for forward step turns, the correct sequence of pulses must be provided to the
coils in the order of 1 – 2 - 3 - 4 - 1. The each pulse will turn one step. Therefore, the one
sequence of pulses turns four steps, or 7.5°x4 = 30°. For reverse step turns the order of
excitation sequence should be reversed so that the excitation sequence of 1 - 4 - 3 – 2 - 1. Each
pulse turns one step. Again, the sequence of 4 pulses turns the rotor 4 steps, or 7.5°x4 =30° for
the Airpax bipolar stepper motor. To make one full turn, then, needs 12 sequences of four
pulses.

The UDN2916B we used in the DC motor control is designed to drive both windings of a bipolar
stepper motor or bi-directionally control two DC motors. So for the Airpax bipolar motor, we
apply the same driver. Since a bipolar motor has two windings we have to use both of the H-
Bridges inside the UDN2916B.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

155

Since the PHASE input to each bridge determines the direction motor winding current flows, we
use PHASE1 and PHASE2 to control of the current flow directions for coil A & ~A pair and B
& ~B pair, respectively. Then, we connect OUT1A to A and OUT1B to ~A of the motor, and
OUT2A to B and OUT2B to ~B. Then, we can draw the following polarity table for two coils
depending upon the PHASE values.

Coil Leads A ~A B ~B
PHASE1 PHASE2 OUT1A OUT1B OUT2A OUT2B

0
0
1
1

0
1
0
1

L
L
H
H

H
H
L
L

L
H
L
H

H
L
H
L

Now, can you see the sequence for PHASE1 and PHASE2 logic values for a forward step turn of
the motor? From the sequence table of the stepper motor for A and B (~A and ~B are just in
complement relationship to the other end of the coil, respectively), you see that, for a forward
turn, the sequence of (PHASE1, PHASE2)=(1, 1) should come first, which will give positive
polarities for both A and B lead of the motor. The next excitation must be with L for A and H
for B, (PHASE1, PHASE2)=(0,1) comes next.

Therefore a sequence map for PHASE1 and PHASE2 for forward and reverse one step turn can
be drawn as follows:

Now, let's connect the Airpax bipolar motor to 16F877. Your moor supply voltage should come
from a separate battery or power source rather than using the same +5V voltage source for your
PIC board. As you see from the schematic, all for On/Off (or speed) control lines, I01, I02,
I10, and I12, are tied together as a On/Off control input for the bipolar motor.

As seen in the schematic diagram, PHASE1 is connected to RD7, PHASE2 to RD6, and all I's
together to RD5. Also the two LEDs are connected to RD1 and RD0, respectively, for rotational
direction indication. Before examining a sample code, let's make a few subroutines based on the
discussion we already had above on the step rotation direction. Based on the sequence table,
let's make a subroutine for one forward sequence, fsequence, which generates 4 pulses in
order.

 Forward one step turn Reverse one step turn
Sequence PHASE1 PHASE2 PHASE1 PHASE2

1
2
3
4

1
0
0
1

1
1
0
0

1
1
0
0

1
0
0
1

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

156

Fig. 50 Airpax bipolar motor connection to PIC 16F877

; 1 FORWARD sequence subroutine (will turn 4 steps)
; A B 7 6 5 4 3 2 1 0 (PORTD)
; + + --->1 1 0 0 0 0 1 0
; - + --->0 1 0 0 0 0 1 0
; - - --->0 0 0 0 0 0 1 0
; + - --->1 0 0 0 0 0 1 0
fsequence

banksel PORTD
bcf PORTD, 0x05 ;100% power (Start Condition)
movlw B'11000010' ;1st excitation with LED1 on
movwf PORTD
call delay10ms
call delay10ms ;this time delay determines

;how fast one step finishes
;longer delay slows the motor turn

banksel PORTD
movlw B'01000010' ;2nd excitation with LED1 on
movwf PORTD
call delay10ms
call delay10ms
banksel PORTD
movlw B'00000010' ;3rd excitation with LED1 on
movwf PORTD
call delay10ms
call delay10ms
banksel PORTD
movlw B'10000010' ;4th excitation with LED1 on

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

157

movwf PORTD
movlw B'11000000' ;back to the fist pulse with LEDs off
movwf PORTD
call delay10ms
call delay10ms
return

The one reverse sequence subroutine, rsequence, can be similarly drawn for four pulses in the
reverse order.

; 1 REVERSE sequence subroutine (will turn 4 steps)
; A B 7 6 5 4 3 2 1 0 (PORTD)
; + + --->1 1 0 0 0 0 0 1
; + - --->1 0 0 0 0 0 0 1
; - - --->0 0 0 0 0 0 0 1
; - + --->0 1 0 0 0 0 0 1
rsequence

banksel PORTD
bcf PORTD, 0x05 ;Start (100% power)
movlw B'11000001' ;1st excitation with LED0 on
movwf PORTD
call delay10ms
call delay10ms
banksel PORTD
movlw B'10000001' ;2nd excitation with LED0 on
movwf PORTD
call delay10ms
call delay10ms
banksel PORTD
movlw B'00000001' ;3rd excitation with LED0 on
movwf PORTD
call delay10ms
call delay10ms
banksel PORTD
movlw B'01000001' ;4th excitation with LED0 on
movwf PORTD
call delay100ms
movlw B'11000000' ;back to the fist pulse with LEDs off
movwf PORTD
call delay10ms
call delay10ms
return

The following code is to turn 8 steps to the right, then a few seconds of delay, followed by turn 5
steps to the left. As usual, subroutines are not listed in the example code.

;BPmotor.asm
;
Motor Control Chip is ALLEGRO UDN2916B (for Bipolar Stepper & DC control)
;
;
; Phase 1 control (for A and A~ coil) is connected to RD7
; Phase 2 control (for B and B~ coil) is connected to RD6
; PWM control lines (I01, I02, I11, and I12) are tied to RD5
; LED1 is connected to RD1 (RVS motion indication)
; LED0 is connected to RD0 (FWD motion indication)
;
;

list P = 16F877

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

158

STATUS EQU 0x03
TRISD EQU 0x88
PORTD EQU 0x08

;RAM area

CBLOCK 0x20
TIMEBLOCK
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount200ms
Kount1s
Kount10s
Kount1m

ENDC

;===
org 0x0000 ;line 1
goto START ;line 2 ($0000)

;==
org 0x05

START
banksel TRISD
movlw H'00'
movwf T RISD ;All ports are outputs

AGAIN
banksel PORTD
bcf PORTD, 0x05 ;Start Condition (100% power)

call fSequence ;forward 5 sequences
call fSequence
call fSequence
call fsequence ;total 4x4=16 steps (120 degrees)
bsf PORTD, 0x05 ;Stop (0% power)
call delay1s

call rSequence ;backward 8 sequences
call rSequence
call rSequence
call rSequence
call rSequence
call rSequence
call rSequence
call rSequence ;total 8x4=32 steps (240 degrees)
bsf PORTD, 0x05 ;Stop condition (0% power)

call delay1s
call delay1s
goto AGAIN ;Continue

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

159

For other bipolar stepper motors, same schematic and code can apply without any change.

Unipolar Stepper Motor Control:
The coil current direction in the coils of a unipolar stepper motor is always in on direction or no
current flow. Therefore each coil is center-tapped to a terminal for positive supply voltage. The
From the center-tapped terminal, current flow to either side of the coils (called a phase).
Therefore, unipolar stepper motor usually has 6 lead lines: 3 for a coil and the 3 for the other.
However, some unpolar stepper comes with only 5 lead lines since the two center-tapped
terminals can be conjoined for the positive supply voltage.

The motor power's positive polarity must be connected to the terminals 1 and 2 of the illustration
shown below. The control of a unipolar stepper motor is, thus, to turn on and off the current
flow through the four coils in a sequence for the step direction and speed. As we see a unipolar
stepper motors has at least 5 external wires: 5 when terminals 1 and 2 are jointed together into
one terminal and 6 when two are left as separate terminals. Both unipolar stepper motors shown
below (Left: KH42HM2-901 from Japan Servo. Right: 5015-824 from Applied Motion Products)
have 6 lead lines.

 Fig. 51(a) KH42HM2-901 Fig. 51(b) 5015-824 from Applied

from Japan Servo Motion Products

When motor comes without detailed coil and terminal diagram, we can easily check the coil
connections by measuring resistance of any two terminals. You would have same reading
between a center-tapped terminal and one end of a coil. If your reading between two terminals
is infinite, then they are the two center-tapped terminals of the coils.
Stepper motor is characterized by torque, voltage, and resistance/inductance per phase (or half
coil). In torque there are two types are involved. The holding or static torque is the basic
characteristic of a step motor. In other words, holding torque is a maximum torque that can be
applied to the shaft of a motor with one or more phases energized without causing rotation. This
characteristic is the restoring torque developed when the motor is forced away (displaced by a
load torque) from its true detent position (energized but unloaded rest position). Detent torque is
defined as a maximum torque that can be applied to the shaft of an unexcited motor without
causing rotation.

The KH42HM2-901 unipolar stepper motor has the following characteristics.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

160

Motor Voltage 3 V
Step Angle 1.8°/Step
Motor Current 0.9 A/Phase
Winding Resistance 3.4Ω/Phase
Inductance 2.4 mH/Phase
Holding Torque 20 oz.in (140 mN.m)
Detent Torque 1.7 oz.in (11.8 mN.m)
Shaft Diameter 0.2 in

Couplers are very useful elements to connect the motor via the shaft to something to be turned.
In Jameco.com you can find a few different sets of couplers for different shaft diameters. Using
a set of couplers and rubber spider, we can connect a motor shaft to any non-heavy stuff, say, a
monitor-top camera for a possible auto-tracking security application. If you add a PIR motion
detector sensor, you can make your stepper motor an important element for a smart tracking
camera. An additional ranger (distance measuring sensor: this will be discussed in the chapter
of A/D conversion) will greatly help to auto-focus and track an object in a security zone.

Fig. 52 Few different sets of couplers for different shaft diameters

The phase coils must be excited in a sequence for a right/left step turn as shown below. The
positive terminal of the motor supply voltage (MV) must be applied to both center-tapped
terminals (Red and Blue leads). On the other hand, the terminal lead of a phase must have
negative polarity when that phase to be excited, with current flowing from a center-tapped
terminal to that phase terminal. The sequence of step turn is shown in the excitation sequence.
Since the two center-tapped terminals are connected to the voltage source, only four terminals
are to be polarized. If a phase is polarized with High, the no current flows through the phase; a
Low polarization would enable excitation current to flow through the phase coil. Each sequence
is translated into a step movement.

Fig. 53 Winding diagram

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

161

For forward step turns, the excitation sequence of 1 – 2 – 3 – 4 – 1 should follow, and the reverse
step turns require the sequence of 1 – 4 – 3 – 2 – 1.

The first unipolar driver chip we are going to is Allegro MicroSystems UCN5804. Combining
low-power CMOS logic with high-current and high-voltage outputs, the UCN5804 provides
complete control and drive for a unipolar stepper-motor with continuous output current ratings to
1.25 A per phase (1.5 A start-up) and 35 V.
CMOS logic section provides the sequencing logic, DIRECTION OUTPUT ENABLE control,
and a power-on reset function. The inputs are compatible with standard PMOS, and NMOS
circuits. TTL or LSTTL may require the use of appropriate pull-up resistors to ensure a proper
input-logic high.
UCN5804 comes with two types of packages. DIP and SOIC. The UCN5804B is supplied in a
16-pin dual in-line plastic (DIP) package with a copper lead frame and heat-sinkable tabs for
improved power dissipation capabilities. The UCN5804LB is supplied in a 16-lead plastic
SOIC package with a copper lead frame and heat-sinkable tabs. So the natural choice for our
example is the 16-pin DIP type UCN5804B.

Fig. 54 16-pin DIP type UCN5804B

As seen from the pin diagram, we see four outputs (OUTPUTA or A, OUTPUTB or B, OUTPUTC
or C, OUTPUTD or D) and two inputs of direction and step input. The wave-drive format
consists of energizing one motor phase at a time in an A-B-C-D (or D-C-B-A) sequence. This
excitation mode consumes the least power and assures positional accuracy regardless of any
winding unbalance in the motor. Two-phase drive energizes two adjacent phases in each detent
position (AB-BC-CD-DA). This sequence mode offers an improved torque-speed product,
greater detent torque, and is less susceptible to motor resonance. Half-step excitation alternates
between the one-phase and two-phase modes (A-AB-B-BC-C-CD-D-DA), providing an eight-
step sequence. As seen from the timing diagram, the falling edge of the step input pulse changes
the output values. Each pulse of step turns one step movement.

 Q1 Q2 Q3 Q4
A L H H L

B L L H H

C H L L H

D H H L L

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

162

In our example we follow the two phase excitation at a time. Since the lettering system of the
chip is different from usual stepper motor winding, it may be slightly confusing. But if you
compare the wave-format of UCN5804 and the required excitation sequence of the stepper
motor, we can easily relate the terminals of the motor to the output pins of the UCN5804.
However, if you see the excitation and the output sequences of the stepper motor and UCN5804,
we can easily see the matching leads of the motor and outputs of UCN5804. In other words, the
A lead of the motor is exactly in the same sequence with the A output of UCN5804B, as B lead
to B output, and ~A lead to C, and ~B to D output.

By grounding pins 9 and 10, we configure the chip as two-phase control mode. We tie the
Output Enable pin to the ground to enable the output. To prevent any current (like back EMF)
from flowing toward the output pins, we added four diodes at each of the output pins. Also, the
motor supply voltage is directly connected to K pins. Then, the two control inputs of Direction
and Step Input, we connect to two pins of PORTD of 16F877, respectively.

Before writing an example code, remember that the UCN5804B chip provides the sequence
outputs when there is a High-to-Low transition. Also, according to the datasheet of the driver,
the width of the input step pulse must be longer than 6 ns but giving them more time like 1ms
would be safe.
The control strategy is rather simple. Forward 1 step will be accomplished by setting RD and
sending 1 pulse. Another pulse will move one more step at the same direction. Reverse 1 step
would be accomplished by clearing RD6 and sending 1 pulse. The successive pulse would turn
the rotor in the reverse direction.

One caution we have to use is that, when we change the direction, RD7 must be in Low state.

 Q1 Q2 Q3 Q4
A L H H L
B L L H H
C H L L H
D H H L L

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

163

Fig. 55 UCN5804B connection to PIC 16F877

Therefore the first subroutine we need is to have a pulse generation routine.

; subroutine PULSE
PULSE

banksel PORTD
bsf PORTD, STEP ;STEP = 0x07 (RD7)
call delay200ms ;reduce the time delay for a smooth turn
banksel PORTD
bcf PORTD, STEP
call delay200ms
return

Then the forward and reverse step subroutines are:
;subroutine fstep
fstep

banksel PORTD
movlw B'01000010' ;RD6=1, start with RD7=0
movwf PORTD
call PULSE ;call a pulse for a step
return

;subroutine rstep
rstep

banksel PORTD
movlw B'00000001' ;RD6=0, Start with RD7=0
movwf PORTD
call PULSE ;call a pulse for a step
return

Therefore, an example code to turn the motor 3 steps to the right and 3 steps to the left would be
like below. Subroutines are not included as usual since we already discussed.

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

164

;up5804.asm
;
;This program is to:
;1. Control a Unipolar Stepper Motor
;2. Turn Forward 3 steps then Reverse 3 steps
;3. Motor Control Chip is ALLEGRO UCN5804B (for Unipolar Stepper control)
;
;
; HIGH-To-LOW PULSE output connected to RD7
; DIRECTION output is connected to RD6
;
; LED1 is connected to RD1 (RVS motion indication)
; LED0 is connected to RD0 (FWD motion indication)
;
;
; ACTION PORTD
;
; 1 STEP FORWARD: set RD6 H then (H --> L) RD7
; 1 STEP REVERSE: set RD6 L then H --> L of RD7
; To change the direction, RD7 must be in L state
;
; PORTD 76543210
;1 STEP FORWARD 01000010
; T ;transitional pulse
;
;1 STEP REVERSE 00000001
; T ;Transitional pulse

list P = 16F877

STATUS EQU 0x03
TRISD EQU 0x88
PORTD EQU 0x08
STEP EQU 0x07

;RAM arEA

CBLOCK 0x20
TIMEBLOCK
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount200ms
Kount1s
Kount10s
Kount1m

ENDC

;==
org 0x0000 ;line 1
GOTO START ;line 2 ($0000)

;===
org 0x05

START

banksel TRISD
movlw H'00'
movwf TRISD ;All ports are outputs

AGAIN

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

165

banksel PORTD
movlw B'00000000'
movwf PORTD ;STOP Condition

call fstep
call fstep
call fstep ;3 forward steps
call delay1s
call rstep
call rstep
call rstep ;3 backward steps
call delay1s
goto AGAIN ;continue

The next unipolar stepper driver is another Allegro MicSystems chip SLA7024M, high-current
PWM,unipolar stepper motor controller/driver. The SLA7024M is designed for high-efficiency
and high-performance operation of 2-phase, unipolar stepper motors with rated for an absolute

maximum limit voltage of 46 V. Minimum voltage is around 9V. The peak current is 3.0A and
the continuois output current is 1.5A. So this lever is much higher than the previous driver,

UCN5804 which has 0.75 A as continuous current output. SLA7024M has the package type of
18-lead power-tab SIP (single-in-line) package.

Fig.56 Allegro MicSystems chip SLA7024M

As you see the pin out diagram, for controls, there are four inputs INA, IN~A, INB, and IN~B, and
four outputs OUTA, OUT~A, OUTB, and OUT~B. The subscript labels match the four lead lines
of a unipolar stepper motor. As the table below shows for a double phase operation, the input
sequence decides the output sequence. For example, the first pulse of the sequence for inputs
are (H, L, H, L) and then the OUTA and OUTB will be turn on, and the current flows from the
motor power supply to these two output pins. On the other hand, the input pulse of (L, H, H, L)
will make the motor current flows from the supply voltage to the output pins of OUT~A and
OUTB. The only different between UCN5804 an SLA7024, therefore, is that the former needs

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

166

just a H-to-L transition pulse for a pulse for step rotation since the internal logic provides the
necessary combination of four pulses, while the latter needs actual four inputs for a step rotation.

Sequence 1 2 3 4 1
INA H L L H H
IN~A L H H L L
INB H H L L H
IN~B L L H H L
Outputs turned on A & B ~A & B ~A & ~B A & ~B A & B

A full application of SLA7024M requires several external elements of resistors and capacitors.
The circuit diagram and schematic introduced here follows the recommended typical motor
application circuit. As usual the LEDs are connected to RD1 and RD0, respectively, just to
indicate the rotational direction of the step movement.

Fig. 57 SLA7024M connection to PIC 16F887

Since the excitation sequence is the same for the stepper motor, whether we use SLA7024M or
UCN5804, we apply similar excitation sequence for four step movement of forward and reverse
rotation.

;====subroutine fSequence===
; 1 FORWARD Sequence of 4 pulses (4 step movement) and LED1 on
; A B ~A ~B 7 6 5 4 3 2 1 0 (PORTD)
; + + - - --->1 1 0 0 0 0 1 0
; - + + - --->0 1 1 0 0 0 1 0
; - + - + --->0 1 0 1 0 0 1 0
; + - - + --->1 0 0 1 0 0 1 0
;To generate forward sequence of 4 pulses
;to move the rotor forward 4 steps
fSequence

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

167

banksel PORTD
movlw B'110000010'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'01100010'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'00110010'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'10010010'
movwf PORTD
call delay100ms
movlw B'11000000'
movwf PORTD
return

;====subroutine rSequence===
;1 REVERSE sequence of 4 pulses (4 step turn) with LED0 ON

; A B ~A ~B 7 6 5 4 3 2 1 1 (PORTD)
; + + - - --->1 1 0 0 0 0 0 1
; + - - + --->1 0 0 1 0 0 0 1
; - + - + --->0 1 0 1 0 0 0 1
; - + + - --->0 1 1 0 0 0 0 1
;To generate forward sequence of 4 pulses
;to move the rotor backward 4 steps (i.e., 1.8x4 = 7.2 degrees)
rSequence

banksel PORTD
movlw B'11000001'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'10010001'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'00110001'
movwf PORTD
call delay100ms
banksel PORTD
movlw B'01100001'
movwf PORTD
call delay100ms
movlw B'11000000'
movwf PORTD
return

The above sequences turn 1.8x4 = 7.2 degrees. The KH42 stepper motor used in the example
has step degree of 1.8° per step. The following program is, as an example, is to turn 72 degrees
to the right and, after a second of delay, to turn 14 degrees to the left. As usual subroutines are
not included in the code.

;upsla7024.asm
;
;This program is to:
;
;Motor Control Chip is ALLEGRO sla7024M (for unipolar control)
;The motor used is a KH42 with 1.8 degree/step
;

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

168

; INA is connected to RD7
; INB is connected to RD6
; IN_A is tied to RD5
; IN_B is tied to RD4
; LED1 is connected to RD1 (FW motion indication)
; LED0 is connected to RD0 (RV motion indication)
;
;

list P = 16F877

STATUS EQU 0x03
TRISD EQU 0x88
PORTD EQU 0x08

;RAM arEA

CBLOCK 0x20
TIMEBLOCK
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount100ms
Kount1s
Kount10s
Kount1m

ENDC

;
;Bootloader first execute the first 4 addresses
;then jump to the address what the execution directs
;===

org 0x0000
GOTO START
org 0x05

;==
;start of the program from $0004
START

banksel TRISD
movlw H'00'
movwf TRISD ;All ports are outputs

AGAIN
;
;forward

call fSequence ; 7.2 degrees each
call fSequence
call fSequence
call fSequence
call fSequence
call fSequence
call fSequence
call fSequence
call fSequence
call fSequence ;total 72 degrees

call delay1s

call delay1s

Chapter 7. Motor Control

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

169

;reverse
call rSequence ;7.2 degrees each
call rSequence ;roughly 14 degrees

call delay1s
call delay1s ;2 seconds of delay

goto AGAIN ;repeat

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

