Chapter 6. LCD Displaying and IR Remote Controller Applications 89

Chapter 6. LCD Display and IR Remote Control Applications

This chapter extends the (software enabled) serial communication of Chapter 5 into the
applications of data display and IR remote controller which have many additional applications
for projects and other designs.

1. LCD Displaying

Alphanumeric LCD display is very popular for many applications because we can quickly and
easily display a result of calculation or measurement, or data for debugging purpose. Of course,
as we discussed before, a computer monitor is an excellent tool for the same purpose, but when
we build an embedded computing system, much smaller LCD is always useful. There also are
graphic LCDs are available.

A LCD is different from a LCD module. A LCD is just a medium to display characters or
graphics, it itself also cannot display. A LCD module contains, in addition to the display
medium, an interface controller/driver for the LCD. A LCD controller/driver displays
alphanumerics and symbols. The most popular LCD controller/driver is the Hitachi 44780 based
LCD controller chip. A single HD44780 can display up to one 8-character line or two 8-
character lines. It can be configured to drive a dot-matrix liquid crystal display

under the control of a 4- or 8-bit microprocessor.

LCD Controller/Driver HD44780

Internally HD44780 has a 80x8-bit display data (DD) RAM for maximum 80 characters, and
9,920-bit character generator(CG) ROM for a total of 240 character fonts (208 character fonts
with 5x8 dot size and 32 character fonts with 5x10 dot size), and a 64x8-bit character generator
RAM for 8 character fonts (5x8 dot) and 4 character fonts (5x10 dot). It also covers Wide range
of instruction functions, "HD44780 Standard Control and Command Code," such as display
clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, and display
shift. It contains a reset circuit that initializes the controller/driver after power on.

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its
extended capacity is 80x8 bits, or 80 characters. The area in display data RAM (DDRAM) that is
not used for display can be used as general data RAM. The following table shows the
relationships between DDRAM addresses and positions on the LCD.

Position 112134567 |8[9]|10]11[12(13]|14]15] 16 |17[18[19]20
First line | 00h {01h{02h|03h|04h|05h[06h|07h|08h|09h |[0Ah{0Bh|OCh|ODh|OEh| OFh [10h|11h|12h|13h
Second line | 40h |41h|42h{43h|44h|45h|46h|47h[48h|49h|4Ah|{4Bh{4Ch|4Dh|4Eh| 4Fh |50h[51h|52h|53h
Third line [14h |15h|16h[17h|18h|19h|1Ah{1Bh|1Ch|1Dh|1Eh[1Fh|[20h|21h|22h| 23h |24h|25h[26h|27h
Fourth Line| 54h [55h|56h|57h|58h [59h |5Ah|5Bh|5Ch|5Dh|5Eh|5Fh|60h[61h|62h| 63h [64h|65h|66h|67h

In addition to the CGRAM and DDRAM, HD44780 has two 8-bit registers: an instruction
register (IR) and a data register (DR). The IR stores instruction codes, such as display clear and
cursor shift, and address information for display data RAM (DDRAM) and character generator
RAM (CGRAM). The IR can only be written from microprocessor. The DR temporarily stores
data to be written into DDRAM or CGRAM and temporarily stores data to be read from
DDRAM or CGRAM.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 90

Data written into the DR from the microprocessor is automatically written into DDRAM or
CGRAM by an internal operation. The DR is also used for data storage when reading data

from DDRAM or CGRAM. When address information is written into the IR, data is read and
then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer to the
microprocessor is then completed when the microprocessor reads the DR. After the read, data in
DDRAM or CGRAM at the next address is sent to the DR for the next read from the processor.
By the register selector (RS) signal, these two registers can be selected. In 16F877 perspective,
by controlling the RS line for IR or DR, and sending a DDRAM location for display position and
a data for a character to display that position, we can display a character on a desired position.

In addition to the IR and DR, there is Address Counter (AC). The AC assigns addresses to both
DDRAM and CGRAM. When an address of an instruction is written into the IR, the address
information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also
determined concurrently by the instruction. After writing into (reading from) DDRAM or
CGRAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are
then output to DBO to DB6 when RS = 0 and RW=0.

There are two interfacing method to a microprocessor. The HD44780U can send data in either
two 4-bit operations or one 8-bit operation. For 4-bit interface, only four bus lines (DB4 to DB7)
are used for transfer: Bus lines DBO to DB3 are disabled. The data transfer between the
HD44780U and the microprocessor is completed only after the 4-bit data has been transferred
twice. As for the order of data transfer, the high nibble (DB4 to DB7) are transferred before the
low nibble (DBO toDB3). The busy flag must be checked (one instruction) after the 4-bit data
has been transferred twice. Two more 4-bit operations then transfer the busy flag and address
counter data. For 8-bit interface, all eight bus lines (DBO to DB7) are used.

This section will explore the control of a regular LCD module and a serial LCD module. One
caution we all have to use is that not all LCD modules are the same: some with different
characteristics and pin arrangement, etc. Therefore, before you try to connect a LCD to 16F877,
you have to read the data sheet of the module you received or bought. However, once you make
yourself familiar with the one presented in this section, on any module of LCD, you can easily
change the physical connection and code to adapt to the changing characteristics.

LCD example
A regular LCD module we discuss here is one manufactured by Truly which can display 4 rows,

20 characters per row, with character dot matrix size of 5x8. The exact model number is MTC-
C204. So we use 20x4 LCD display with HD44780 controller or equivalent.

The pin arrangement for the LCD module is listed below.

Pin NO. Symbol Level Description
1 Vss ov Ground
2 Vpp 5.0V Supply voltage for logic
3 Vo --- Input voltage for LCD
4 RS H/L H : Data, L : Instruction code
5 R/W H/L H : Read mode, L : Write mode

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

6 E HH- L Chip enable signal

7 DBO H/L Data bit 0

8 DB1 H/L Data bit 1

9 DB2 H/L Data bit 2

10 DB3 H/L Data bit 3

11 DB4 H/L Data bit 4

12 DB5 H/L Data bit 5

13 DB6 H/L Data bit 6

14 DB7 H/L Data bit 7

15 BLA For LCD Backlight (Anode)
16 BLK For LCD Backlight (Cathode)

91

A host microprocessor "talks" to the LCD cotnroller/Driver via the data bus and 3 control lines:
Register Select (RS), Read/Write (RW) and Enable (E). This places minimal demands upon the
microprocessor. Only when the host microprocessor writes to or reads from the LCD, is

intercommunication required.

The Control and Display Command codes for communicating to HD44780 LCD
controller/driver are shown below. These codes are good for any LCD module with HD44780 or
equivalent processor as the controller/driver of the module.

Control/ Code Description Executi on
Command RRBBBBBBBB Tinme with
SW76543210 f =250Khz
Clear Display 00O0OO0OOOGO OO0 1 |Clearsalldisplay and returns the cursor to the home | 1.64ms
position (Address 0)
Return Home 000O0O0O0O0O0 1 X | Returnsthe cursor to the home position (Address 0). | 1.64ms
Also returns the display being shifted to the original
position.
Entry Mode Set |0 0 0 0 0 0 0 1 M S | Setcursor move direction (M=1 for increase, M=0 40us
for decrease) and shift of display (S=1 for shifted
and S=0 for not-shifted)
Display On/Off |0 0 0 0 0 0 1 D C B | Sets On/Off of a Display (D=1 for On and D=0 for 40ps
Off), Cursor (C=1 for On and C=0 for Off), and
Blinking (B=1 for Blink On and B=0 for Blink Off)
Shift 000O0O01S R X X | Moves the cursor (S=1 for Shift and S=0 for Cursor | 40us
Move) and shifts display (R=1 for Right and R=0 for
Left Shift).
Set Function 000O01L NF X X | Setsinterface data length (L=1 for 8-bit and L=0 for | 40us
4-bit), number at display lines (N=1 for 2 line
display and N=0 for 1 line display), and once
character font (F=1 for 5x10 and F=0 for 5x7 dots)
Set CG RAM 0 00 1 <--Acg ---> | Setthe CG (Character Generator) RAM address (i.e., | 40us
Address cursor address). CG RAM data is sent and received
after this set.
Set DD RAM 0 01 <----Add----> | Setthe DD (Display Data) RAM address. DD RAM | 40us
Address data is sent and received after this set.
Read Busy Flag | O 1 B <--Acount---> | Reads Bust Flag indicating internal operation is 1ms
& Address being performed (B=1 for Busy and B=0 for Ready)
and read address counter (Acount) contents used for
both DD and CG RAMs.
Write Data 10 <----DATA----- > | Write DATA to DD or CG RAM 40us
Read Data 11 <----DATA----- > | Read DATA from DD or CG RAM 40us

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 92

The LCD Waveform diagram below shows how a data is written to the LCD module. As seen,
even though the data is written to the internal data register, it still cannot be displayed on the
LCD unless a High-to-Low transition input of E(Enable) signal is provided to the module.

Fa
Data A) Data Written to
] Controller/Driver’s

Register

RS

R
Data sent from

E I—L Controller/Driver's registers

to LCD
Fig. 24 LCD Waveform diagram

This High-to-Low transition input of E(Enable) signal is also needed when an instruction is
written to the instruction register of the LCD controller/Driver. When your interface bit is 4,
then we have to send the data twice, higher nibble then lower nibble. For each nibble write, we
have to have the transitional E signal.

Initialization of LCD module
As mentioned above, HD44780 has an automatic reset circuit when power is on. The following
instructions are executed during the initialization. The busy flag (B) is kept in the busy state until
the initialization ends (B = 1). The busy state lasts for 10 ms after VCC rises to 4.5 V.

1. Display clear

2. Function set: 8-bit interface, 1-line display, 5x8 dot character font

3. Display on/off control: Display off, Cursor off, Blinking off

4. Entry mode set: Increment by 1, No shift (DDRAM is selected)

If the power supply condition does not reset properly, we have to initialize by instruction.
Following is a usual LCD module initialization sequence by instruction.

1. Give power to the LCD module.

2. Wait for 15ms or more so that LCD is warm and ready to respond.

3. Set function for interface data length (i.e., 8 or 4 bits), number of display lines, and
character dot matrix size.

4. Wait for 4.5 ms.

5. Check for Busy Flag.

6. Display Off.

7. Display Clear.

8. Set Entry mode.

Operation Example (8-bit interface with 8-digit 2 line display with internal reset)

We have many 1/O ports in 16F877, so for this example, we try 4-bit interface and this requires
total 11 pins. Assume that PORTB is assigned to the 8 data lines <DB7:DB0>. Since we
usually do not read from we connect the RW line to the ground for always-reading status. The

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 93

busy flag checking, thus cannot be done by this configuration. However, giving enough time
delay after writing an instruction or data is does the job. Then, we need two more lines for RS
and E signal. Assume that they occupy two pins of PORTD.

LCDEven though the Truly LCD has four lines for display, internally, it is considered as 2 line
display. It's done all by the DDRAM address selection as shown in the DDRAM address map.
In other words, in 2 line mode, the first line can go from 00h to 40h, but since the LCD module
can display only 20 characters, the first line starts from 00 but ends at 13h, then from 14h to 27h
will be displayed at the third line. Similarly, the DDRAM addresses of 40h — 53h are displayed
at the second line and those of 54-67h are displayed at the fourth line.

Display Position for 2 Lines

2 3 4 5 m o2 22 39 40

DORAM address golot (o203 (04). 14 (15 ---- | 26| 27
hexadecimal

() 40 |41 (42 | 43 (44 --- - 54| 55 -+ | 66| 67

2 20 M 22 38 40

Display Position with 20x2 Format

2 3 4 5 20 21 22 39 40
Line1{oo (01|02 |03|0a| - 14158 - | 26|27

DDREAM address
(hexadecimal) |jne 2|40 |41 |42 | 43| 44| ----- 4155 ---- | 66| 67
2 o M 22 39 40

Display Position with 204 Format
2 12 19 20

DDRAM address Line1Joo|o1 (02| 03|04 |- - 14 (15| ---- | 26| 27| Line 3
{hexadecimal)

Line 2 | 40 | 41

E4185| ---- | 66| 67| Line 4
2 m 1 2 19 20

The following example shows 8-bit interface (<DB7:DB0>) for 20x4 format with 5x8 dot matrix
size. Note that RW is tied to ground for ever-writing mode. The steps and accompanying code
will eventually display the four lines as shown below.

PIC
AND
LCD
DISPLAY

Step 1: Turn on Power to initialize the LCD. Give enough delay. There is no display.

A 16F877 instruction goes like this:

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 94
call delaylOns
call delaylOns ; delay for 20ns

However, if you are not sure the power on reset actually work, you may have to follow
the recommended initialization process. See the instructional initialization process.

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix.
RS=0
<DB7:DB0>=001110X X

16F877 instruction for this is:

movl w 0x38

novwf PORTB

bcf PORTD, RS

bsf PORTD, E

bcf PORTD, E ; Transi tional E signal
cal del ay10ns

The above instruction writing can be made into a subroutine.
; Subroutine instw (instruction wite)
;instruction to be witten is stored in Wbefore the call

i nstw movwf PORTB
bcf PORTD, RS
bsf PORTD, E
bcf PORTD, E
cal | del ay10ns
return

Then, the above instruction can be rewritten to:
nmov| w 0x38
cal | i nstw

Step 3. Display control: Display On, Cursor On, with no blinking are selected.
RS=0
<DB7:DB0>=00001110

Corresponding 16F877 code goes like:
novl w 0x0E
cal l i nstw

Step 4: Entry mode set: Increment the DDRAM address by one and to shift the cursor to the right
at the time of write to DDRAM. Display is not shofted

RS=0

<DB7:DB0>=00000110

Corresponding 16F877 code goes like:
novl w OxOE
cal | i nstw

Step 5: Write data (i.e., 'P' of 50h in ASCII code) to DDRAM (The initial DDRAM address is set
to 00h by the power on initialization.) So the line#1 position 1 is already selected by the reset.
After this write, the cursor is incremented by 1 and shifted to the right.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 95

RS=1
<DB7:DB0>=01010000

Corresponding 16F877 code goes like:

movl w 0x50

novwf PORTB

bsf PORTD, RS

bsf PORTD, E

bcf PORTD, E ; Transi tional E signal
cal l del ay10ns

By changing the above code into a subroutine, we have the following code:

nmovl w 0x50
call dataw

; subroutine dataw (data wite)

dat aw novwf PORTB
bsf PORTD, RS
bsf PORTD, E
bcf PORTD, E ; Transi tional E signal
cal | del ay10ns
return

So we call i nst r wwhen RS=0 and dat awwhen RS=1.

Step 6: Write data (i.e., 'I'and 'C' next to 'P" in line #1) to DDRAM. Note that the DDRAM
address in automatically incremented by one after each write, therefore, we do not write the
DDRAM address (or position).

RS=1
<DB7:DB0>=01001001 for 'l
<DB7:DB0>=01000011 for 'C'

Corresponding 16F877 code goes like:
nmovl w 0x50 U

call dataw
novl w 0x43
call dataw ' C

Step 7. Set DDRAM address for the next 3 characters (A, N, and D) in line #2. The DDRAM
address starts from 40h for the line #2.

RS=0

<DB7:DB0>=11000000 for 12000000b

Corresponding 16F877 code goes like:
movl w 0xC0 ; B' 11000000
call instw ; RS=0

Step 8. Write the three characters, 'A’, 'N', and 'D' to DDRAM. They are displayed at the line #2
from position 1.

RS=1

<DB7:DB0>=01000001 for 'A'

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 96

<DB7:DB0>=01001110 for 'N'
<DB7:DB0>=01000100 for 'D’

Corresponding 16F877 code goes Ilke
nmovl w 0x41 A
call dataw
nmovl w Ox4E
call dataw N
nmovl w 0x44
call dataw D

Step 9. Set DDRAM address for the next 3 characters (L, C, and D) in line #3. The DDRAM
address starts from 14h for the line #3.

RS=0

<DB7:DB0>=10010000 for 0010000b

Corresponding 16F877 code goes like:
movl w 0x94 ; B' 10010100
call instw ; RS=0

Step 10. Write the three characters, 'L", 'C', and 'D' to DDRAM. They are displayed at the line #3
from position 1.

RS=1

<DB7:DB0>=01001100 for 'L’

<DB7:DB0>=01000011 for'C'

<DB7:DB0>=01000100 for 'D'

Corresponding 16F877 code goes Ilke
nmovl w 0x4C "L
call dataw
novl w 0x43
call dataw
nmovl w 0x44
call dataw D

Step 11. Set DDRAM address for the next 7 characters (D, I, S, P, L, A, and Y) in line #4. The
DDRAM address starts from 54h for the line #3.

RS=0

<DB7:DB0>=11010100 for11010100b

Corresponding 16F877 code goes like:
novl w OxD4
call instw ; RS=0

Step 12. Write the seven characters, 'D', 'I', 'S', 'P', 'L", 'A’, and 'Y' to DDRAM. They are
displayed at the line #4 from position 1.

RS=1

<DB7:DB0>=01000100 for 'D’
<DB7:DB0>=01001001 for 'l
<DB7:DB0>=01010011 for 'S’
<DB7:DB0>=01010000 for 'P'

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 97

<DB7:DB0>=01001100 for 'L’
<DB7:DB0>=01000001 for ‘A’
<DB7:DB0>=01011001 for'Y'

Corresponding 16F877 code goes like:
nmovl w 0x44 D
call dataw
nmovl w 0x49
call dataw
nmovl w 0x53
call dataw
nmovl w 0x50
call dataw
nmovl w 0x4C
call dataw
nmovl w 0x41
call dataw
novl w 0x59
call dataw

< = - T 0

Step 13. Now let's move the cursor to the home position (position 1 of line #1) and set the
DDRAM address to 0. This is done by the "return home" instruction.

RS=0

<DB7:DB0>=00000010

Corresponding 16F877 code goes like:
movl w 0x02
call instw ; RS=0

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

Instructional initialization Process:

Step 1: When power on reset actually work, you have to follow the recommended
initialization process and have the following codes at the very first line:

call del aylOns

call delaylOns

mov| w 0x30

call i nstw ;see step 2 below for instw

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix. (Still part of
initialization. And this step for setting is final and cannot be changed after this step.)
RS=0
<DB7:DB0>=001110XX

16F877 instruction for this is:

movl w 0x38
cal | instw

Step 3. Display off. (Still initialization process)
RS=0
<DB7:DB9>=00001000

16F877 instruction for this step is:
mov| w 0x08
cal | i nstw

Step 4. Display Clear. (Still in the initialization process)
RS=0
<DB7:DB0>=00000001

16F877 instruction for this step is:
mov| w 0x01
call i nstw

Step 5. Entry Mode Set (The last step of initialization) for increment and no shift
RS=0
<DB7:DB0>=00000110

16F877 instruction for this step is:
mov| w 0x06
call i nstw

98

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 99

Hardware connection

Let's connect the 20x4 LCD module as shown below. Eight data bus lines are connected to
PORTB, and E and RS are connected to PORTD<5> and PORTD<4>, respectively. RW is
connected to PORTD<6>, but, as indicated above, since our main function is to write either
command or data to LCD module, RW can be tied to the ground to make "write only" mode.

0ES Backlight
DB Current limiting
DE3 resistor = 5 ohm

DEZ
) DE1
| DBl
E BLA e/
LK R

EREE N P S T S

PIC 16F877.20/P
@
FEEEREEEE

Wi
EDTPEET
FDPERS
RDAPERS
ED4/PEP4

RCIEMDT
RCGTHCE
ECXEDO
RC4EDLEDA
RDAPEES
FDAPEE2

Female

S Ream

"-h-th—‘
I T
oo

Fig 25. Hardware connection

Code example
Let's have an example code for the 8-bit interface mode control of a 20x4 LCD module. Follow

the code carefully for instructions and comments.

; LCD- P. asm

;Thi s programis to display an 20x4 LCD nodul e
; by Truly (HD44780 conpati bl e)

;8-bit i nterfacing

Pin Connection fromLCD to 16F877
; LCD (pi n#) 16F877 (pin#)

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

;DB7 (14) ----- RB7(40)
; DB6 (13) ----RB6(39)
; DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
; DB3 (10) ----RB3(36)
;DB2 (9)---- RB2(35)

; DBl (8) ----RB1(34)
;DBO (7) ----RBO(33)
;E(6) ------ RD5(28)

s RW(5) ----- RD6(29)
;RS (4) ----- RD4(27)
;Vo (3) ----- +5V

;vdd (2) ----+45V

;Vss (1) ----- G\D

; Exanpl e code to display:
; PI C

; AND

; LCD

; DI SPLAY

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRI SB EQU 0x86
PORTD EQU 0x08
TRI SD EQU 0x88
RS EQU 0x04 ; RD4
E EQU 0x05 ; RD5
RW EQU 0x06 RW
; RAM ar EA
CBLOCK 0x20
Kount 120us ; Del ay count (nunber of
Kount 100us
Kount 1ns
Kount 10ns
Kount 1s
Kount 10s
Kount 1m
ENDC

;The Next 5 lines nust be here
; because of boot!| oader arrangenent
; Boot | oader

first execute the first 4 addresses

instr cycles for del ay)

;then junp to the address what the execution directs

org 0x0000 ;line 1
goto START ;1ine 2 ($0000)
org 0x05
START
BANKSEL TRI SD
; 1 for input, 0 for output
movl w 0x00
nmovwf TRI SD
novwf TRI SB ; RB<7:0> are all
banksel PORTB
clrf PORTB

out put s

100

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

clrf

PORTD ;Here RWis pulled down to ground

;LCD routine starts

cal |
cal |

; Fundtion for

movl w
cal |

8-bit,

del ay10ns

del ay1l0ns

;give LCD nodul e to reset automatically
2-1ine display, and 5x8 dot matrix

0x38
i nstw

;Display On, CUrsor On, No blinking

nmovl w OxO0E : OF woul d blink
cal | i nstw
; DDRAM addr ess increment by one & cursor shift to right
movl w 0x06
cal | i nstw
: DI SPLAY CLEAR
movl w 0x01
cal | i nstw
; Set DDRAM ADDRES
nmov| w 0x80 ;00
call instw
; WRI TE DATA in the 1st position of line 1
nmov| w 0x50 P
cal | dat aw
nmov| w 0x49 o
cal | dat aw
nmov| w 0x43 : C
cal | dat aw
; Set DDRAM address for the 1st position of line 2 (40h)
nmovl w 0xC0 ; B' 11000000’
cal | i nstw : RS=0
Wite A, N, D
nmov| w 0x41 TA
cal | dat aw
nmov| w Ox4E
cal | dat aw :N
nmovIl w 0x44
cal | dat aw ;D
; Set DDRAM address for the next 3 characters (L, C, and D) in line #3.
: The DDRAM address starts from 14h for the |ine #3.
nmovl w 0x94 ; B' 10010000’
cal | i nstw : RS=0
:Wite the three characters, 'L', 'C, and 'D to DDRAM

; They are displayed at the line #3 from position 1.

movIl w
cal |
nmov| w
cal |
nmov| w
cal |

; Set
#4.

;: The DDRAM address starts fromthe |ine #4.

0x4C
dat aw
0x43
dat aw
0x44
dat aw

DDRAM address for the next 7 characters (D, I,

L

; C

;D

S P, L A and)
(54h)

101

(14h)

in line

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 102

nmov| w oxD4

cal | i nstw : RS=0
:Wite the seven characters, 'D, 'I', 'S, '"P, 'L', "A, and 'Y to DDRAM
; They are displayed at the line #4 fromposition 1

nmov| w 0x44 ;D

cal | dat aw

nmovIl w 0x49 i

cal | dat aw

nmov| w 0x53 ;S

cal | dat aw ;

nmov| w 0x50 P

cal | dat aw

nmovIl w 0x4C L

cal | dat aw

nmov| w 0x41 DA

cal | dat aw

nmov| w 0x59 '

cal | dat aw

;Now | et's nove the cursor to the home position (position 1 of |ine #1)
;and set the DDRAM address to 0. This is done by the "return hone"
i nstruction.

nmov| w 0x02

cal | i nstw
| DLE nop

goto | DLE
; ====SUBRQUTI NES =====

; subroutine instw (instruction wite)
instruction to be witten is stored in Whefore the cal

i nstw nmovwf PORTB
cal del aylms ;del ay may not be needed
bcf PORTD, RS
cal | del aylms
bsf PORTD, E
cal | del aylms
bcf PORTD, E
cal del ay10ns
return

; subroutine dataw (data wite)

dat aw novwf PORTB
cal | del aylms ; del ay may not be needed
bsf PORTD, RS
cal | del aylms
bsf PORTD, E
cal | del aylms
bcf PORTD, E ; Transitional E signa
cal | del ay10ns
return

;DELAY SUBROUTI NES

Del ay120us
banksel Kount 120us
nmov| w H C5' ;D 197"
nmovwf Kount 120us

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

R120us
decfsz Kount 120us
goto R120us
return

Del ay100us
banksel Kount 100us
nmov| w H A4'
nmovw Kount 100us

R100us
decfsz Kount 100us
goto R100us
return

; 1lms del ay

Del aylns
banksel Kount 1nBs
nmov| w Ox0A ;10
nmovwf Kount 1ns

Rlms call del ay100us
decfsz Kount 1ns
goto Rlms
return

; 10ns del ay

; call 100 tines of 100 us del ay

Del ay10ms
banksel Kount 10ms
nmov| w H 64' ;100
nmovw Kount 10ns

R10ns cal | del ay100us
decfsz Kount 10ns
goto R10mns
return

;1 sec del ay
100 times of 10ns del ay
Del ayls

;call

10 s
;call

banksel
nmov| w
nmovwf
cal |
decfsz
goto
return

del ay
10 tiens of

Del ay10s

R10s

banksel
nmov| w
nmovwf
cal |
decfsz
goto
return

;1 nmn del ay

;call

60 tinmes of

Del aylm

banksel

Kount 1s
H 64'
Kount 1s
Del ay10ms
Kount 1s
Rls

1 s del ay

Kount 10s
H OA
Kount 10s
Del ayls
Kount 10s
R10s

1 sec del ay

Kount 1m

;10

(with sonme tine discrepancy)

103

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 104

movl w H 3C ;60

nmovw Kount 1m
Rlm call Del ayls

decfsz Kount 1m

goto R1m

return

END

Run your program and see if you have the following display with an underscore cursor under ‘P’
of the fist line with lit backlight as shown below.

PIC
AND
LCD
DISPLAY

2. LCD Displaying: 4-bit Interface Example

Even though 16F877 has an ample amount of 1/O pins, it's always wise to save a few pins for
future use. Also, if we can achieve with fewer number of I/O pins the same function, there is no
reason not to try the economical method. The 4-bit interface method is different from 8-bit
interface only how we send the 8-bit data over 8 data lines or 4 data lines.

In 4-bit interface, we separate the 8-bit data by nibbles and send each nibble at a time.
Therefore, for coding perspective, the only difference is the change in the subroutines of i nst w
and dat aw. Of course, we have to instruct the LCD module for 4-bit interface instead of 8-bit.

However, there is a slight odd step you have to have before setting the 4-bit interface. The
HD44780 requires, for 4-bit interface only, to send the only the high nibble at the first step, and
to send the high and low nibbles at the second step. In other words, the setting up for 4-bit
interface has, unlike in 8-bit interface, an additional weird step. This is very important. If you
miss this first step, you would some weird behavior from the LCD module such as one reset
would show proper display and another would not.

The first step for function set for 4-bit interface:
RS=0
<DB7:DB4>=0010

Then, the above instruction can be rewritten as:
movl w 0x28
cal | hni bbl e4

with subroutine hnibble4;

hni bbl e4
novwf Tenp ; Tenp storage
novf Tenp, O ; Now Wal so holds the data
andl w OxFO0 ; get upper nibble
novwf PORTB ; send data to |cd

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 105

bcf PORTB, RS

bsf PORTB, E

cal | del aylms

bcf PORTB, E

cal | del ay10ns ;end of high nibble for 4-bit setup
return

The second step for 4-bit interface now can set for for 4-bit, 2-line display, and 5x8 dot matrix:
RS=0
<DB7:DB0>=001010X X

Then, the above instruction can be rewritten as (with X=0):
novl w 0x28
cal | i nstw4

However, since we have to separate the byte into two nibbles and send each nibble separately,
we have to change the i nst wsubroutine to i nst w4 subroutine.

;subroutine instwd (4-bit interface instruction wite)
;instruction to be witten is stored in Wbefore the cal

i nstw4
novwf Tenp ; Tenp storage
novf Tenp, O ; Now Wal so holds the data
andl w 0xfO0 ; get upper nibble
novwf PORTB ; send data to |cd
bcf PORTB, RS
bsf PORTB, E
cal | del aylms
bcf PORTB, E
call del ay10ns ;end of higher nibble
swapf Tenmp, O ;get lower nibble to W
andl w Oxf O
novwf PORTB ;Wite to LCD
bcf PORTB, RS
bsf PORTB, E
cal | del aylms
bcf PORTB, E ;end of |ower nibble
cal l del ay10ns
return

Similarly, the data write subroutine dat aw must also be changed to dat aw4 to reflect the
change in data transmission.

dat aw4
novwf Tenp ; Tenp storage
novf Tenp, O ; Now Wal so holds the data
andl w 0xf 0 get upper nibble
novwf PORTB ; send data to |cd
bsf PORTB, RS
bsf PORTB, E
cal del aylms
bcf PORTB, E
cal | del ay10ns ;end of higher nibble
swapf Tenp, O ;get lower nibble to W
andl w Oxf O
novwf PORTB ;Wite to LCD
bsf PORTB, RS
bsf PORTB, E
cal del aylms

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 106

bcf PORTB, E ;end of | ower nibble
cal | del ay10ns
return

Additional change you have to bring to the code is to correctly assign the pins of RW, RS, and E
to PORTB. As you see the following 4-bit interface illustration, we use only PORTB for a LCD
module.

4-hit Interface
RE7 | JH Dev
s DEE
BES = Cas Backlight
= = DB Current limiting
ﬁ BBt resistor = 5 ohm
Y pm |
-
E R 35 R
B Em E. -
~ FEOTT [= BLA, /
E Voo P #5h Y /
= RS BLK R
W Wi
EDADSDT 45y Y =
FD&PSEG WES
R %FPSPS e
RED4/P5P4 —
ECTEWDT

ECATMCE
RCAEDO
RC4SDIED L
EDEPEEE
FDAPEE2

Female
DES

RSE52

1
ks
4
5

+5

o
%

Fig. 26 4-bit Interface Illustration

Special Character Display using Character Generator ROM (CGROM)

The character generator ROM generates 5x8 dot or 5x10 dot character patterns from 8-bit
character codes (See the CGROM character codes of HD44780 manual). It can generate 208 5x8
dot character patterns and 32 5x10 dot character patterns. User-defined character patterns are
also available by mask-programmed ROM. So we can display even some weird characters.
Let's add a few lines of instructions, then, to write a line of Alphabet and a line of symbol (or
Greek) equivalent. From the CGROM map, we found that a, p, and p are at EO, E6, and E4,

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 107

respectively. So by the following instruction should display the example display illustrated after
the code.

;display a, r, mat line 1
;alpha, rho, and nu at line 2
; Set DDRAM ADDRESS for line 1

nmovl w 0x80 ;00

call instw4

movliw ' a'

call datawd

movliw 'r’

call dataw4

movl w ' ni

call dataw4
; Set DDRAM ADDRES for line 2
; CGROM address for al pha, rho, and mu are EO, E6, and E4, respectively

nmovl w 0xC0 ;00

call instw4

nmovl w OXEO

call dataw4

nmovl w OxXE6

call dataw

nmovl w OxE4

call dataw4

arm
o pp

3. LCD Displaying -Serial LCD

As discussed above, we know that a LCD module with internal controller/driver provides all the
functions such as display RAM, character generator, and liquid crystal driver, required for
driving a dot-matrix liquid crystal display, and either 11 lines or 7 lines of processor are needed
to interface with the controller/driver of the LCD module. However, to many a hobbyist and
students, the control of the controller/driver following the timing diagram suggested in the
manual of the module or the controller/driver seems to be a lot of trouble. Also, the requirement
of many pins causes some burden for certain processors with fewer 1/0 pins.

Because either of many pins required for connection or of rather a complex control scheme (at
least, by just reading a multi-page control instruction provided by the manufacturer of the LCD
module, or by the lack of such instruction), many sought an easier alternative approach. A
popular solution to this search is a so-called serial LCD module which requires only one pin
(actually three, including +5V and GND connections). A serial LCD module has, in addition to
the LCD controller/driver, a convert chip which coverts serial data into a parallel data and signals
necessary for the controller/driver. The converter is actually a serial-in/parallel-out shift register,
which uses the synchronous serial data pin to load a serial stream of data. Of course, the shift
register and accessory circuit can be replaced by a microcontroller for better and simpler control

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 108

of the LCD module. For example, Scott Edward (Seetron.com)'s Serial Backpack® adopts PIC
16C622. Similarly, Peter Anderson (phasnderson.com)'s cheaper Basic Serial LCD kit employs
a PIC processor, PIC16C554.

Serial LCD Module

LLD Module

Serlal Data bn Parallel Stream |

—— Shilt T
Reglstar | LLD Combrolleniriver
I

Fig. 27 Serial LCD Module

The discussion and example code follows will be centered on the Serial LCD BPP420 by Scott
Edward. For other serial LCD module, closely follow the manual for the module. The BPP 420
package consists of the LCD Backpack and a LCD module by Truly which we thoroughly
examined before. So this may give you a stark contrast of controlling the same module by two
different method. According to the manual of BPP420, by toggling, we can get 2400 or 9600
bps serial communication speed. The change of the selection is effective when power is on. In
other words, we have to select before applying power to the module. The dip switch for speed
selection is at the back side of the Backpack. If you do not touch the dip switch, the selected
speed is 2400 bps. At the back also is a 5-pin header. However, we need only three pins: +5V,
GND, and SER. SER is the single line from 16F877 for instruction/data write to the LCD
module. The serial communication format is with the normal 8N1: 8-bit data, no-parity, with 1
stop bit.

Now let's check how to operate this serial LCD by examining the manual of the module. Here
goes some precaution that must be exercised. The BPP420 used in the example may be
somewhat different from what one gets. The serial convert (Serial Backpack) attached to the
LCD module is so-called "old version” made in later 1990s. The control is a little complex than
the current version. The apparent difference in hardware is that the old version uses 4-bit
interface while the current version uses 8-bit interface. The easiest way to know is to check if
all 8 data pins (pin No. 7 — 14) are all connected to the processor chip of the board of the Serial
Backpack. If all 8 pins are connected to the chip, you are holding a new version. The old
version connects only 4 data pins out of 8 (pin No. 11 — 14). So if you have acquired a new
version, follows what the manual (the manual on BPP420 available from seetron.com is good for
the new version) indicates. It is assured that the control is much easier. For example, there is no
prefix code need to indicate that a following code is an instruction for new version. However, in
old version, you have to send a hex number FE before any instruction code. The good manual
for old version is the manual for the original serial Backpack. Check seetron.com for the
manual. This example follows the manual for the serial Backpack.

Among many control functions provided in the "old version” provided, the following functions
are most relevant for normal use of LCD:

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 109

Function Code (Hex)
Clear LCD 01
Cursor Home (line 1 and position 1) 02
Show Underline Cursor OE
Show Blinking Block Cursor 0D
Hide Cursor 0C
Move Cursor one character left 10
Move cursor one character right 14
Scroll display one character left (all characters) 18
Scroll display one character right (all characters) | 1C
DDRAM Address (Cursor Position) Set Addr
CGROM Address set Addr

The DDRAM map (cursor location) for the old version is shown below.

Position 1 2131456789 ([10]11]12(13|14]15] 16 |17|18[19]20
First line 80h [11h|82h|83h | 84h [85h | 86h | 87h | 88h [89h [8Ah|8Bh|8Ch [8Dh|8Eh| 8Fh |90h | 91h | 92h [93h
Second line | COh [C1h|C2h|C3h|C4h[C5h|C6h|C7h|C8h|C9h|CAh|CBh|CCh[CDh|CEh| CFh |DOh|D1h[D2h|D3h
Third line 94h | 95h | 96h [97h [98h | 99h | 9Ah | 9Bh [9Ch [9Dh | 9Eh | 9Fh | AOh [Alh [A2h| A3h |A4h|A5h[A6h|AT7h
Fourth Line [D4h | D5h [D6h|[D7h|D8h|D9h [DAh|DBh|DCh|DDh[DEh|DFh|EOh| Elh [E2h| E3h [E4h|E5h|E6h|ET7h

Therefore, when we want to type 'A' at the column 1 and line 2, the following command must be
called:

1. Write FEh as an instruction prefix

2. Write COh to mover the cursor (or DDRAM address) the position of line 3 and column 1.

3. Write A’ for the character

Before we proceed further, let's make our code for 2400 bps serial communication routine. |
hope we remember our discussion and example code in Chapter 5 for software-built serial
communication.

The biggest and troubles some thing about the serial Backpack is using "inverted" serial
communication mode. In other words, usually the TX line in asynchronous mode is high to
indicate the idling state and it goes to low to start a communication. The data "1'is represented
to High bit and "0 to Low bit. But in "inverted" mode, everything has to be inverted: idling
should be Low, and Start bit should go to High to initiate communication. Also, Low for "1" and
High for "0". Therefore, the software built serial communication program we had in Chapter 5
should be changed to reflect the "inverted" mode of the serial Backpack. The reason for this
unusual approach is because its main application is for Basic Stamp, which can choose
"inverted" or "non-inverted" mode, the latter for direct RS-232 connection

From Start bit we send data through a pin (any 1/0 pin of 16F877) to the SER pin of the serial

LCD module. The pulse width for the bit is 1 Baud cycle. 1 Baud cycle for 2400 bps = 417 ps.
Since we already made out 100 ps and 120 us delay routines, with minor error, 417 ps can be

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 110

made by calling 100us delay 3 times followed by calling 120us delay once. Let's call the
subroutine for 417 us pulse width bps2400.

Since we have to send LSB first, we have to do the similar rotation, which includes the carry bit.
The idea is to move the LSB of the file register where the data is stored to Carry bit, and check
the status of the bit. If the carry bit is 1, then we send 1 to SER, for 0, then 0 to SER, for 1 BC
seconds. See below for a code section of one bit (LSB first) transmission:

: START BI T
bsf PORTD, SER ;Start Bit in Inverted Mde
cal | bps2400 ; 430us-1 ong
;Data Bits (8 bit transnission)
nmov| w 0x08 18 --->W
nmovw Bi t count ;8 data bits
TXNEXT
bcf STATUS, CARRY
rrf Treg ; LSB first node (normal)
bt fsc STATUS, CARRY
bcf PORTD, SER ;inverted Mode
bt fss STATUS, CARRY
bsf PORTD, SER ;I nverted Mbde
cal | bps2400
decfsz Bi t count
goto TXNEXT
:STOP BIT
Stop Bit
bcf PORTD, SER ;I nverted Mbde
cal | bps2400 ; STOP bit

Using the above code we make two subroutines: one for instruction write and the other for data
write. Since the above routine can be directly converted to data write (named as L CDOUT)
because data write does not need a prefix code.

; LCD wite subroutine (Note: Inverted Mdde) ====================
: The 8-bit data to be sent to LCD npdule is stored in W

LCDOUT
banksel Tchr
novwf Tchr ;W--->Treg
movl w 0x08 ; 8-bit
novwf Bi t count ;8 data bits
;send a START bit
bsf PORTD, SER
cal l bps2400
TXNEXT
bcf STATUS, CARRY
rrf Tchr ; LSB first node (normal)
btfsc STATUS, CARRY
bcf PORTD, SER
btfss STATUS, CARRY
bsf PORTD, SER
call bps2400
decfsz Bi t count
goto TXNEXT
; send STOP bit
bcf PORTD, SER
cal | bps2400
return

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 111

Since instruction write needs a prefix write and a code write, it involves two writes. In the
LCDcomsubroutine, the prefix is sent out using the LCDOUT subroutine followed by actual
code (stored in Tcomregister) write using the same LCDOUT subroutine.

; LCDCOM subroutine === to send comand prefix + conmand code
LCDcom

novwf Tcom ;conmand code here

novl w OXFE ;command prefix

cal | L CDOUT

novf Tcom W

cal | LCDOUT

return

Voo
Van
EDTPSET
EDAPETE
EDWPEDS
ROGTHCE
RLCY/ENT
RCATHC
RCAEDO
RCASDIADL
RLPETE
FDAPSER

PIC 16F877-20/P

LCD Serial Backpack
from Scott Edward

BPP420 Serial LCD

Fig. 28 PIC 16F877-20P connection to BPP420 Serial LCD

Now let's have the following connection which uses PORTD<7> as SER pin for bit transmission.
In the example code, we want to display the same format we displayed with regular LCD
module. Since all the subroutines are already discussed, only the main part is listed and
explained here.

; 16LCD-s. asm

Serial LCD control Program

; Seetron's BPP420 LCD nodul e (20x4) (OLD MODE: | guess 4-bit interface)

; Sof tware-built Serial conmunication used

2400 bps with 8N1 fornmat
; 1 Baud Cycle is then 417 us --->420 us pulse width

"F = 20 Mz
' SER pin = RD7
list P = 16F877

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

STATUS
CARRY
TRI SD
PORTD
SER
V5B

EQU 0x03
EQU 0x00
EQU 0x88
EQU 0x08
EQU 0x07 ; RDr for SER out
EQU 0x07

CBLOCK 0x20

ENDC

Kount 120us ; Del ay count (nunber of instr cycles for del ay)
Kount 100us

Kount 1ns

Kount 10ms

Kount 1s

Kount 10s

Kount 1m

Bi t Count

Tchr ;tenp storage

Tcom

; program shoul d start from 0005h
;0004h is allocated to interrupt handl er

org 0x0000
goto START
org 0x05
START
banksel TRI SD
Port setting (1 for input and O for output)
0000 0000
nmovl w 0x00
novwf TRI SD ;all outputs
banksel PORTD
clrf PORTD
bcf PORTD, SER ;(no signal) Inverted Mde
banksel Tchr
clrf Tchr
clrf Tcom

; LCD di splay started here

cal |

nmov| w
cal |

nmov!| w
cal |

nmov| w
cal |
nmov!| w
cal |
nov| w

del ayls ;war m up

0x01 ; Clear LCD

LCDcom ;Usually no time delay required for 2400bps
;when in 9600 apply 1ns tine delay after each
Wwite

OxO0E ; Show Underline Cursor

LCDcom

; Position cursor to Line 1 Colum 1 ($80)

0x80

LCDcom

TP

LCDoUT

o

LCDoUT

cal |

112

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

nov| w
cal |
; Change t he

nmov| w
cal |
nmov!| w
cal |
nmov| w
cal |
nmov| w
cal |

; Change t he
nmov| w
cal |
nmov! w
cal |
nmov| w
cal |
nmov| w
cal |

; Change t he
nmov| w
cal |
nmov| w
cal |
nmov!| w
cal |
nmov| w
cal |
nov| w
cal |
nmov!| w
cal |
nmov| w
cal |
nmov| w
cal |

DDRAM

DDRAM

DDRAM

113

'C
LCDOUT
address for line 2 and Colum 1 ($Q0)

0xC0
LCDcom
TA
LCDOUT
"N
LCDOUT
'D
LCDOUT
address (cursor
0x94

LCDcom

CL

LCDOUT

'C

LCDOUT

'D

LCDOUT

; DDRAM ADDRESS SET

DA
N

;D
position) to line 3 and colum 1 ($94)

address (cursor position) to line 4 and colum 1 ($D4)
0xD4
LCDcom
'D
LCDOUT
o
LCDOUT
=t
LCDOUT
T p
LCDOUT
CL
LCDOUT
T A
LCDOUT
'Y
LCDOUT

Also, we can display special characters stored in the CGROM. Since the LCD module is the
same, the location of Greek characters a, p,and p are the same: EO, EG6, and E4, respectively.
Then, the following code with display the same display format as we did with the regular LCD
module: ar mat the first line and app at the second line.

; Cl ear
nov| w
cal |

; Hi de
nmov| w
cal |

: Li ne
nmov| w
cal |

;Wite armin Eng

nmov| w
cal |
nmov| w
cal |
nmov!| w
cal |

cursor

1 colum 1

0x01
LCDcom

0x0C
LCDcom

0x80
LCDcom
i sh

g
LCDQUT
Iy
LCDOUT
"m
LCDOUT

;nove to line 2 columl

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 114

novl w 0xC0

cal | LCDcom
;get the special character
;al pha (EO), rho (E6), nu (E4)
; CGROM access

nmov| w OxEO
cal | LCDQUT
nmov| w OxE6
cal | LCDOUT
nmovl w OxE4
cal | LCDOUT

Now we examined LCD modules and serial LCD modules, and programmed example codes.
Now it is up to you whether you go with the regular LCD module and a series LCD module
depending upon your budget (the serial one costs much more) or your I/O pin availability. For
programming perspective, there is not much difference between two modules.

4. Decoding IR Remote Controller

IR may be the cheapest way to remotely control a device within a visible range. Almost all
audio and video equipment are controlled this way nowadays. Due to this wide spread use, the
required components are quite cheap.

Let's extend our interest of serial communication, especially software enabled one, to decode TV
or VCR Infrared (IR) remote controller. We cannot directly use the code in Chapter 5 since
remote controllers use different protocols. However, the protocols are all based on serial
communication, the principle of the operation is the same. In the application, we will read the IR
information, sent by a remote controller, using a IR receiver module (that means it is not just an
IR detector but a receiver with 40KHz demodulation circuit inside the module. Details on this
follows.)

Modulation is a way to make signal stand out above noise. With modulation , IR light source
blinks in a particular frequency, say 40KHz. The IR receiver should be tuned to that frequency,
S0 it can ignore everything else.

Infrared remote controls are using a 32-40 kHz modulated square wave for communication.
These circuits are used to transmit a 1-4 kHz digital signal through infra light (also, this is the
maximum attainable speed, 1000-4000 bits per sec). The transmitter oscillator which is driving
the infrared transmitter LED can be turned on/off by applying a logic level voltage. For us, the
remote controller is the transmitter. Therefore our attention is toward more on the IR receiver.

On the receiver side a photodiode takes up the signal. The integrated circuit inside the chip is
sensitive only around a specific frequency in the 32-40 kHz range. The output is the demodulated
digital input. All these element in a case form an IR receiver module. The output of the module
is High when there is no IR signal, Low when there is IR signal.

As illustrated below, there are several IR receiver modules available in very cheap price.

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 115

Fig. 29(a) Sharp GP1U581Y IR Receiver Module Fig.29(b) Radio Shack's IR receiver.

Sharp GP1U581Y IR receiver module is the most popular IR receiver. It is designed for use with
38khz modulated IR sources. It incorporates an amplifier, limiter, band pass filter, demodulator,
integrator and comparator. Radio shack's IR receiver (Catalog #: 276-640) is also good for
experimental projects and building remote control. It works with voltage in 2.4 - 5.5V. It's
elliptical lens helps to block light noise from above and below the center frequency of 38kHz.

To detect IR signal from a remote controller is to know how different remote controllers send
information. And this is the subject of IR protocol. Basically there are three types of IR
protocols: pulse coded protocol, space coded protocol, and shift coded protocol.

Pulse coded protocol is to use the varying length of a pulse to represent either 0 or 1. Sony
protocol is one of the pulse coded protocols. Space coded protocol uses the length of a space
between pulses to represent either 0 or 1. Sharp TV/VCR remote control uses this space coded
protocol. In shit coded protocol, the direction of transitions represent either 0 or 1, and the all
the bits have a constant time period. Philips remote controller uses this shift coded protocol.

We will consider here only for Sony and Sharp protocols.

Sony Protocol
Sony protocol is consistent of pulse coded 12-bit information with carrier frequency of 40 KHz.

The code starts from a 2.4ms start bit. Out of 12-bit information, 5 bits are assigned for address
to indicate different device such as TV, VCR, or DVD and the other 7 bits are assigned for
command to indicate the buttons on the remote controller. The pulse widths (or space) are 1.2
ms for "1" and 0.6 ms for "0". Commands are repeatedly transmitted from the remote controller
every 45 ms as long as a key is held down. As in normal serial communication, LSB is sent first
and the MSB last for both address and command.

24
ms 0.6 ms 1.2 ms

LSE/L / MSB LSB MSB

iy

0 0 1 1 o 0 I]‘ 1 o0 0 o
Command Address

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 116

The table below lists some messages sent by Sony remote controls in the 12-bit protocol.

ADDRESS COMMAND

1 TV 6 Key "7"
2 VCR1 7 Key "8"
3 VCR 8 Key "9"
6 LDP 9 Key "0"

COMMAND 16(10h) Channel +
0 Key "1" 17(11h) Channel -
1 Key "2" 18(12h) Volume +
2 Key "3" 19(13h) Volume -
3 Key "4" 20(14h) Mute
4 Key "5" 21(15h) Power
5 Key "6" 22(16h) Reset

Sharp Protocol
Sharp protocol for Sharp VCR uses 13-bit protocol with carrier frequency of 38KHz. There are

two trailing additional bits for expansion and check. These two bits are not used in decoding.
The first 5 bits are for address and the second 8 bits are for command. The "1" and "0"
representation is done by the length of a distance between two pulses, the pulse distance: pulse
distance of 0.68 ms is for "0" and distance of 1.68ms for "1". The pulses which separate the
distances are 0.32 ms long. One key press sends the code twice separated by 40 ms time delay.

J20 us 1680 us E 0us

umﬂmmﬂﬂmm

|LSB M5|3| LSB I'u'ISB | |
! ADDRESS COMMAND

tl
EXﬁ)A’:'ISIﬂH CHECK

The table below lists some messages sent by Sharp VCR remote controller.

ADDRESS COMMAND
3 VCR 7 Key "7"
8 Key "8"
9 Key "9"
10(0Ah) Key "0"
COMMAND 17(11h) Channel +
1 Key "1" 18(12h) Channel -
2 Key "2" 34(22h) Play
3 Key "3" 39(27h) Stop
4 Key "4" 33(21h) Fast Forward
5 Key "5" 35(23h) Rewind
6 Key "6" 40(28h) Recording

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 117

Hardware Implementation

Let's connect a Sharp IR receiver module (this works both for Sony and Sharp) at the RB7 port
(Pin #40) of 16F877. The pin arrangement is common to most IR receiver modules: Ground and
Signal Out pins are separated by the Vcc pin. You provide +5V source to the Vcc pin to activate
the module. The Ground pin can be found easily since the Ground pin is internally connected to
the metal case. So a pin connected to the metal part of the case is the Ground pin. The output,
in hexadecimal number, will be displayed on a monitor and will be compared with the
command/address list tables for Sony and Sharp.

0
| IETRATT e’ R =
2 '] Rt RES
2™ ravmm RES
+ ™ RazisIARER- FE4
[| Rz B EER+ FEZ PC Manitor
[RAH/TOCK BEO
T Ravarss E FEL
FEVFTVANS 1 BEQNT
RELFFRIANE &5 Vrp
FELTC M7 E Vi
Vo e FDHPSET Female
Vs g FD&PSH DBS
0SCLCLEIN RD PSS B e

0SCHCLEOUT RD4PSR4
vl RCAENDT

ECLCCP2 RCGTHCE
RCACCRL RCAED0
RC3/SCESCL RCASDLGDA
ED0E 5P0 EDEPES
ED 1P 5F1 FDapsm

o
%o

1
s
4
5

Fig. 30 PIC 16F877/20-P connection to Sharp IR receiver module

Programming for Sony Remote Controller
As the Sony protocol and the code, we see that a digit of "1™ is represented by a 1200pus space
and "0" by 600ps space. Also, we should remember that the code starts with a Start space for a
length of 2400us. Therefore, we have to follow a sequence of reading the RB7 pin (the output
of the IR receiver module). The detection of the Start big goes like the following sequence:

1. Check the RB7 pin.

2. If the RB7 is High. Goto 1. IF RB7 is Low, proceed.

3. Wait until RB7 goes back to high.

4. IR reading begins from here.

Once the Start bit is detected, as listed above, we wait for the first pulse of 600 us. If pulse goes
to Low, we have to measure the space until the next pulse. How do we measure the space in

time? The approach we choose here is to use and extend the time delay (using only instructions
not timer module of 16F877) we studied before. In other words, how many time delays of 120us

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 118

are in the space will determine the space length. We do not need exact length of time. What we
need is just a comparison figure. The figure for comparison is, say, Pcount which is the number
of 120ps time span in a space. For "0" (600 ps), Pcount must be less than 7, and for "1™ (1200
us), it must be bigger than 8. Since the number 7 is lower than 8, we could finally have the
following comparison of Pcount for "1™ and "0" determination: A space with Pcount less than 8
is "0" and a space with Pcount of 8 or more is "1".

120 us Check Value at every 120us
Waitfor LOW waitforLow ™ & ¥
L bR b
Wait for HIGH LI
2400us 600us | B00US | Jenous Fﬂ 1200us 600us
Start Bit pulse =g /pulse \‘:’ pulse
Stop Checking if the ait for LOW
Value is High

The actual reason of choosing the number 8 comes from the easiness of the comparison. We
know that the maximum possible Pcount is 1200+120=10 (OA). Therefore, for "1" the bit-3 (B3)
of the Pcount must be 1. For "0", since the count is less than 8, the B3 of Pcount would be 0.

In other words, by checking the third bit of the Pcount, we can easily determine its
representation, as illustrated in the code below.

btfsc Pcount, 0x03
bsf COVreg, MSB ;assum ng that the NVSB
;is already cl eared above.
;if B3=1, it is "1"
bcf STATUS, CARRY ;other wi se, keep the previous val ue
rrf COVr eg ; Rotate right with value 0

The delay building block for IR decoding program is the 120 us time delay. As we discussed
before, since 1 instruction cycle in 20MHz clock takes 0.2 ps, for 120 s, there must be 600
instruction cycles. Therefore, from 600 =197*3 +9, the repetition count for 120 ps,

Kount 120us, is selected as 197(C5h). The subroutine goes like this:

; subroutine del ayl120us

Del ay120us
banksel Kount 120us
nmovIl w 0XCh ;197d
nmovw Kount 120us
R120us decfsz Kount 120us
goto R120us
return

;end of subroutine
As we did before, 100us delay can be calculated, as we need 500 instruction cycles, from

500 =164*3 +8. So the repetition count, Kount 100us, is selected as 164(A4h). The
subroutine goes like below:

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 119

Del ay100us
banksel Kount 100us
nmov| w OxA4 ;164d
nmovwf Kount 100us
R100us decfsz Kount 100us
goto R100us
return

Similarly, but very conveniently, other time delays can be made from the building block. For

example, a 10ms delay can be generated by calling the 100us delay subroutine for 100 times.
Here goes the subroutine for 10ms delay.

; 10ns del ay subroutine
call 100 times of 100 us del ay

Del ay10ms
banksel Kount 10ms
nmov| w 0x64 ;100d
nmovwf Kount 10ms
R10ns cal l del ay100us
decfsz Kount 10ns
goto R10mns
return

So this is a pseudo-code for Sony remote controller decoding program:

1. Begin

2. If RB7 is LOW (this means an IR transmission is already undergoing), give enough
delay time, say 200ms, not to read on-going data stream or the second command/address
stream.

3. When RB?7 is back to High, wait for Start bit.

4. After Start bit detection, wait for a pulse to arrive.

5. After each pulse, count number of 120 us delays at a space.

6. Determine the bit value (0 or 1) and rotate to the right a bit. (Remember that the LSB
arrives first)

7. Repeat 5-6 for seven times for 7-bit Command. Rotate to the right one last time for an 8-
bit result.

8. Repeat 5-6 five times for 5-bit Address. Rotate to the right 3 times for an 8-bit result.

Now, let's have an example code. Read each line of instruction and comments to follow the
logic of IR decoding. In addition to the decoding, the decoded contents in two hex numbers (one
for Address and the other for Command) in two digits are displayed on a monitor.

;41 R-sony. asm

; This programis to:
;1. Read IR data froma SONY | R Recei ver nodul e

sent froma Sony VCR renote controller (12 bit protocol)
;2. Display the data in ASCII format on a PC screen

Sony IR renpte protocol (12-bit version):

When no button is pressed, the output fromthe IR receiver

is kept HGH

Pul se Wdth Encodi ng Met hod

When button is pressed, a 2400 uS LOWstarts the serial conmunication
1/0 code is separated by 600 uS | ong H GH pul se separat or

wWhE O

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 120

; "1": 1200 uS long LOWfol |l owed by a pul se separator
; "0": 600 uS long LOWfoll owed by a pul se separator
;4. Encodi ng Order

; 7-bit command fol |l owed by 5-bit Address

;5. The end is marked by H GH

;6. LSB first node

; ITRRRX pin(IRX) is connected to RB7 port
;IR- RECEPTI ON AND DECODI NG
;Here's the way to read and decode the IR

;1. Detect the IRX for LOW
;2. Wait until IRX goes to H GH
;3. Wait for 120uS
;4. Check IRX (Add I RCounter if | RX=H GH)
; | F | RX=LOW goto 2.
if IRCOUNT <8 : "0"
if IRCOUNT >8 : "1"

Repeat 7 tines for Conmand --->COVeg is the result register
; Repeat 5 tines for ADDRESS --->ADDRreg is the result register

; Terminal set up: 8N1 19200

list P = 16F877

STATUS EQU 0x03

CARRY EQU 0x00

ZERO EQU 0x02

TRI SB EQU 0x86

PORTB EQU 0x06

TXSTA EQU 0x98 ; TX status and control

RCSTA EQU 0x18 ; RX status and control

SPBRG EQU 0x99 ; Baud Rat e assi gnnment

TXREG EQU 0x19 ; USART TX Regi ster

RCREG EQU Ox1A ; USART RX Regi ster

Pl R1 EQU 0xO0C ; USART RX/ TX buffer status (enpty or full)
RCl F EQU 0x05 ; PIR1<5>: RX Buffer 1-Full O-Enmpty

X F EQU 0x04 ; PIR1<4>: TX Buffer 1-enmpty O-full

TXMODE EQU 0x20 ; TXSTA=00100000 : 8-bit, Async node
RXMODE EQU 0x90 ; RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU OxOF ; 19200 bps

VBB EQU 0x07

| RX EQU 0x07 ; RB7 for IR receiver

; RAM Area for file registes
CBLOCK 0x20

Kount 120us ; Del ay count for 120us del ay
Kount 100us

Kount 1ns

Kount 10ns

Kount 1s

Kount 10s

Kount 1m

first

second

third

Bi t count ;data bit count

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

; boot |

START

BEG N

: CHECK IF THE IRX is H GH at
; to make sure it does not
; For 200 nt del ay,
banksel

redo

jam

VAI T

ENDC
oader
org
goto

org

banksel

nmov| w
nmovwf

banksel

clrf
clrf
clrf

bt fss
goto

banksel

nmov| w
nmovwf
cal |

bt fss
got o

decfsz

goto

banksel

bt fsc
goto

banksel
nmov!| w

nmovw
bt fss
goto

CWMNEXT

clrf
bcf

Kount
ADDRr eg
COVr eg
Pcount
Adcount
Cntount
Tcount
ADDRt enp
COM enp
ADDR1
ADDR2
comL
cowe
ASCl I reg

acconmodati on
0x0000
START

0x05

TRI SB
0x80
TRI SB

ADDRr eg
ADDRr eg
COVr eg
Pcount

cal |
PORTB
PORTB,
BEG N

first

0x14
first

Del ay10ms

PORTB,
BEG N
first
redo

PORTB
PORTB,
jam

CMcount
0x07
CMcount
PORTB,
VAI T

Pcount

STATUS, CARRY

121

; | R ADDRESS r egi ster
; I R Command regi ster
; HHGH duration count
;count for ADDRESS
;count for COVMAND

conversi on of ADDRESS
; for ASCI1 conversi on of COMVAND
;First hex digit for ADDRESS reg
; Second hex digit

; First hex digit for COVMAND reg
; Second hex digit

; Tenporary register for

;for ASCI

H-t o- A conver si on
line 1
;1ine 2 ($0000)

1000 0000 (RB7 [IRX] as input)

;clear all file registers

; pul se count for space measurenent
| east for 200 nB

read on-going or the second stream
10ns delay for 20 tines.

;if IRXis LON go to start again

;to wait until the current on-going
;data streamis over
;if IRX is high, then give enough

;delay to read fresh start IR stream

;for continuous 200 ns

; NOWready to fresh read IR data

;Wait for START bit

;now start bit is detected
;command has 7 bits

;wait until the Start bit goes to High

;now, we are in the first
;Clear the Carry Bit

pul se

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

rrf

wait2 btfsc
goto

DST cal

bt fsc
goto
i ncf
goto

wai t 3

COVr eg

PORTB, |RX
wai t 2
Del ay120us

PORTB, | RX
onezero
Pcount

DST

; COWWAND<7>=0

122

; VWit for the pulse to go to LOWV

; (the space)

;W are in space (IRX is LONNOW
; Delay 120 uS to neasure the space |l ength

cuntil
i f

the end of space

IRX still

; repeat

HI GH

; Here we counted the number of 120us tine delays in the space.
;Let's deternmine the bit value of the space

;"1" or "O"

onezero
bt fsc
bsf
decfsz
goto

bcf
rrf
: THE END OF

det erm nati on

Pcount, 0x03
COvr eg, MSB
CMcount
CVNEXT

STATUS, CARRY
COVr eg
7-BI' T COMVAND READI NG

; ADDRESS READI NG Begi ns here

nmov| w
nmovw
ADNEXT
clrf
bcf
rrf
cwait?2
bt fsc
goto
cDST cal
cwait3
bt f sc
goto
i ncf
goto
:"1" or "O"

conezero
bt f sc
bsf
decfsz

goto

émait4
bt fss

goto
: THE END OF
bcf
rrf
rrf
rrf
: THE END OF

0x05
Adcount

Pcount

STATUS, CARRY
ADDRr eg
PORTB, | RX
cwai t 2

Del ay120us

PORTB, | RX
conezero
Pcount
cDST

check

Pcount, 0x03
ADDRr eg, MSB
Adcount

ADNEXT

PORTB, | RX
ewait4

ADDRESS READI NG
STATUS, CARRY
ADDRr eg

ADDRr eg

ADDRr eg

ADDRESS READI NG

; B3=1
: B3=1,
: B3=0,

: Have we done 7 tines?

or 0
t hen

(bigger than 77?)
COvr eg<7>=1

i ncrease the count

then COVreg<7>=0 the old val ue

;Yes we read 7 spaces
cFill the 7" bit with 0 to nake a byte.

; ADDRESS has 5 bits

;Clear the Carry Bit
;rotate to the right

If not,

do again

; Does the pulse go to LONto space?

;I n space.

; End of space,
I RX stil

L f

; repeat

; B3=1

or 07

Del ay 120 uS

then "1" or

LOW

;1 f B3=1, ADDRref<7>=1

;1f B3=0, keep the old value

:Have we read 5 tines?

; No.

s it

;W& have to fil

Then,

do nore.

"o
i ncrease Pcount

check

now end of the data streanf
;with I RX Hi gh?

;to nmake a byte infornation

the 3 MSBs with 0

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

; ADDRr eg hol ds the ADDRESS I nfo
; COMreg hol ds the COMMAND I nfo

;ASCII Converion of ADDRreg and COW eg

novf ADDRr eg, 0

novwf ADDRt enp

swapf ADDRt enp, 0 ; SWAP upper and | ower
andlw OxOF ; Mask of f upper nibble

=== hex to ascii conversion subroutine

;'rmve the content to Whbefore call this routine

123

ni bbl es --->W

;final result will be stored back to W
cal | HTCA
novwf ADDR1 ;First Hex Digit of ADDRESS
novf ADDRr eg, 0
andl w OxOF ; mask of upper nibble
cal | HTOA
novwf ADDR2 ; Second Hex Digit of ADDRESS
movf COM eg, 0
novwf COM enp
swapf COM emp, O ; SWAP upper and | ower nibbles --->W
andl w OxOF ; Mask of f upper nibble
cal | HTOA
novwf cowL ; First Hex Digit of COMVAND
movf COM eg, 0
andl w OxOF ; mask of upper nibble
cal | HTCA
novwf cowe ; Second Hex Digit of COVMAND
’ call ASYNC node ; Enabl e the Serial Conmunication
; TX ROUTI NE FOR ADDR | NFO
novf ADDR1, 0
cal | Txcal | ;First Hex Digit of ADDRESS display
movf ADDR2, 0 :Fol | owed by 2™ digit
cal | TXcal |
novf Ccom, 0
call TXcal | ; Fol l owed by the first digit of COVMAND
novf con?, 0
cal | Txcal | ;followed by the 2™
;add one line as a delimter
call CRLF ;ends with Carriage Return and Line Feed

;whi ch noves the cursor
;colum of the next |ine.

goto BEG N ; REPEAT
; ===SUBRQUTI NES ====

RX TX Initialization with Async Mde
; Async_node Subrouti ne

Async_node
banksel SPBRG
movl w baud ; B'00001111'

(19200)

to the first

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 124

nmovwf
banksel
nmov| w
nmovwf
banksel
nmov| w
nmovwf
return

SPBRG
TXSTA
TXMODE
TXSTA
RCSTA
RXMODE
RCSTA

; B' 00100000 Async Mode

; B' 10010000' Enabl e Port

goto
banksel
nmovw
return

banksel
bt fss
goto
banksel
nmov| w
nmovw
LFkey

banksel
bt fss
goto
banksel
nov| w
nmovwf
return

; Check if TX buffer is enpty

; Place the character to TX buffer

;ASClI | code for CR

;ASClI | code for LF

' DELAY SUBROUTI NES

Del ay120us
banksel
nmov!| w
nmovw

R120us
decfsz
goto
return

Del ay100us
banksel
nmov!| w
nmovw

R100us
decfsz
goto
return

Del ay10ms
banksel
nmov| w
nmovw

R10ns cal
decfsz
goto
return

;; === hex to asci

Kount 120us
0xC5
Kount 120us

Kount 120us
R120us

Kount 100us
OxA4
Kount 100us

Kount 100us
R100us

Kount 10ns
0x64
Kount 10ns
del ay100us
Kount 10ns
R10ns

; 100d

conver si on subroutine

;move the content to Wbhefore call this routine

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 125

;final result will be stored back to W

HTOA
novwf ASCl | reg
;check 0-9 or A-F
bt fsc ASCl I reg, 0x03
goto RECHK
THI RTY
nmovl w 0x30
addwf ASCl | reg
novf ASCllreg, 0
return
RECHK andl w 0x06
bt fsc STATUS, ZERO
goto TH RTY
nov| w 0x37
addwf ASCl | reg
novf ASCllreg, 0
return
; END OF CODE
END

If you run the above code, you would have the hex numbers displayed on your monitor as
illustrated below, when you sequentially press keys of "1", "3", and "Channel +" of your Sony
TV remote controller.

“g test - HpperT erminal Hi=1 EE
Fle Edit Miew LCall Transfer Help

Dl &(3] ol =

0100
0101
0110
4 k

|Cannected 0000:00: llodebset |1 2

Programming for Sharp Remote Controller

The programming for a Sharp remote controller is not different from that for a Sony remote
controller. In 13-bit Sharp protocol, however, the separator is a space of Low, and the "1" or "0"
representation is determined by the length of a pulse of High. The separating space is 320 us
long and pulse length for "1™ is 1680 ps, for "0" 680 ps. There is no lengthy Start bit in Sharp
protocol and Address comes before Command. The Start bit is just a space of Low.

Wait for HIGH Check "-.p"alue at every 120us
Wait for LDW
I1]ll U
U 1EEII] us
SPEEEEBD Space Space
320us 320 us 320us

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 126

The 120us time delay we used for Sony protocol is used for Sharp protocol to measure the length
of a pulse for "1" or "0" determination. Also, the Pcount with 1" or "0" determination utilizing
the 3" bit applies here without change.

Now, let's have an example code for Sharp protocol. Read each line of instruction and
comments to follow the logic of IR decoding in Sharp remote controller. As before, the decoded
contents in two hex numbers (one for Address and the other for Command) in two digits are
displayed on a monitor. Since the declaration part and the subroutine part are the same as that of
Sony protocol code, here shows only the main part.

;for Sharp VCR Renote Controller

;Here's the way to read and decode the IR
Detect the IRX for LOW

Wait until I RX goes to H GH

Wait for 120uS

; Check IRX (Add I RCounter if |RX=H GH)
; I F | RX=LOW got o 2.

PwnE

; if IRCOUNT <8 : "O0"
; 1f IRCOUNT >10 : "1"

; Repeat 5 tines for Address --->ADDRreg
; Repeat 8 tines for Comuand --->COV eg
; Repeat 2 tines for EXP and CHK ---> Do not store. Ignore them

org 0x0000 ;line 1

goto START ;1ine 2 ($0000)

org 0x05
START

banksel TRI SB

nmovl w 0x80

novwf TRI SB ;RB7 - IRX Pin (IN)
BEG N

banksel TXREG

clrf TXREG

banksel ADDRr eg

clrf ADDRr eg

clrf COVr eg

clrf Pcount

banksel PORTB

btfss PORTB, | RX

got o BEG N ;if IRXis LON start again
;call delaylOns 20 tines

banksel first

nmovl w 0x14 ; 20

nmovwf first
redo call Del ay10ms ; 2005 del ays
; check again for I RX

btfss PORTB, | RX

goto BEG N

decf sz first

got o redo

i NOWready to fresh read IR data

nmov| w 0x05

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 127

novwf ADcount
; Check for START bit
ADNEXT
clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf ADDRr eg ;rotate to the right
WAIT btfsc PORTB, | RX ; | RX=LOWP
goto WAL T ; NO
wait2 btfss PORTB, | RX ; YES. Then check it AGain
goto wai t 2
DST call Delayl20us ; Delay 120 uS
;count (or neasure) the H GH duration
wait3 btfss PORTB, | RX
goto onezero
i ncf Pcount
goto DST

;"1" or "0" check

onezero

btfsc Pcount, 0x03
bsf ADDRr eg, MSB
decf sz ADcount
goto ADNEXT
bcf STATUS, CARRY
rrf ADDRr eg
rrf ADDRr eg
rrf ADDRr eg
; Now COMVAND READI NG
nmovl w 0x08
novwf CMcount
; Check for START bit
CMNEXT
clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf COVREG ;rotate to the right
cwait 2
bt f ss PORTB, I RX ;YES. Then check it AGain
goto cwait 2
cDST call Del ay120us
;count (or neasure) the H GH duration
cwai t 3
btfss PORTB, | RX
goto conezero
i ncf Pcount
goto cDST

;"1" or "0" check

conezero
bt f sc
bsf
decfsz
goto

Pcount, 0x03
COwvreg, MSB
CMecount
CVNEXT

;read next two nore data for EXP and CHK

ewait 2
bt fss
goto

PORTB, I RX ;YES. Then check it AGin
ewait?2

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

ewai t 3
btfsc PORTB, |RX
got o ewait 3
ewai t 4
bt fss PORTB, |RX
got o ewai t 4

;now send the IR info

; ASCI | Converion of ADDRreg and COMW eg

novf ADDRr eg, 0

novwf ADDRt enp

swapf ADDRt enp, 0 ; SWAP upper and | ower
andl w OxOF ; Mask of f upper nibble

;; === hex to ascii conversion subroutine
;nobve the content to Whbefore call this routine
;final result will be stored back to W

cal | HTCA
novwf ADDR1
novf ADDRr eg, 0
andl w OxOF ; mask of upper nibble
cal | HTQA
novwf ADDR2
novf COVreg, 0
novwf COM enp
swapf COM enp, 0 ; SWAP upper and | ower
andl w OxOF ; Mask of f upper nibble
cal | HTCA
novwf cow
novf COVreg, 0
andl w OxOF ; mask of upper nibble
cal | HTQOA
novwf cowe
;rx TX SET UP
cal l ASYNC node

; TX ROUTI NE FOR ADDR | NFO

novf ADDR1, 0
cal | TXcal |
novf ADDR2, 0
cal | TXcal |
novf COML, O
cal | TXcal |
novf conk, 0
cal | TXcal |

;add one line as a delimter

cal l CRLF
goto BEG N

ni bbl es --->W

ni bbl es --->W

128

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 129

If you run the above code, you would have the hex numbers displayed on your monitor as
illustrated below, when you sequentially press keys of "Power", "Play", and "Stop™ of your
Sharp VCR remote controller.

“g test - HyperTerminal
File Edt Yiew Cal Tramfer Help

= EE R E

0316
0322
0327
4 '

|Cannectad 0.00-00: [todeteet |1 o

6. Remote Control of LED On/Off by Sony Remote Controller

Since we learned how to read an IR remote controller, we can now apply it to remotely control a
device. A simple way to do is to turn on and off an LED by the IR remote controller. For this
remote LED control, we connect an LED through a register. The value of resistor can be any
value like 1KQ or 2KQ. If you prefer brighter light, reduce the resistance to 470Q or 330Q or
even 100Q. As shown below the LED is connected to the RD1 port. High output from RD1 pin
turns on the LED, and Low turns off the LED. The remote control action we install is to change
the length of LED-on period depending upon the numeric key of a Sony TV remote controller.
In other words, if you press key "1", it would turn the LED on for 1 second. Key "9" would turn
the LED for 9 seconds. All other keys are ignored and the LED would be kept off.

——_
WELRATE S’ RE =
FAMAHD FES | 3GHD
RalaH REsS -~ 2 Wee

1 Out
R34 FOVEEF- FE4
RS/ MG VEEF FES
R/ TOCKE B
FATATTT E FEl 5y
FEIFTV/ANS 1 REIINT
FELTELANG &n Voo
FETEA Vi
=
Vi FDWISIT
U

Vo £ FDGPSRE I[:)Er-l;ale
05CVCLEIH EDATSES L 5y

- R5232
0SCHCIEOUT RD4/DSD4 — .
Rifl RCHEMDT i 233
RCLCCE2 ROGTHCE = | ol
RCCCT RS0 0 = 5
FIS/SCESCL ROWSDLSDA L= =
FDPSE0 EDATSES]
FDLPSFL FLPSH [ie—o

Fig. 31 Remote Control of LED

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 130

Since we already have the Sony IR program, the only thing we have to add is to decode the IR
remote controller. Since the Address part is not important in this case, all our attention is to
decode the content of the file register COM eg. Let's assume that COVr eg now holds byte-long
information of the current IR signal received. From the table for the list of messages sent by
Sony remote controls in 12-bit protocol, we know that a key "4" would give 03h or 00000011b to
COVr eg.

Key Pressed Content of COMr eg
Hex Binary
0" 09 00001001
"l 00 00000000
"2 01 00000001
"3 02 00000010
4" 03 00000011
"5 04 00000100
"6" 05 00000101
"7 06 00000110
8" 07 00000111
"9 08 00001000

Now the question is how do we find the content of COVI eg. An easy way is to use, as
explained in Chapter 3, andl winstruction. For example, what would be the result of an AND
operation?

novf COWVReg, 0
andl w B'111111171°

The result would be zero only for COMreg=00000000b. If any bit of COVr eq is not zero, the
result would not be zero. In other words, if the above operation results in zero result, the content
of COMreg must be 00000000Db, i.e., the key "1" from the remote controller. Then, if the above
operation is not zeroed, then we can easily see that, if the below operation results in zero, the key
"5" must be pressed.

novf COWVReg, 0
andl w B'11111011"

So the content check goes on until the last key is checked.

Next consideration is to make a 1-second time delay subroutine. Since we already have 10ms
time delay from the previous example code, we make 1 s time delay by calling 10ms delay for
100 times.

;1 sec delay subroutine
;call 100 times of 10ns del ay

Del ayls
banksel Kount 1s
nmov| w 0x64 ;100d
nmovwf Kount 1s
Rls cal | Del ay10ms
decfsz Kount 1s

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 131

goto Rls
return

Also, to simplify the code, it would be better convert the whole IR reading part into a subroutine.
So we converted the previous Sony protocol reading part to Sony| r subroutine.

; ==SONY | R Subrouti ne =====

SONYI R

banksel ADDRr eg

clrf ADDRr eg

clrf COVr eg

clrf Pcount

banksel PORTB

btfss PORTB, | RX

got o SONYI R ;if IRXis LON start again
;call delaylOns 20 tines

banksel first

nmovl w 0x14 ; 20

novwf first
redo call Del ay10ms ; 2005 del ays
; check again for |IRX

btfss PORTB, | RX

goto SONYI R

decf sz first

got o redo

i NOWready to fresh read IR data
Wit for START bit

jam
banksel PORTB
bt fsc PORTB, | RX
got o jam
;now start bit is entered
banksel CMcount
nmov| w 0x07
nmovw CMeount ;command has 7 bits
;wait for a separator
WAIT btfss PORTB, | RX ;
goto WAl T ;
CMNEXT
clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf COMr eg ;rotate to the right

; HHGH seperator IN
;then wait for LONto decode 1 or O

wait2 btfsc PORTC, IRX ;YES. Then check it AGain
goto wait 2
DST call Del ay120us ;IRX is LONNOW Delay 120 uS

;count (or neasure) the LOWduration
;wait for separator

wai t3 btfsc PORTC, | RX
goto onezero
i ncf Pcount i f IRX still H GH
goto DST

;"1" or "0" check

onezero

bt fsc Pcount, 0x03
bsf COvreg, MSB
decfsz CMeount

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

goto CIVNEXT
bcf STATUS, CARRY
rrf COVr eg

; Now ADDRESS READI NG

; NOTE that if you are not interested in the ADDRESS part
;Sinple elininate the |ine below, except the return instruction

;at the bottom

nmovl w 0x05
novwf ADcount
; Check for START bit
ADNEXT
clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf ADDRr eg ;rotate to the right
cwait?2
bt fsc PORTB, I RX ;YES. Then check it AGain
got o cwait 2
cDST call Del ayl20us ;IRX is H GH NON Delay 120 uS

;count (or neasure) the H GH duration
cwai t3

bt fsc PORTB, | RX
goto conezero
i ncf Pcount i f ITRX still
goto cDST
;"1" or "0" check
conezero
bt fsc Pcount, 0x03
bsf ADDRr eg, MSB
decfsz ADcount
goto ADNEXT

; end of stream
ewait 4
bt fss PORTD, | RX
goto ewait4

bcf STATUS, CARRY
rrf ADDRr eg
rrf ADDRr eg
rrf ADDRr eg

return ; COMreg hol ds the Command | nfornation

132

Since we already discussed about subroutines of 1 second time delay and Sony IR reading, the
following code lists only main program part. For a complete code, insert all the subroutines just

above END instruction line at the bottom.

;51 R-LED. asm

;This programis to:

;1. Read IR command from SONY Renote Controller
;2. Turn ON the LED for a given amount of seconds by

: t he nunber pressed by the button:
; "1': 1 sec
; '2': 2 sec etc

LED i s connected to RD1

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications 133

IRRRX pin(IRX) is dedicated to RB7 port

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00 ; STATUS<0>
ZERO EQU 0x02 ;Z flag STATUS<2>
TRI SB EQU 0x86
PORTB EQU 0x06
TRI SD EQU 0x88
PORTD EQU 0x08
I RX EQU 0x07 ; RB7 for IR receiver
LED EQU 0x01 ; RD1 for LED
VBB EQU 0x07
; RAM

CBLOCK 0x20

TI MEBLOCK

Kount 120us
Kount 100us

Kount 1ns
Kount 10ms
Kount 2008
Kount 1s
Kount 10s
Kount 1m
first
second
third
Bi t count ;data bit count
Kount ; Del ay count (nunber of instr cycles for del ay)
ADDRr eg ; | R ADDRESS
COMr eg ; | R Command
Pcount ; HHGH duration count
ADcount
CMcount
ENDC
org 0x0000 ;line 1
goto START ;1ine 2 ($0000)
org 0x05
START
banksel TRI SB
; Port setting (1 for input and O for output)
clrf STATUS
movl w 0x80
nmovwf TRI SB
banksel TRI SD
movl w 0x00
novwf TRI SD ;All ports are outputs
AGAI N
banksel PORTD
bcf PORTD, LED ;turn off LED
cal | SONYI R ;read SONY | R REnpt e
novf COMreg, O ; Whas now t he content of the comrand
andl w B'11111111"

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

bt fss
goto
goto
next novf
andl w
bt fss
goto
goto
next 2 novf
andl w
bt fss
goto
goto
next 3 novf
andl w
btfss
goto
goto
next 4 novf
andl w
bt fss
goto
goto
next 5 novf
andl w
bt fss
goto
goto
next 6 novf
andl w
bt fss
goto
goto
next 7 novf
andl w
bt fss
goto
goto
next 8 novf
andl w
bt fss
goto
goto
next9 goto

; LED routine
ni neLED
bsf
cal |
ei ght LED
bsf
cal |
sevenLED
bsf
cal |
si XxLED
bsf
cal |
fiveLED
bsf
cal |
f our LED
bsf
cal |

STATUS, ZERO ; W= 00? then 1
next

oneLED ;turn on from1 second
COwreg, 0

B'11111101 :WE 2? then 3 sec
STATUS, ZERO

next 2

t hr eeLED

COVeg, O

B' 11111100 :WE3? then 4 sec
STATUS, ZERO

next 3

f our LED

COVr eg, O

B'11111011" ; W4? then 5 sec
STATUS, ZERO

next 4

fiveLED

COwreg, O

B'11111010" ; W5? then 6 sec
STATUS, ZERO

next5

si XxLED

COWr eg, O

B'11111001' ;W6? then 7 sec
STATUS, ZERO

next 6

sevenLED

COVr eqg, O

B'11111000' ; W7? then 8 sec
STATUS, ZERO

next7

ei ght LED

COvreg, W

B'11110111" ; W8? then 9 sec
STATUS, ZERO

next 8

ni neLED

COVr eg, O

B'11111110" ;W1? then 2 sec
STATUS, ZERO

next 9

t wLED

AGAI N

PORTD, LED
del ayls

PORTD, LED
del ayls

PORTD, LED
del ayls

PORTD, LED
del ayls

PORTD, LED
del ayls

PORTD, LED
del ayls

134

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

Chapter 6. LCD Displaying and IR Remote Controller Applications

t hr eeLED
bsf
cal |

t woLED
bsf
cal |

oneLED
bsf
cal |
goto

PORTD, LED
del ayls

PORTD, LED
del ayls

PORTD, LED
del ayls
AGAIN

; subroutines BELOW

; subrouti nes ABOVE

; END OF CODE

END

135

Embedded Computing with PIC 16F877 — Assembly Language Approach. Charles Kim © 2006

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

