
Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

89

Chapter 6. LCD Display and IR Remote Control Applications

This chapter extends the (software enabled) serial communication of Chapter 5 into the
applications of data display and IR remote controller which have many additional applications
for projects and other designs.

1. LCD Displaying

Alphanumeric LCD display is very popular for many applications because we can quickly and
easily display a result of calculation or measurement, or data for debugging purpose. Of course,
as we discussed before, a computer monitor is an excellent tool for the same purpose, but when
we build an embedded computing system, much smaller LCD is always useful. There also are
graphic LCDs are available.

A LCD is different from a LCD module. A LCD is just a medium to display characters or
graphics, it itself also cannot display. A LCD module contains, in addition to the display
medium, an interface controller/driver for the LCD. A LCD controller/driver displays
alphanumerics and symbols. The most popular LCD controller/driver is the Hitachi 44780 based
LCD controller chip. A single HD44780 can display up to one 8-character line or two 8-
character lines. It can be configured to drive a dot-matrix liquid crystal display
under the control of a 4- or 8-bit microprocessor.

LCD Controller/Driver HD44780
Internally HD44780 has a 80x8-bit display data (DD) RAM for maximum 80 characters, and
9,920-bit character generator(CG) ROM for a total of 240 character fonts (208 character fonts
with 5x8 dot size and 32 character fonts with 5x10 dot size), and a 64x8-bit character generator
RAM for 8 character fonts (5x8 dot) and 4 character fonts (5x10 dot). It also covers Wide range
of instruction functions, "HD44780 Standard Control and Command Code," such as display
clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, and display
shift. It contains a reset circuit that initializes the controller/driver after power on.

Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its
extended capacity is 80x8 bits, or 80 characters. The area in display data RAM (DDRAM) that is
not used for display can be used as general data RAM. The following table shows the
relationships between DDRAM addresses and positions on the LCD.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h
Second line 40h 41h 42h 43h 44h 45h 46h 47h 48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh 50h 51h 52h 53h
Third line 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h 21h 22h 23h 24h 25h 26h 27h
Fourth Line 54h 55h 56h 57h 58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh 60h 61h 62h 63h 64h 65h 66h 67h

In addition to the CGRAM and DDRAM, HD44780 has two 8-bit registers: an instruction
register (IR) and a data register (DR). The IR stores instruction codes, such as display clear and
cursor shift, and address information for display data RAM (DDRAM) and character generator
RAM (CGRAM). The IR can only be written from microprocessor. The DR temporarily stores
data to be written into DDRAM or CGRAM and temporarily stores data to be read from
DDRAM or CGRAM.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

90

Data written into the DR from the microprocessor is automatically written into DDRAM or
CGRAM by an internal operation. The DR is also used for data storage when reading data
from DDRAM or CGRAM. When address information is written into the IR, data is read and
then stored into the DR from DDRAM or CGRAM by an internal operation. Data transfer to the
microprocessor is then completed when the microprocessor reads the DR. After the read, data in
DDRAM or CGRAM at the next address is sent to the DR for the next read from the processor.
By the register selector (RS) signal, these two registers can be selected. In 16F877 perspective,
by controlling the RS line for IR or DR, and sending a DDRAM location for display position and
a data for a character to display that position, we can display a character on a desired position.

In addition to the IR and DR, there is Address Counter (AC). The AC assigns addresses to both
DDRAM and CGRAM. When an address of an instruction is written into the IR, the address
information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also
determined concurrently by the instruction. After writing into (reading from) DDRAM or
CGRAM, the AC is automatically incremented by 1 (decremented by 1). The AC contents are
then output to DB0 to DB6 when RS = 0 and RW=0.

There are two interfacing method to a microprocessor. The HD44780U can send data in either
two 4-bit operations or one 8-bit operation. For 4-bit interface, only four bus lines (DB4 to DB7)
are used for transfer: Bus lines DB0 to DB3 are disabled. The data transfer between the
HD44780U and the microprocessor is completed only after the 4-bit data has been transferred
twice. As for the order of data transfer, the high nibble (DB4 to DB7) are transferred before the
low nibble (DB0 toDB3). The busy flag must be checked (one instruction) after the 4-bit data
has been transferred twice. Two more 4-bit operations then transfer the busy flag and address
counter data. For 8-bit interface, all eight bus lines (DB0 to DB7) are used.

This section will explore the control of a regular LCD module and a serial LCD module. One
caution we all have to use is that not all LCD modules are the same: some with different
characteristics and pin arrangement, etc. Therefore, before you try to connect a LCD to 16F877,
you have to read the data sheet of the module you received or bought. However, once you make
yourself familiar with the one presented in this section, on any module of LCD, you can easily
change the physical connection and code to adapt to the changing characteristics.

LCD example
A regular LCD module we discuss here is one manufactured by Truly which can display 4 rows,
20 characters per row, with character dot matrix size of 5x8. The exact model number is MTC-
C204. So we use 20x4 LCD display with HD44780 controller or equivalent.

The pin arrangement for the LCD module is listed below.

Pin NO. Symbol Level Description
1 VSS 0V Ground
2 VDD 5.0V Supply voltage for logic
3 VO --- Input voltage for LCD
4 RS H/L H : Data, L : Instruction code
5 R/W H/L H : Read mode, L : Write mode

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

91

6 E H, H → L Chip enable signal
7 DB0 H/L Data bit 0
8 DB1 H/L Data bit 1
9 DB2 H/L Data bit 2

10 DB3 H/L Data bit 3
11 DB4 H/L Data bit 4
12 DB5 H/L Data bit 5
13 DB6 H/L Data bit 6
14 DB7 H/L Data bit 7
15 BLA --- For LCD Backlight (Anode)
16 BLK --- For LCD Backlight (Cathode)

A host microprocessor "talks" to the LCD cotnroller/Driver via the data bus and 3 control lines:
Register Select (RS), Read/Write (RW) and Enable (E). This places minimal demands upon the
microprocessor. Only when the host microprocessor writes to or reads from the LCD, is
intercommunication required.

The Control and Display Command codes for communicating to HD44780 LCD
controller/driver are shown below. These codes are good for any LCD module with HD44780 or
equivalent processor as the controller/driver of the module.

Control/
Command

Code
R R B B B B B B B B
S W 7 6 5 4 3 2 1 0

Description Execution
Time with
f=250Khz

Clear Display 0 0 0 0 0 0 0 0 0 1 Clears all display and returns the cursor to the home
position (Address 0)

1.64ms

Return Home 0 0 0 0 0 0 0 0 1 X Returns the cursor to the home position (Address 0).
Also returns the display being shifted to the original
position.

1.64ms

Entry Mode Set 0 0 0 0 0 0 0 1 M S Set cursor move direction (M=1 for increase, M=0
for decrease) and shift of display (S=1 for shifted
and S=0 for not-shifted)

40µs

Display On/Off 0 0 0 0 0 0 1 D C B Sets On/Off of a Display (D=1 for On and D=0 for
Off), Cursor (C=1 for On and C=0 for Off), and
Blinking (B=1 for Blink On and B=0 for Blink Off)

40µs

Shift 0 0 0 0 0 1 S R X X Moves the cursor (S=1 for Shift and S=0 for Cursor
Move) and shifts display (R=1 for Right and R=0 for
Left Shift).

40µs

Set Function 0 0 0 0 1 L N F X X Sets interface data length (L=1 for 8-bit and L=0 for
4-bit), number at display lines (N=1 for 2 line
display and N=0 for 1 line display), and once
character font (F=1 for 5x10 and F=0 for 5x7 dots)

40µs

Set CG RAM
Address

0 0 0 1 <--Acg ---> Set the CG (Character Generator) RAM address (i.e.,
cursor address). CG RAM data is sent and received
after this set.

40µs

Set DD RAM
Address

0 0 1 <----Add----> Set the DD (Display Data) RAM address. DD RAM
data is sent and received after this set.

40µs

Read Busy Flag
& Address

0 1 B <--Acount---> Reads Bust Flag indicating internal operation is
being performed (B=1 for Busy and B=0 for Ready)
and read address counter (Acount) contents used for
both DD and CG RAMs.

1ms

Write Data 1 0 <----DATA-----> Write DATA to DD or CG RAM 40µs
Read Data 1 1 <----DATA-----> Read DATA from DD or CG RAM 40µs

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

92

The LCD Waveform diagram below shows how a data is written to the LCD module. As seen,
even though the data is written to the internal data register, it still cannot be displayed on the
LCD unless a High-to-Low transition input of E(Enable) signal is provided to the module.

Fig. 24 LCD Waveform diagram

This High-to-Low transition input of E(Enable) signal is also needed when an instruction is
written to the instruction register of the LCD controller/Driver. When your interface bit is 4,
then we have to send the data twice, higher nibble then lower nibble. For each nibble write, we
have to have the transitional E signal.

Initialization of LCD module
As mentioned above, HD44780 has an automatic reset circuit when power is on. The following
instructions are executed during the initialization. The busy flag (B) is kept in the busy state until
the initialization ends (B = 1). The busy state lasts for 10 ms after VCC rises to 4.5 V.

1. Display clear
2. Function set: 8-bit interface, 1-line display, 5x8 dot character font
3. Display on/off control: Display off, Cursor off, Blinking off
4. Entry mode set: Increment by 1, No shift (DDRAM is selected)

If the power supply condition does not reset properly, we have to initialize by instruction.
Following is a usual LCD module initialization sequence by instruction.

1. Give power to the LCD module.
2. Wait for 15ms or more so that LCD is warm and ready to respond.
3. Set function for interface data length (i.e., 8 or 4 bits), number of display lines, and

character dot matrix size.
4. Wait for 4.5 ms.
5. Check for Busy Flag.
6. Display Off.
7. Display Clear.
8. Set Entry mode.

Operation Example (8-bit interface with 8-digit 2 line display with internal reset)
We have many I/O ports in 16F877, so for this example, we try 4-bit interface and this requires
total 11 pins. Assume that PORTB is assigned to the 8 data lines <DB7:DB0>. Since we
usually do not read from we connect the RW line to the ground for always-reading status. The

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

93

busy flag checking, thus cannot be done by this configuration. However, giving enough time
delay after writing an instruction or data is does the job. Then, we need two more lines for RS
and E signal. Assume that they occupy two pins of PORTD.

LCDEven though the Truly LCD has four lines for display, internally, it is considered as 2 line
display. It's done all by the DDRAM address selection as shown in the DDRAM address map.
In other words, in 2 line mode, the first line can go from 00h to 40h, but since the LCD module
can display only 20 characters, the first line starts from 00 but ends at 13h, then from 14h to 27h
will be displayed at the third line. Similarly, the DDRAM addresses of 40h – 53h are displayed
at the second line and those of 54-67h are displayed at the fourth line.

The following example shows 8-bit interface (<DB7:DB0>) for 20x4 format with 5x8 dot matrix
size. Note that RW is tied to ground for ever-writing mode. The steps and accompanying code
will eventually display the four lines as shown below.

Step 1: Turn on Power to initialize the LCD. Give enough delay. There is no display.

A 16F877 instruction goes like this:

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

94

 call delay10ms
call delay10ms ;delay for 20ms

However, if you are not sure the power on reset actually work, you may have to follow
the recommended initialization process. See the instructional initialization process.

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix.
 RS=0
 <DB7:DB0>= 0 0 1 1 1 0 X X

16F877 instruction for this is:

 movlw 0x38
movwf PORTB
bcf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms

 The above instruction writing can be made into a subroutine.
 ;subroutine instw (instruction write)

;instruction to be written is stored in W before the call
instw movwf PORTB

bcf PORTD, RS
bsf PORTD, E
bcf PORTD,E
call delay10ms
return

 Then, the above instruction can be rewritten to:
 movlw 0x38

call instw

Step 3. Display control: Display On, Cursor On, with no blinking are selected.
 RS=0
 <DB7:DB0>=0 0 0 0 1 1 1 0

Corresponding 16F877 code goes like:
 movlw 0x0E

call instw

Step 4: Entry mode set: Increment the DDRAM address by one and to shift the cursor to the right
at the time of write to DDRAM. Display is not shofted
 RS=0
 <DB7:DB0>= 0 0 0 0 0 1 1 0

Corresponding 16F877 code goes like:
movlw 0x0E
call instw

Step 5: Write data (i.e., 'P' of 50h in ASCII code) to DDRAM (The initial DDRAM address is set
to 00h by the power on initialization.) So the line#1 position 1 is already selected by the reset.
After this write, the cursor is incremented by 1 and shifted to the right.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

95

 RS=1
 <DB7:DB0>= 0 1 0 1 0 0 0 0

Corresponding 16F877 code goes like:

movlw 0x50
movwf PORTB
bsf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms

 By changing the above code into a subroutine, we have the following code:

 movlw 0x50

call dataw

;subroutine dataw (data write)
dataw movwf PORTB

bsf PORTD, RS
bsf PORTD, E
bcf PORTD, E ;Transitional E signal
call delay10ms
return

So we call instrw when RS=0 and dataw when RS=1.

Step 6: Write data (i.e., 'I' and 'C' next to 'P' in line #1) to DDRAM. Note that the DDRAM
address in automatically incremented by one after each write, therefore, we do not write the
DDRAM address (or position).
 RS=1
 <DB7:DB0>= 0 1 0 0 1 0 0 1 for 'I'
 <DB7:DB0>= 0 1 0 0 0 0 1 1 for 'C'

Corresponding 16F877 code goes like:
movlw 0x50 ;'I'
call dataw
movlw 0x43
call dataw ;'C'

Step 7. Set DDRAM address for the next 3 characters (A, N, and D) in line #2. The DDRAM
address starts from 40h for the line #2.
 RS=0
 <DB7:DB0>= 1 1 0 0 0 0 0 0 for 1000000b

Corresponding 16F877 code goes like:
 movlw 0xC0 ;B'11000000'

call instw ;RS=0

Step 8. Write the three characters, 'A', 'N', and 'D' to DDRAM. They are displayed at the line #2
from position 1.

RS=1
 <DB7:DB0>= 0 1 0 0 0 0 0 1 for 'A'

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

96

 <DB7:DB0>= 0 1 0 0 1 1 1 0 for 'N'
 <DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'

Corresponding 16F877 code goes like:
movlw 0x41 ;'A'
call dataw
movlw 0x4E
call dataw ;'N'
movlw 0x44
call dataw ;'D'

Step 9. Set DDRAM address for the next 3 characters (L, C, and D) in line #3. The DDRAM
address starts from 14h for the line #3.
 RS=0
 <DB7:DB0>= 1 0 0 1 0 0 0 0 for 0010000b

Corresponding 16F877 code goes like:
 movlw 0x94 ;B'10010100'

call instw ;RS=0

Step 10. Write the three characters, 'L', 'C', and 'D' to DDRAM. They are displayed at the line #3
from position 1.

RS=1
 <DB7:DB0>= 0 1 0 0 1 1 0 0 for 'L'
 <DB7:DB0>= 0 1 0 0 0 0 1 1 for 'C'
 <DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'

Corresponding 16F877 code goes like:
movlw 0x4C ;'L'
call dataw
movlw 0x43
call dataw ;'C'
movlw 0x44
call dataw ;'D'

Step 11. Set DDRAM address for the next 7 characters (D, I, S, P, L, A, and Y) in line #4. The
DDRAM address starts from 54h for the line #3.
 RS=0
 <DB7:DB0>= 1 1 0 1 0 1 0 0 for 11010100b

Corresponding 16F877 code goes like:
 movlw 0xD4

call instw ;RS=0

Step 12. Write the seven characters, 'D', 'I', 'S', 'P', 'L', 'A', and 'Y' to DDRAM. They are
displayed at the line #4 from position 1.

RS=1
<DB7:DB0>= 0 1 0 0 0 1 0 0 for 'D'
<DB7:DB0>= 0 1 0 0 1 0 0 1 for 'I'
<DB7:DB0>= 0 1 0 1 0 0 1 1 for 'S'
<DB7:DB0>= 0 1 0 1 0 0 0 0 for 'P'

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

97

<DB7:DB0>= 0 1 0 0 1 1 0 0 for 'L'
<DB7:DB0>= 0 1 0 0 0 0 0 1 for 'A'
<DB7:DB0>= 0 1 0 1 1 0 0 1 for 'Y'

Corresponding 16F877 code goes like:

movlw 0x44 ;'D'
call dataw
movlw 0x49 ;'I'
call dataw
movlw 0x53 ;'S'
call dataw ;
movlw 0x50 ;'P'
call dataw
movlw 0x4C ;'L'
call dataw
movlw 0x41 ;'A'
call dataw
movlw 0x59 ;'Y'
call dataw

Step 13. Now let's move the cursor to the home position (position 1 of line #1) and set the
DDRAM address to 0. This is done by the "return home" instruction.
 RS=0
 <DB7:DB0>= 0 0 0 0 0 0 1 0

Corresponding 16F877 code goes like:
movlw 0x02
call instw ;RS=0

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

98

Instructional initialization Process:

Step 1: When power on reset actually work, you have to follow the recommended
initialization process and have the following codes at the very first line:
 call delay10ms

call delay10ms
movlw 0x30
call instw ;see step 2 below for instw

Step 2: Function set for 8-bit, 2-line display, and 5x8 dot matrix. (Still part of
initialization. And this step for setting is final and cannot be changed after this step.)
 RS=0
 <DB7:DB0>= 0 0 1 1 1 0 X X

 16F877 instruction for this is:
 movlw 0x38

call instw

Step 3. Display off. (Still initialization process)
 RS=0
 <DB7:DB9>= 0 0 0 0 1 0 0 0
 16F877 instruction for this step is:
 movlw 0x08

call instw

Step 4. Display Clear. (Still in the initialization process)
 RS=0
 <DB7:DB0>= 0 0 0 0 0 0 0 1
 16F877 instruction for this step is:
 movlw 0x01

call instw

Step 5. Entry Mode Set (The last step of initialization) for increment and no shift
 RS=0
 <DB7:DB0>= 0 0 0 0 0 1 1 0
 16F877 instruction for this step is:
 movlw 0x06

call instw

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

99

Hardware connection
Let's connect the 20x4 LCD module as shown below. Eight data bus lines are connected to
PORTB, and E and RS are connected to PORTD<5> and PORTD<4>, respectively. RW is
connected to PORTD<6>, but, as indicated above, since our main function is to write either
command or data to LCD module, RW can be tied to the ground to make "write only" mode.

Fig 25. Hardware connection

Code example
Let's have an example code for the 8-bit interface mode control of a 20x4 LCD module. Follow
the code carefully for instructions and comments.

;LCD-P.asm
;
;This program is to display an 20x4 LCD module
;by Truly (HD44780 compatible)
;
;8-bit interfacing
;
;Pin Connection from LCD to 16F877
;LCD (pin#) 16F877 (pin#)

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

100

;DB7 (14) -----RB7(40)
;DB6 (13) ----RB6(39)
;DB5 (12) ----RB5(38)
;DB4 (11) ----RB4(37)
;DB3 (10) ----RB3(36)
;DB2 (9)---- RB2(35)
;DB1 (8) ----RB1(34)
;DB0 (7) ----RB0(33)
;E (6) ------RD5(28)
;RW (5) -----RD6(29)
;RS (4) -----RD4(27)
;Vo (3) -----+5V
;Vdd (2) ----+5V
;Vss (1) -----GND
;
;Example code to display:
; PIC
; AND
; LCD
; DISPLAY
;

list P = 16F877

STATUS EQU 0x03
PORTB EQU 0x06
TRISB EQU 0x86
PORTD EQU 0x08
TRISD EQU 0x88
RS EQU 0x04 ;RD4
E EQU 0x05 ;RD5
RW EQU 0x06 ;RW

;RAM arEA

CBLOCK 0x20
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m

ENDC

;
;The Next 5 lines must be here
;because of bootloader arrangement
;Bootloader first execute the first 4 addresses
;then jump to the address what the execution directs
;===

org 0x0000 ;line 1
goto START ;line 2 ($0000)
org 0x05

START
BANKSEL TRISD

; 1 for input, 0 for output
movlw 0x00
movwf TRISD
movwf TRISB ;RB<7:0> are all outputs

banksel PORTB
clrf PORTB

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

101

clrf PORTD ;Here RW is pulled down to ground
;LCD routine starts

call delay10ms
call delay10ms

;give LCD module to reset automatically
;Fundtion for 8-bit, 2-line display, and 5x8 dot matrix

movlw 0x38
call instw

;Display On, CUrsor On, No blinking
movlw 0x0E ;0F would blink
call instw

;DDRAM address increment by one & cursor shift to right
movlw 0x06
call instw

;DISPLAY CLEAR
movlw 0x01
call instw

;Set DDRAM ADDRES
movlw 0x80 ;00
call instw

;WRITE DATA in the 1st position of line 1
movlw 0x50 ;P
call dataw

movlw 0x49 ;I
call dataw

movlw 0x43 ;C
call dataw

;Set DDRAM address for the 1st position of line 2 (40h)

movlw 0xC0 ;B'11000000'
call instw ;RS=0

;Write A, N, D

movlw 0x41 ;A
call dataw
movlw 0x4E
call dataw ;N
movlw 0x44
call dataw ;D

;Set DDRAM address for the next 3 characters (L, C, and D) in line #3. (14h)
;The DDRAM address starts from 14h for the line #3.

movlw 0x94 ;B'10010000'
call instw ;RS=0

;Write the three characters, 'L', 'C', and 'D' to DDRAM.
;They are displayed at the line #3 from position 1.

movlw 0x4C ;L
call dataw
movlw 0x43
call dataw ;C
movlw 0x44
call dataw ;D

;Set DDRAM address for the next 7 characters (D, I, S, P, L, A, and Y) in line
#4.
;The DDRAM address starts from the line #4. (54h)

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

102

movlw 0xD4
call instw ;RS=0

;Write the seven characters, 'D', 'I', 'S', 'P', 'L', 'A', and 'Y' to DDRAM.
;They are displayed at the line #4 from position 1.

movlw 0x44 ;D
call dataw
movlw 0x49 ;I
call dataw
movlw 0x53 ;S
call dataw ;
movlw 0x50 ;P
call dataw
movlw 0x4C ;L
call dataw
movlw 0x41 ;A
call dataw
movlw 0x59 ;Y
call dataw

;Now let's move the cursor to the home position (position 1 of line #1)
;and set the DDRAM address to 0. This is done by the "return home"
instruction.

movlw 0x02
call instw

IDLE nop
goto IDLE

;====SUBROUTINES =====
;subroutine instw (instruction write)
;instruction to be written is stored in W before the call
instw movwf PORTB

call delay1ms ;delay may not be needed
bcf PORTD, RS
call delay1ms
bsf PORTD, E
call delay1ms
bcf PORTD,E
call delay10ms
return

;subroutine dataw (data write)
dataw movwf PORTB

call delay1ms ;delay may not be needed
bsf PORTD, RS
call delay1ms
bsf PORTD, E
call delay1ms
bcf PORTD, E ;Transitional E signal
call delay10ms
return

;
;==
;DELAY SUBROUTINES

Delay120us
banksel Kount120us
movlw H'C5' ;D'197'
movwf Kount120us

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

103

R120us
decfsz Kount120us
goto R120us
return

;
Delay100us

banksel Kount100us
movlw H'A4'
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
;1ms delay
Delay1ms

banksel Kount1ms
movlw 0x0A ;10
movwf Kount1ms

R1ms call delay100us
decfsz Kount1ms
goto R1ms
return

;
;10ms delay
; call 100 times of 100 us delay (with some time discrepancy)
Delay10ms

banksel Kount10ms
movlw H'64' ;100
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;

;1 sec delay
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw H'64'
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s
goto R1s
return

;
;
;10 s delay
;call 10 tiems of 1 s delay
Delay10s

banksel Kount10s
movlw H'0A' ;10
movwf Kount10s

R10s call Delay1s
decfsz Kount10s
goto R10s
return

;
;1 min delay
;call 60 times of 1 sec delay
Delay1m

banksel Kount1m

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

104

movlw H'3C' ;60
movwf Kount1m

R1m call Delay1s
decfsz Kount1m
goto R1m
return

;==
END

Run your program and see if you have the following display with an underscore cursor under 'P'
of the fist line with lit backlight as shown below.

2. LCD Displaying: 4-bit Interface Example

Even though 16F877 has an ample amount of I/O pins, it's always wise to save a few pins for
future use. Also, if we can achieve with fewer number of I/O pins the same function, there is no
reason not to try the economical method. The 4-bit interface method is different from 8-bit
interface only how we send the 8-bit data over 8 data lines or 4 data lines.
In 4-bit interface, we separate the 8-bit data by nibbles and send each nibble at a time.
Therefore, for coding perspective, the only difference is the change in the subroutines of instw
and dataw. Of course, we have to instruct the LCD module for 4-bit interface instead of 8-bit.

However, there is a slight odd step you have to have before setting the 4-bit interface. The
HD44780 requires, for 4-bit interface only, to send the only the high nibble at the first step, and
to send the high and low nibbles at the second step. In other words, the setting up for 4-bit
interface has, unlike in 8-bit interface, an additional weird step. This is very important. If you
miss this first step, you would some weird behavior from the LCD module such as one reset
would show proper display and another would not.

The first step for function set for 4-bit interface:
RS=0
<DB7:DB4>=0 0 1 0
Then, the above instruction can be rewritten as:

movlw 0x28
call hnibble4

with subroutine hnibble4;
hnibble4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xF0 ; get upper nibble
movwf PORTB ; send data to lcd

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

105

bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of high nibble for 4-bit setup
return

The second step for 4-bit interface now can set for for 4-bit, 2-line display, and 5x8 dot matrix:
 RS=0
 <DB7:DB0>= 0 0 1 0 1 0 X X

Then, the above instruction can be rewritten as (with X=0):
 movlw 0x28

call instw4

However, since we have to separate the byte into two nibbles and send each nibble separately,
we have to change the instw subroutine to instw4 subroutine.

;subroutine instw4 (4-bit interface instruction write)
;instruction to be written is stored in W before the call
instw4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xf0 ; get upper nibble
movwf PORTB ; send data to lcd
bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xf0
movwf PORTB ;Write to LCD
bcf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E ;end of lower nibble
call delay10ms
return

Similarly, the data write subroutine dataw must also be changed to dataw4 to reflect the
change in data transmission.

dataw4

movwf Temp ;Temp storage
movf Temp,0 ;Now W also holds the data
andlw 0xf0 ; get upper nibble
movwf PORTB ; send data to lcd
bsf PORTB, RS
bsf PORTB, E
call delay1ms
bcf PORTB, E
call delay10ms ;end of higher nibble
swapf Temp,0 ;get lower nibble to W
andlw 0xf0
movwf PORTB ;Write to LCD
bsf PORTB, RS
bsf PORTB, E
call delay1ms

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

106

bcf PORTB, E ;end of lower nibble
call delay10ms
return

Additional change you have to bring to the code is to correctly assign the pins of RW, RS, and E
to PORTB. As you see the following 4-bit interface illustration, we use only PORTB for a LCD
module.

Fig. 26 4-bit Interface Illustration

Special Character Display using Character Generator ROM (CGROM)
The character generator ROM generates 5x8 dot or 5x10 dot character patterns from 8-bit
character codes (See the CGROM character codes of HD44780 manual). It can generate 208 5x8
dot character patterns and 32 5x10 dot character patterns. User-defined character patterns are
also available by mask-programmed ROM. So we can display even some weird characters.
Let's add a few lines of instructions, then, to write a line of Alphabet and a line of symbol (or
Greek) equivalent. From the CGROM map, we found that α, ρ, and µ are at E0, E6, and E4,

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

107

respectively. So by the following instruction should display the example display illustrated after
the code.

;display a, r, m at line 1
;alpha, rho, and mu at line 2
;Set DDRAM ADDRESS for line 1

movlw 0x80 ;00
call instw4
movlw 'a'
call dataw4
movlw 'r'
call dataw4
movlw 'm'
call dataw4

;Set DDRAM ADDRES for line 2
;CGROM address for alpha, rho, and mu are E0, E6, and E4, respectively

movlw 0xC0 ;00
call instw4
movlw 0xE0
call dataw4
movlw 0xE6
call dataw4
movlw 0xE4
call dataw4

3. LCD Displaying -Serial LCD

As discussed above, we know that a LCD module with internal controller/driver provides all the
functions such as display RAM, character generator, and liquid crystal driver, required for
driving a dot-matrix liquid crystal display, and either 11 lines or 7 lines of processor are needed
to interface with the controller/driver of the LCD module. However, to many a hobbyist and
students, the control of the controller/driver following the timing diagram suggested in the
manual of the module or the controller/driver seems to be a lot of trouble. Also, the requirement
of many pins causes some burden for certain processors with fewer I/O pins.

Because either of many pins required for connection or of rather a complex control scheme (at
least, by just reading a multi-page control instruction provided by the manufacturer of the LCD
module, or by the lack of such instruction), many sought an easier alternative approach. A
popular solution to this search is a so-called serial LCD module which requires only one pin
(actually three, including +5V and GND connections). A serial LCD module has, in addition to
the LCD controller/driver, a convert chip which coverts serial data into a parallel data and signals
necessary for the controller/driver. The converter is actually a serial-in/parallel-out shift register,
which uses the synchronous serial data pin to load a serial stream of data. Of course, the shift
register and accessory circuit can be replaced by a microcontroller for better and simpler control

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

108

of the LCD module. For example, Scott Edward (Seetron.com)'s Serial Backpack® adopts PIC
16C622. Similarly, Peter Anderson (phasnderson.com)'s cheaper Basic Serial LCD kit employs
a PIC processor, PIC16C554.

Fig. 27 Serial LCD Module

The discussion and example code follows will be centered on the Serial LCD BPP420 by Scott
Edward. For other serial LCD module, closely follow the manual for the module. The BPP 420
package consists of the LCD Backpack and a LCD module by Truly which we thoroughly
examined before. So this may give you a stark contrast of controlling the same module by two
different method. According to the manual of BPP420, by toggling, we can get 2400 or 9600
bps serial communication speed. The change of the selection is effective when power is on. In
other words, we have to select before applying power to the module. The dip switch for speed
selection is at the back side of the Backpack. If you do not touch the dip switch, the selected
speed is 2400 bps. At the back also is a 5-pin header. However, we need only three pins: +5V,
GND, and SER. SER is the single line from 16F877 for instruction/data write to the LCD
module. The serial communication format is with the normal 8N1: 8-bit data, no-parity, with 1
stop bit.

Now let's check how to operate this serial LCD by examining the manual of the module. Here
goes some precaution that must be exercised. The BPP420 used in the example may be
somewhat different from what one gets. The serial convert (Serial Backpack) attached to the
LCD module is so-called "old version" made in later 1990s. The control is a little complex than
the current version. The apparent difference in hardware is that the old version uses 4-bit
interface while the current version uses 8-bit interface. The easiest way to know is to check if
all 8 data pins (pin No. 7 – 14) are all connected to the processor chip of the board of the Serial
Backpack. If all 8 pins are connected to the chip, you are holding a new version. The old
version connects only 4 data pins out of 8 (pin No. 11 – 14). So if you have acquired a new
version, follows what the manual (the manual on BPP420 available from seetron.com is good for
the new version) indicates. It is assured that the control is much easier. For example, there is no
prefix code need to indicate that a following code is an instruction for new version. However, in
old version, you have to send a hex number FE before any instruction code. The good manual
for old version is the manual for the original serial Backpack. Check seetron.com for the
manual. This example follows the manual for the serial Backpack.

Among many control functions provided in the "old version" provided, the following functions
are most relevant for normal use of LCD:

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

109

Function Code (Hex)
Clear LCD 01
Cursor Home (line 1 and position 1) 02
Show Underline Cursor 0E
Show Blinking Block Cursor 0D
Hide Cursor 0C
Move Cursor one character left 10
Move cursor one character right 14
Scroll display one character left (all characters) 18
Scroll display one character right (all characters) 1C
DDRAM Address (Cursor Position) Set Addr
CGROM Address set Addr

The DDRAM map (cursor location) for the old version is shown below.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
First line 80h 11h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h
Second line C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh CFh D0h D1h D2h D3h
Third line 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h A1h A2h A3h A4h A5h A6h A7h
Fourth Line D4h D5h D6h D7h D8h D9h DAh DBh DCh DDh DEh DFh E0h E1h E2h E3h E4h E5h E6h E7h

Therefore, when we want to type 'A' at the column 1 and line 2, the following command must be
called:
1. Write FEh as an instruction prefix
2. Write C0h to mover the cursor (or DDRAM address) the position of line 3 and column 1.
3. Write 'A' for the character

Before we proceed further, let's make our code for 2400 bps serial communication routine. I
hope we remember our discussion and example code in Chapter 5 for software-built serial
communication.

The biggest and troubles some thing about the serial Backpack is using "inverted" serial
communication mode. In other words, usually the TX line in asynchronous mode is high to
indicate the idling state and it goes to low to start a communication. The data "1' is represented
to High bit and "0" to Low bit. But in "inverted" mode, everything has to be inverted: idling
should be Low, and Start bit should go to High to initiate communication. Also, Low for "1" and
High for "0". Therefore, the software built serial communication program we had in Chapter 5
should be changed to reflect the "inverted" mode of the serial Backpack. The reason for this
unusual approach is because its main application is for Basic Stamp, which can choose
"inverted" or "non-inverted" mode, the latter for direct RS-232 connection

From Start bit we send data through a pin (any I/O pin of 16F877) to the SER pin of the serial
LCD module. The pulse width for the bit is 1 Baud cycle. 1 Baud cycle for 2400 bps = 417 µs.
Since we already made out 100 µs and 120 µs delay routines, with minor error, 417 µs can be

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

110

made by calling 100µs delay 3 times followed by calling 120µs delay once. Let's call the
subroutine for 417 µs pulse width bps2400.

Since we have to send LSB first, we have to do the similar rotation, which includes the carry bit.
The idea is to move the LSB of the file register where the data is stored to Carry bit, and check
the status of the bit. If the carry bit is 1, then we send 1 to SER, for 0, then 0 to SER, for 1 BC
seconds. See below for a code section of one bit (LSB first) transmission:

;START BIT
 bsf PORTD, SER ;Start Bit in Inverted Mode

call bps2400 ;430us-long
;Data Bits (8 bit transmission)

movlw 0x08 ;8 --->W
movwf Bitcount ;8 data bits

TXNEXT
bcf STATUS, CARRY
rrf Treg ;LSB first mode (normal)
btfsc STATUS,CARRY
bcf PORTD, SER ;inverted Mode
btfss STATUS,CARRY
bsf PORTD, SER ;Inverted Mode
call bps2400
decfsz Bitcount
goto TXNEXT

;STOP BIT
Stop Bit

bcf PORTD, SER ;Inverted Mode
call bps2400 ;STOP bit

Using the above code we make two subroutines: one for instruction write and the other for data
write. Since the above routine can be directly converted to data write (named as LCDOUT)
because data write does not need a prefix code.

;LCD write subroutine (Note: Inverted Mode) ====================
;The 8-bit data to be sent to LCD module is stored in W
LCDOUT

banksel Tchr
movwf Tchr ;W --->Treg
movlw 0x08 ;8-bit
movwf Bitcount ;8 data bits

;send a START bit
bsf PORTD, SER
call bps2400

TXNEXT
bcf STATUS, CARRY
rrf Tchr ;LSB first mode (normal)
btfsc STATUS,CARRY
bcf PORTD, SER
btfss STATUS,CARRY
bsf PORTD, SER
call bps2400
decfsz Bitcount
goto TXNEXT

;send STOP bit
bcf PORTD, SER
call bps2400
return

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

111

Since instruction write needs a prefix write and a code write, it involves two writes. In the
LCDcom subroutine, the prefix is sent out using the LCDOUT subroutine followed by actual
code (stored in Tcom register) write using the same LCDOUT subroutine.

;LCDCOM subroutine === to send command prefix + command code
LCDcom

movwf Tcom ;command code here
movlw 0xFE ;command prefix
call LCDOUT
movf Tcom, W
call LCDOUT
return

Fig. 28 PIC 16F877-20P connection to BPP420 Serial LCD

Now let's have the following connection which uses PORTD<7> as SER pin for bit transmission.
In the example code, we want to display the same format we displayed with regular LCD
module. Since all the subroutines are already discussed, only the main part is listed and
explained here.

;16LCD-s.asm
;
;Serial LCD control Program
;Seetron's BPP420 LCD module (20x4) (OLD MODE: I guess 4-bit interface)
;Software-built Serial communication used
;
; 2400 bps with 8N1 format
; 1 Baud Cycle is then 417 us --->420 us pulse width
;
;F = 20 MHz
;
;SER pin = RD7

list P = 16F877

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

112

STATUS EQU 0x03
CARRY EQU 0x00
TRISD EQU 0x88
PORTD EQU 0x08
SER EQU 0x07 ;RDr for SER out
MSB EQU 0x07
;
;

CBLOCK 0x20
Kount120us ;Delay count (number of instr cycles for delay)
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m
BitCount
Tchr ;temp storage
Tcom

ENDC
;

;program should start from 0005h
;0004h is allocated to interrupt handler

org 0x0000
goto START

org 0x05
START

banksel TRISD
; Port setting (1 for input and 0 for output)
; 0000 0000

movlw 0x00
movwf TRISD ;all outputs

banksel PORTD
clrf PORTD
bcf PORTD, SER ;(no signal) Inverted Mode

banksel Tchr
clrf Tchr
clrf Tcom

;LCD display started here
call delay1s ;warm-up

movlw 0x01 ;Clear LCD
call LCDcom ;Usually no time delay required for 2400bps

;when in 9600 apply 1ms time delay after each
;write

movlw 0x0E ;Show Underline Cursor
call LCDcom

;Position cursor to Line 1 Column 1 ($80)

movlw 0x80
call LCDcom
movlw 'P'
call LCDOUT
movlw 'I'
call LCDOUT

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

113

movlw 'C'
call LCDOUT

;Change the DDRAM address for line 2 and Column 1 ($C0)

movlw 0xC0 ;DDRAM ADDRESS SET
call LCDcom
movlw 'A'
call LCDOUT ;A
movlw 'N'
call LCDOUT ;N
movlw 'D'
call LCDOUT ;D

;Change the DDRAM address (cursor position) to line 3 and column 1 ($94)
movlw 0x94
call LCDcom
movlw 'L'
call LCDOUT
movlw 'C'
call LCDOUT
movlw 'D'
call LCDOUT

;Change the DDRAM address (cursor position) to line 4 and column 1 ($D4)
movlw 0xD4
call LCDcom
movlw 'D'
call LCDOUT
movlw 'I'
call LCDOUT
movlw 'S'
call LCDOUT
movlw 'P'
call LCDOUT
movlw 'L'
call LCDOUT
movlw 'A'
call LCDOUT
movlw 'Y'
call LCDOUT

Also, we can display special characters stored in the CGROM. Since the LCD module is the
same, the location of Greek characters α, ρ, and µ are the same: E0, E6, and E4, respectively.
Then, the following code with display the same display format as we did with the regular LCD
module: arm at the first line and αρµ at the second line.

;Clear
movlw 0x01
call LCDcom

;Hide cursor
movlw 0x0C
call LCDcom

;Line 1 column 1
movlw 0x80
call LCDcom

;Write arm in English
movlw 'a'
call LCDOUT
movlw 'r'
call LCDOUT
movlw 'm'
call LCDOUT

;move to line 2 column1

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

114

movlw 0xC0
call LCDcom

;get the special character
;alpha (E0), rho (E6), mu (E4)
;CGROM access

movlw 0xE0
call LCDOUT
movlw 0xE6
call LCDOUT
movlw 0xE4
call LCDOUT

Now we examined LCD modules and serial LCD modules, and programmed example codes.
Now it is up to you whether you go with the regular LCD module and a series LCD module
depending upon your budget (the serial one costs much more) or your I/O pin availability. For
programming perspective, there is not much difference between two modules.

4. Decoding IR Remote Controller

IR may be the cheapest way to remotely control a device within a visible range. Almost all
audio and video equipment are controlled this way nowadays. Due to this wide spread use, the
required components are quite cheap.

Let's extend our interest of serial communication, especially software enabled one, to decode TV
or VCR Infrared (IR) remote controller. We cannot directly use the code in Chapter 5 since
remote controllers use different protocols. However, the protocols are all based on serial
communication, the principle of the operation is the same. In the application, we will read the IR
information, sent by a remote controller, using a IR receiver module (that means it is not just an
IR detector but a receiver with 40KHz demodulation circuit inside the module. Details on this
follows.)

Modulation is a way to make signal stand out above noise. With modulation , IR light source
blinks in a particular frequency, say 40KHz. The IR receiver should be tuned to that frequency,
so it can ignore everything else.

Infrared remote controls are using a 32-40 kHz modulated square wave for communication.
These circuits are used to transmit a 1-4 kHz digital signal through infra light (also, this is the
maximum attainable speed, 1000-4000 bits per sec). The transmitter oscillator which is driving
the infrared transmitter LED can be turned on/off by applying a logic level voltage. For us, the
remote controller is the transmitter. Therefore our attention is toward more on the IR receiver.

On the receiver side a photodiode takes up the signal. The integrated circuit inside the chip is
sensitive only around a specific frequency in the 32-40 kHz range. The output is the demodulated
digital input. All these element in a case form an IR receiver module. The output of the module
is High when there is no IR signal, Low when there is IR signal.

As illustrated below, there are several IR receiver modules available in very cheap price.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

115

Fig. 29(a) Sharp GP1U581Y IR Receiver Module Fig.29(b) Radio Shack's IR receiver.

Sharp GP1U581Y IR receiver module is the most popular IR receiver. It is designed for use with
38khz modulated IR sources. It incorporates an amplifier, limiter, band pass filter, demodulator,
integrator and comparator. Radio shack's IR receiver (Catalog #: 276-640) is also good for
experimental projects and building remote control. It works with voltage in 2.4 – 5.5V. It's
elliptical lens helps to block light noise from above and below the center frequency of 38kHz.

To detect IR signal from a remote controller is to know how different remote controllers send
information. And this is the subject of IR protocol. Basically there are three types of IR
protocols: pulse coded protocol, space coded protocol, and shift coded protocol.

Pulse coded protocol is to use the varying length of a pulse to represent either 0 or 1. Sony
protocol is one of the pulse coded protocols. Space coded protocol uses the length of a space
between pulses to represent either 0 or 1. Sharp TV/VCR remote control uses this space coded
protocol. In shit coded protocol, the direction of transitions represent either 0 or 1, and the all
the bits have a constant time period. Philips remote controller uses this shift coded protocol.

We will consider here only for Sony and Sharp protocols.

Sony Protocol
Sony protocol is consistent of pulse coded 12-bit information with carrier frequency of 40 KHz.
The code starts from a 2.4ms start bit. Out of 12-bit information, 5 bits are assigned for address
to indicate different device such as TV, VCR, or DVD and the other 7 bits are assigned for
command to indicate the buttons on the remote controller. The pulse widths (or space) are 1.2
ms for "1" and 0.6 ms for "0". Commands are repeatedly transmitted from the remote controller
every 45 ms as long as a key is held down. As in normal serial communication, LSB is sent first
and the MSB last for both address and command.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

116

The table below lists some messages sent by Sony remote controls in the 12-bit protocol.

ADDRESS COMMAND
1 TV 6 Key "7"
2 VCR1 7 Key "8"
3 VCR 8 Key "9"
6 LDP 9 Key "0"

COMMAND 16(10h) Channel +
0 Key "1" 17(11h) Channel -
1 Key "2" 18(12h) Volume +
2 Key "3" 19(13h) Volume -
3 Key "4" 20(14h) Mute
4 Key "5" 21(15h) Power
5 Key "6" 22(16h) Reset

Sharp Protocol
Sharp protocol for Sharp VCR uses 13-bit protocol with carrier frequency of 38KHz. There are
two trailing additional bits for expansion and check. These two bits are not used in decoding.
The first 5 bits are for address and the second 8 bits are for command. The "1'' and "0"
representation is done by the length of a distance between two pulses, the pulse distance: pulse
distance of 0.68 ms is for "0" and distance of 1.68ms for "1". The pulses which separate the
distances are 0.32 ms long. One key press sends the code twice separated by 40 ms time delay.

The table below lists some messages sent by Sharp VCR remote controller.

ADDRESS COMMAND
3 VCR 7 Key "7"
 8 Key "8"
 9 Key "9"
 10(0Ah) Key "0"

COMMAND 17(11h) Channel +
1 Key "1" 18(12h) Channel -
2 Key "2" 34(22h) Play
3 Key "3" 39(27h) Stop
4 Key "4" 33(21h) Fast Forward
5 Key "5" 35(23h) Rewind
6 Key "6" 40(28h) Recording

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

117

Hardware Implementation
Let's connect a Sharp IR receiver module (this works both for Sony and Sharp) at the RB7 port
(Pin #40) of 16F877. The pin arrangement is common to most IR receiver modules: Ground and
Signal Out pins are separated by the Vcc pin. You provide +5V source to the Vcc pin to activate
the module. The Ground pin can be found easily since the Ground pin is internally connected to
the metal case. So a pin connected to the metal part of the case is the Ground pin. The output,
in hexadecimal number, will be displayed on a monitor and will be compared with the
command/address list tables for Sony and Sharp.

Fig. 30 PIC 16F877/20-P connection to Sharp IR receiver module

Programming for Sony Remote Controller
As the Sony protocol and the code, we see that a digit of "1" is represented by a 1200µs space
and "0" by 600µs space. Also, we should remember that the code starts with a Start space for a
length of 2400µs. Therefore, we have to follow a sequence of reading the RB7 pin (the output
of the IR receiver module). The detection of the Start big goes like the following sequence:
 1. Check the RB7 pin.
 2. If the RB7 is High. Go to 1. IF RB7 is Low, proceed.
 3. Wait until RB7 goes back to high.
 4. IR reading begins from here.

Once the Start bit is detected, as listed above, we wait for the first pulse of 600 µs. If pulse goes
to Low, we have to measure the space until the next pulse. How do we measure the space in
time? The approach we choose here is to use and extend the time delay (using only instructions
not timer module of 16F877) we studied before. In other words, how many time delays of 120µs

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

118

are in the space will determine the space length. We do not need exact length of time. What we
need is just a comparison figure. The figure for comparison is, say, Pcount which is the number
of 120µs time span in a space. For "0" (600 µs), Pcount must be less than 7, and for "1" (1200
µs), it must be bigger than 8. Since the number 7 is lower than 8, we could finally have the
following comparison of Pcount for "1" and "0" determination: A space with Pcount less than 8
is "0" and a space with Pcount of 8 or more is "1".

The actual reason of choosing the number 8 comes from the easiness of the comparison. We
know that the maximum possible Pcount is 1200÷120=10 (0A). Therefore, for "1" the bit-3 (B3)
of the Pcount must be 1. For "0" , since the count is less than 8, the B3 of Pcount would be 0.
In other words, by checking the third bit of the Pcount, we can easily determine its
representation, as illustrated in the code below.

btfsc Pcount,0x03
bsf COMreg, MSB ;assuming that the MSB

;is already cleared above.
;if B3=1, it is "1"

bcf STATUS, CARRY ;other wise, keep the previous value
rrf COMreg ;Rotate right with value 0

The delay building block for IR decoding program is the 120 µs time delay. As we discussed
before, since 1 instruction cycle in 20MHz clock takes 0.2 µs, for 120 µs, there must be 600
instruction cycles. Therefore, from 600 =197*3 +9, the repetition count for 120 µs,
Kount120us, is selected as 197(C5h). The subroutine goes like this:

;subroutine delay120us
Delay120us

banksel Kount120us
movlw 0XC5 ;197d
movwf Kount120us

R120us decfsz Kount120us
goto R120us
return

;end of subroutine

As we did before, 100µs delay can be calculated, as we need 500 instruction cycles, from
500 =164*3 +8. So the repetition count, Kount100us, is selected as 164(A4h). The
subroutine goes like below:

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

119

Delay100us
banksel Kount100us
movlw 0xA4 ;164d
movwf Kount100us

R100us decfsz Kount100us
goto R100us
return

Similarly, but very conveniently, other time delays can be made from the building block. For
example, a 10ms delay can be generated by calling the 100µs delay subroutine for 100 times.
Here goes the subroutine for 10ms delay.

;10ms delay subroutine
; call 100 times of 100 us delay
Delay10ms

banksel Kount10ms
movlw 0x64 ;100d
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

So this is a pseudo-code for Sony remote controller decoding program:

1. Begin
2. If RB7 is LOW (this means an IR transmission is already undergoing), give enough

delay time, say 200ms, not to read on-going data stream or the second command/address
stream.

3. When RB7 is back to High, wait for Start bit.
4. After Start bit detection, wait for a pulse to arrive.
5. After each pulse, count number of 120 µs delays at a space.
6. Determine the bit value (0 or 1) and rotate to the right a bit. (Remember that the LSB

arrives first)
7. Repeat 5-6 for seven times for 7-bit Command. Rotate to the right one last time for an 8-

bit result.
8. Repeat 5-6 five times for 5-bit Address. Rotate to the right 3 times for an 8-bit result.

Now, let's have an example code. Read each line of instruction and comments to follow the
logic of IR decoding. In addition to the decoding, the decoded contents in two hex numbers (one
for Address and the other for Command) in two digits are displayed on a monitor.

;4IR-sony.asm
;
;This program is to:
;1. Read IR data from a SONY IR Receiver module
; sent from a Sony VCR remote controller (12 bit protocol)
;2. Display the data in ASCII format on a PC screen
;
;
; Sony IR remote protocol (12-bit version):
;0. When no button is pressed, the output from the IR receiver
; is kept HIGH
;1. Pulse Width Encoding Method
;2. When button is pressed, a 2400 uS LOW starts the serial communication
;3. 1/0 code is separated by 600 uS long HIGH pulse separator

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

120

; "1": 1200 uS long LOW followed by a pulse separator
; "0": 600 uS long LOW followed by a pulse separator
;4. Encoding Order
; 7-bit command followed by 5-bit Address
;5. The end is marked by HIGH
;6. LSB first mode
;
;IR-RX pin(IRX) is connected to RB7 port
;
;
;IR-RECEPTION AND DECODING
;Here's the way to read and decode the IR
;1. Detect the IRX for LOW
;2. Wait until IRX goes to HIGH
;3. Wait for 120uS
;4. Check IRX (Add IRCounter if IRX=HIGH)
; IF IRX=LOW goto 2.

; if IRCOUNT <8 : "0"
; if IRCOUNT >8 : "1"
;
; Repeat 7 times for Command --->COMreg is the result register
; Repeat 5 times for ADDRESS --->ADDRreg is the result register
;
;Terminal set up: 8N1 19200
;

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00
ZERO EQU 0x02
TRISB EQU 0x86
PORTB EQU 0x06
TXSTA EQU 0x98 ;TX status and control
RCSTA EQU 0x18 ;RX status and control
SPBRG EQU 0x99 ;Baud Rate assignment
TXREG EQU 0x19 ;USART TX Register
RCREG EQU 0x1A ;USART RX Register
PIR1 EQU 0x0C ;USART RX/TX buffer status (empty or full)
RCIF EQU 0x05 ;PIR1<5>: RX Buffer 1-Full 0-Empty
TXIF EQU 0x04 ;PIR1<4>: TX Buffer 1-empty 0-full
TXMODE EQU 0x20 ;TXSTA=00100000 : 8-bit, Async mode
RXMODE EQU 0x90 ;RCSTA=10010000 : 8-bit, enable port, enable RX
BAUD EQU 0x0F ;19200 bps
MSB EQU 0x07
IRX EQU 0x07 ;RB7 for IR receiver
;

;RAM Area for file registes

CBLOCK 0x20

Kount120us ;Delay count for 120us delay
Kount100us
Kount1ms
Kount10ms
Kount1s
Kount10s
Kount1m
first
second
third
Bitcount ;data bit count

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

121

Kount ;
ADDRreg ;IR ADDRESS register
COMreg ;IR Command register
Pcount ;HIGH duration count
Adcount ;count for ADDRESS
Cmcount ;count for COMMAND
Tcount
ADDRtemp ;for ASCII conversion of ADDRESS
COMtemp ;for ASCII conversion of COMMAND
ADDR1 ;First hex digit for ADDRESS reg
ADDR2 ;Second hex digit
COM1 ;First hex digit for COMMAND reg
COM2 ;Second hex digit
ASCIIreg ;Temporary register for H-to-A conversion

ENDC

;bootloader accommodation
org 0x0000 ;line 1
goto START ;line 2 ($0000)

;
org 0x05

START
banksel TRISB
movlw 0x80 ; 1000 0000 (RB7 [IRX] as input)
movwf TRISB

BEGIN
banksel ADDRreg ;clear all file registers
clrf ADDRreg
clrf COMreg
clrf Pcount ;pulse count for space measurement

; CHECK IF THE IRX is HIGH at least for 200 mS
; to make sure it does not read on-going or the second stream
; For 200 mS delay, call 10ms delay for 20 times.

banksel PORTB
btfss PORTB, IRX
goto BEGIN ;if IRX is LOW, go to start again

;to wait until the current on-going
;data stream is over

banksel first ;if IRX is high, then give enough
;delay to read fresh start IR stream

movlw 0x14
movwf first

redo call Delay10ms

btfss PORTB, IRX ;for continuous 200 ms
goto BEGIN
decfsz first
goto redo

;NOW ready to fresh read IR data

jam
banksel PORTB
btfsc PORTB, IRX ;Wait for START bit
goto jam

banksel CMcount ;now start bit is detected
movlw 0x07
movwf CMcount ;command has 7 bits

WAIT btfss PORTB, IRX ;wait until the Start bit goes to High
goto WAIT

CMNEXT
clrf Pcount ;now, we are in the first pulse
bcf STATUS, CARRY ;Clear the Carry Bit

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

122

rrf COMreg ;COMMAND<7>=0

wait2 btfsc PORTB, IRX ;Wait for the pulse to go to LOW
;(the space)

goto wait2
DST call Delay120us ;We are in space (IRX is LOW NOW)

;Delay 120 uS to measure the space length

wait3 btfsc PORTB, IRX
goto onezero ;until the end of space
incf Pcount ;if IRX still HIGH, increase the count
goto DST ;repeat

;Here we counted the number of 120us time delays in the space.
;Let's determine the bit value of the space
;"1" or "0" determination
;
onezero

btfsc Pcount,0x03 ;B3=1 or 0 (bigger than 7?)
bsf COMreg, MSB ;B3=1, then COMreg<7>=1
decfsz CMcount ;B3=0, then COMreg<7>=0 the old value
goto CMNEXT ;Have we done 7 times? If not, do again

bcf STATUS, CARRY ;Yes we read 7 spaces
rrf COMreg ;Fill the 7th bit with 0 to make a byte.

;THE END OF 7-BIT COMMAND READING

;ADDRESS READING Begins here
movlw 0x05
movwf Adcount ;ADDRESS has 5 bits

ADNEXT
clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf ADDRreg ;rotate to the right

cwait2
btfsc PORTB, IRX ;Does the pulse go to LOW to space?
goto cwait2

cDST call Delay120us ;In space. Delay 120 uS

cwait3
btfsc PORTB, IRX
goto conezero ;End of space, then "1" or "0" check
incf Pcount ;If IRX still LOW, increase Pcount
goto cDST ;repeat

;"1" or "0" check
;
conezero

btfsc Pcount,0x03 ;B3=1 or 0?
bsf ADDRreg, MSB ;If B3=1, ADDRref<7>=1
decfsz Adcount ;If B3=0, keep the old value

;Have we read 5 times?
goto ADNEXT ;No. Then, do more.

;
ewait4

btfss PORTB, IRX ;Is it now end of the data stream?
;with IRX High?

goto ewait4
;THE END OF ADDRESS READING

bcf STATUS, CARRY ;We have to fill the 3 MSBs with 0
rrf ADDRreg ;to make a byte information
rrf ADDRreg
rrf ADDRreg

;THE END OF ADDRESS READING

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

123

;ADDRreg holds the ADDRESS Info
;COMreg holds the COMMAND Info
;
;ASCII Converion of ADDRreg and COMreg
;

movf ADDRreg,0
movwf ADDRtemp
swapf ADDRtemp,0 ;SWAP upper and lower nibbles --->W

andlw 0x0F ;Mask off upper nibble

;; === hex to ascii conversion subroutine
;move the content to W before call this routine
;final result will be stored back to W

call HTOA
movwf ADDR1 ;First Hex Digit of ADDRESS

movf ADDRreg,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf ADDR2 ;Second Hex Digit of ADDRESS

movf COMreg,0
movwf COMtemp
swapf COMtemp,0 ;SWAP upper and lower nibbles --->W

andlw 0x0F ;Mask off upper nibble

call HTOA
movwf COM1 ;First Hex Digit of COMMAND

movf COMreg,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf COM2 ;Second Hex Digit of COMMAND

;
call ASYNC_mode ;Enable the Serial Communication

;TX ROUTINE FOR ADDR INFO

movf ADDR1,0
call Txcall ;First Hex Digit of ADDRESS display
movf ADDR2,0 ;Followed by 2nd digit
call TXcall
movf COM1,0
call TXcall ;Followed by the first digit of COMMAND
movf com2,0
call Txcall ;followed by the 2nd

;add one line as a delimiter
call CRLF ;ends with Carriage Return and Line Feed

;which moves the cursor to the first
;column of the next line.

goto BEGIN ;REPEAT

;===SUBROUTINES ====
;==
;RX TX Initialization with Async Mode
;Async_mode Subroutine
Async_mode

banksel SPBRG
movlw baud ;B'00001111' (19200)

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

124

movwf SPBRG
banksel TXSTA
movlw TXMODE ;B'00100000' Async Mode
movwf TXSTA
banksel RCSTA
movlw RXMODE ;B'10010000' Enable Port
movwf RCSTA
return

;==
TXCALL

banksel PIR1
btfss PIR1, TXIF ; Check if TX buffer is empty
goto TXCALL
banksel TXREG
movwf TXREG ; Place the character to TX buffer
return

;===
CRLF

banksel PIR1
btfss PIR1, TXIF
goto CRLF
banksel TXREG
movlw 0x0D ;ASCII code for CR
movwf TXREG

LFkey
banksel PIR1
btfss PIR1, TXIF
goto LFkey
banksel TXREG
movlw 0x0A ;ASCII code for LF
movwf TXREG
return

;==
;DELAY SUBROUTINES
Delay120us

banksel Kount120us
movlw 0xC5 ;D197d
movwf Kount120us

R120us
decfsz Kount120us
goto R120us
return

;
Delay100us

banksel Kount100us
movlw 0xA4
movwf Kount100us

R100us
decfsz Kount100us
goto R100us
return

;
Delay10ms

banksel Kount10ms
movlw 0x64 ;100d
movwf Kount10ms

R10ms call delay100us
decfsz Kount10ms
goto R10ms
return

;
;; === hex to ascii conversion subroutine
;move the content to W before call this routine

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

125

;final result will be stored back to W
HTOA

movwf ASCIIreg
;check 0-9 or A-F

btfsc ASCIIreg, 0x03
goto RECHK

THIRTY
movlw 0x30
addwf ASCIIreg
movf ASCIIreg,0
return

RECHK andlw 0x06
btfsc STATUS,ZERO
goto THIRTY
movlw 0x37
addwf ASCIIreg
movf ASCIIreg,0
return

;
;END OF CODE

END

If you run the above code, you would have the hex numbers displayed on your monitor as
illustrated below, when you sequentially press keys of "1", "3", and "Channel +" of your Sony
TV remote controller.

Programming for Sharp Remote Controller
The programming for a Sharp remote controller is not different from that for a Sony remote
controller. In 13-bit Sharp protocol, however, the separator is a space of Low, and the "1" or "0"
representation is determined by the length of a pulse of High. The separating space is 320 µs
long and pulse length for "1" is 1680 µs, for "0" 680 µs. There is no lengthy Start bit in Sharp
protocol and Address comes before Command. The Start bit is just a space of Low.

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

126

The 120us time delay we used for Sony protocol is used for Sharp protocol to measure the length
of a pulse for "1" or "0" determination. Also, the Pcount with "1" or "0" determination utilizing
the 3rd bit applies here without change.

Now, let's have an example code for Sharp protocol. Read each line of instruction and
comments to follow the logic of IR decoding in Sharp remote controller. As before, the decoded
contents in two hex numbers (one for Address and the other for Command) in two digits are
displayed on a monitor. Since the declaration part and the subroutine part are the same as that of
Sony protocol code, here shows only the main part.

;for Sharp VCR Remote Controller
;Here's the way to read and decode the IR
;1. Detect the IRX for LOW
;2. Wait until IRX goes to HIGH
;3. Wait for 120uS
;4. Check IRX (Add IRCounter if IRX=HIGH)
; IF IRX=LOW goto 2.

; if IRCOUNT <8 : "0"
; if IRCOUNT >10 : "1"
;
; Repeat 5 times for Address --->ADDRreg
; Repeat 8 times for Command --->COMreg
; Repeat 2 times for EXP and CHK ---> Do not store. Ignore them.
;
;===

org 0x0000 ;line 1
goto START ;line 2 ($0000)

;==
org 0x05

START

banksel TRISB
movlw 0x80
movwf TRISB ;RB7 - IRX Pin (IN)

BEGIN
banksel TXREG
clrf TXREG
banksel ADDRreg
clrf ADDRreg
clrf COMreg
clrf Pcount

banksel PORTB
btfss PORTB, IRX
goto BEGIN ;if IRX is LOW, start again

;call delay10ms 20 times
banksel first
movlw 0x14 ;20
movwf first

redo call Delay10ms ;200mS delays
;check again for IRX

btfss PORTB, IRX
goto BEGIN
decfsz first
goto redo

;NOW ready to fresh read IR data
;

movlw 0x05

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

127

movwf ADcount
; Check for START bit
ADNEXT

clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf ADDRreg ;rotate to the right

WAIT btfsc PORTB, IRX ;IRX=LOW?
goto WAIT ;NO

wait2 btfss PORTB, IRX ;YES. Then check it AGain
goto wait2

DST call Delay120us ; Delay 120 uS
;count (or measure) the HIGH duration
wait3 btfss PORTB, IRX

goto onezero
incf Pcount
goto DST

;
;"1" or "0" check
;
onezero

btfsc Pcount,0x03
bsf ADDRreg, MSB
decfsz ADcount
goto ADNEXT

bcf STATUS, CARRY
rrf ADDRreg
rrf ADDRreg
rrf ADDRreg

;Now COMMAND READING
movlw 0x08
movwf CMcount

; Check for START bit
CMNEXT

clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf COMREG ;rotate to the right

cwait2
btfss PORTB, IRX ;YES. Then check it AGain
goto cwait2

cDST call Delay120us
;count (or measure) the HIGH duration
cwait3

btfss PORTB, IRX
goto conezero
incf Pcount
goto cDST

;"1" or "0" check
;
conezero

btfsc Pcount,0x03
bsf COMreg, MSB
decfsz CMcount
goto CMNEXT

;read next two more data for EXP and CHK

ewait2
btfss PORTB, IRX ;YES. Then check it AGain
goto ewait2

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

128

ewait3
btfsc PORTB, IRX
goto ewait3

ewait4
btfss PORTB, IRX
goto ewait4

;
;
;now send the IR info

;ASCII Converion of ADDRreg and COMreg
;

movf ADDRreg,0
movwf ADDRtemp
swapf ADDRtemp,0 ;SWAP upper and lower nibbles --->W

andlw 0x0F ;Mask off upper nibble

;; === hex to ascii conversion subroutine
;move the content to W before call this routine
;final result will be stored back to W

call HTOA
movwf ADDR1

movf ADDRreg,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf ADDR2

movf COMreg,0
movwf COMtemp
swapf COMtemp,0 ;SWAP upper and lower nibbles --->W

andlw 0x0F ;Mask off upper nibble

call HTOA
movwf COM1

movf COMreg,0
andlw 0x0F ;mask of upper nibble
call HTOA
movwf COM2

;rx TX SET UP
call ASYNC_mode

;TX ROUTINE FOR ADDR INFO

movf ADDR1,0
call TXcall
movf ADDR2,0
call TXcall
movf COM1,0
call TXcall
movf com2,0
call TXcall

;add one line as a delimiter

call CRLF
goto BEGIN

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

129

If you run the above code, you would have the hex numbers displayed on your monitor as
illustrated below, when you sequentially press keys of "Power", "Play", and "Stop" of your
Sharp VCR remote controller.

6. Remote Control of LED On/Off by Sony Remote Controller

Since we learned how to read an IR remote controller, we can now apply it to remotely control a
device. A simple way to do is to turn on and off an LED by the IR remote controller. For this
remote LED control, we connect an LED through a register. The value of resistor can be any
value like 1KΩ or 2KΩ. If you prefer brighter light, reduce the resistance to 470Ω or 330Ω or
even 100Ω. As shown below the LED is connected to the RD1 port. High output from RD1 pin
turns on the LED, and Low turns off the LED. The remote control action we install is to change
the length of LED-on period depending upon the numeric key of a Sony TV remote controller.
In other words, if you press key "1", it would turn the LED on for 1 second. Key "9" would turn
the LED for 9 seconds. All other keys are ignored and the LED would be kept off.

Fig. 31 Remote Control of LED

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

130

Since we already have the Sony IR program, the only thing we have to add is to decode the IR
remote controller. Since the Address part is not important in this case, all our attention is to
decode the content of the file register COMreg. Let's assume that COMreg now holds byte-long
information of the current IR signal received. From the table for the list of messages sent by
Sony remote controls in 12-bit protocol, we know that a key "4" would give 03h or 00000011b to
COMreg.

Content of COMreg Key Pressed
 Hex Binary
"0" 09 0 0 0 0 1 0 0 1
"1" 00 0 0 0 0 0 0 0 0
"2" 01 0 0 0 0 0 0 0 1
"3" 02 0 0 0 0 0 0 1 0
"4" 03 0 0 0 0 0 0 1 1
"5" 04 0 0 0 0 0 1 0 0
"6" 05 0 0 0 0 0 1 0 1
"7" 06 0 0 0 0 0 1 1 0
"8" 07 0 0 0 0 0 1 1 1
"9" 08 0 0 0 0 1 0 0 0

Now the question is how do we find the content of COMreg. An easy way is to use, as
explained in Chapter 3, andlw instruction. For example, what would be the result of an AND
operation?

movf COMReg,0
andlw B'11111111'

The result would be zero only for COMreg=00000000b. If any bit of COMreg is not zero, the
result would not be zero. In other words, if the above operation results in zero result, the content
of COMreg must be 00000000b, i.e., the key "1" from the remote controller. Then, if the above
operation is not zeroed, then we can easily see that, if the below operation results in zero, the key
"5" must be pressed.

movf COMReg,0
andlw B'11111011'

So the content check goes on until the last key is checked.

Next consideration is to make a 1-second time delay subroutine. Since we already have 10ms
time delay from the previous example code, we make 1 s time delay by calling 10ms delay for
100 times.

;1 sec delay subroutine
;call 100 times of 10ms delay
Delay1s

banksel Kount1s
movlw 0x64 ;100d
movwf Kount1s

R1s call Delay10ms
decfsz Kount1s

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

131

goto R1s
return

Also, to simplify the code, it would be better convert the whole IR reading part into a subroutine.
So we converted the previous Sony protocol reading part to SonyIr subroutine.

;==SONY IR Subroutine =====
SONYIR

banksel ADDRreg
clrf ADDRreg
clrf COMreg
clrf Pcount
banksel PORTB
btfss PORTB, IRX
goto SONYIR ;if IRX is LOW, start again

;call delay10ms 20 times
banksel first
movlw 0x14 ;20
movwf first

redo call Delay10ms ;200mS delays
;check again for IRX

btfss PORTB, IRX
goto SONYIR
decfsz first
goto redo

;NOW ready to fresh read IR data
;
;Wait for START bit

jam
banksel PORTB
btfsc PORTB, IRX
goto jam

;now start bit is entered
banksel CMcount
movlw 0x07
movwf CMcount ;command has 7 bits

;wait for a separator
WAIT btfss PORTB, IRX ;

goto WAIT ;
CMNEXT

clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf COMreg ;rotate to the right

;HIGH seperator IN
;then wait for LOW to decode 1 or 0
wait2 btfsc PORTC, IRX ;YES. Then check it AGain

goto wait2
DST call Delay120us ;IRX is LOW NOW. Delay 120 uS
;count (or measure) the LOW duration
;wait for separator
wait3 btfsc PORTC, IRX

goto onezero
incf Pcount ;if IRX still HIGH
goto DST

;
;"1" or "0" check
;
onezero

btfsc Pcount,0x03
bsf COMreg, MSB
decfsz CMcount

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

132

goto CMNEXT
bcf STATUS, CARRY
rrf COMreg

;Now ADDRESS READING
;NOTE that if you are not interested in the ADDRESS part
;Simple eliminate the line below, except the return instruction
;at the bottom

movlw 0x05
movwf ADcount

; Check for START bit
ADNEXT

clrf Pcount
bcf STATUS, CARRY ;Clear the Carry Bit
rrf ADDRreg ;rotate to the right

cwait2
btfsc PORTB, IRX ;YES. Then check it AGain
goto cwait2

cDST call Delay120us ;IRX is HIGH NOW. Delay 120 uS
;count (or measure) the HIGH duration
cwait3

btfsc PORTB, IRX
goto conezero
incf Pcount ;if IRX still HIGH
goto cDST

;"1" or "0" check
;
conezero

btfsc Pcount,0x03
bsf ADDRreg, MSB
decfsz ADcount
goto ADNEXT

; end of stream
ewait4

btfss PORTD, IRX
goto ewait4

bcf STATUS, CARRY
rrf ADDRreg
rrf ADDRreg
rrf ADDRreg
return ;COMreg holds the Command Information

Since we already discussed about subroutines of 1 second time delay and Sony IR reading, the
following code lists only main program part. For a complete code, insert all the subroutines just
above END instruction line at the bottom.

;5IR-LED.asm
;
;This program is to:
;1. Read IR command from SONY Remote Controller
;2. Turn ON the LED for a given amount of seconds by
; the number pressed by the button:
; '1': 1 sec
; '2': 2 sec etc
;
;
; LED is connected to RD1
;

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

133

;IR-RX pin(IRX) is dedicated to RB7 port
;
;
;

list P = 16F877

STATUS EQU 0x03
CARRY EQU 0x00 ;STATUS<0>
ZERO EQU 0x02 ;Z flag STATUS<2>
TRISB EQU 0x86
PORTB EQU 0x06
TRISD EQU 0x88
PORTD EQU 0x08
IRX EQU 0x07 ;RB7 for IR receiver
LED EQU 0x01 ;RD1 for LED
MSB EQU 0x07

;RAM

CBLOCK 0x20
TIMEBLOCK
Kount120us
Kount100us
Kount1ms
Kount10ms
Kount200ms
Kount1s
Kount10s
Kount1m
first
second
third
Bitcount ;data bit count
Kount ;Delay count (number of instr cycles for delay)
ADDRreg ;IR ADDRESS
COMreg ;IR Command
Pcount ;HIGH duration count
ADcount
CMcount

ENDC

;===
org 0x0000 ;line 1
goto START ;line 2 ($0000)

;==
org 0x05

START
banksel TRISB

; Port setting (1 for input and 0 for output)
clrf STATUS
movlw 0x80
movwf TRISB

banksel TRISD
movlw 0x00
movwf TRISD ;All ports are outputs

AGAIN
banksel PORTD
bcf PORTD, LED ;turn off LED
call SONYIR ;read SONY IR REmote
movf COMreg,0 ;W has now the content of the command
andlw B'11111111'

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

134

btfss STATUS, ZERO ; W = 00? then 1
goto next
goto oneLED ;turn on from 1 second

next movf COMreg,0
andlw B'11111101' ;W= 2? then 3 sec
btfss STATUS, ZERO
goto next2
goto threeLED

next2 movf COMreg, 0
andlw B'11111100' ;W=3? then 4 sec
btfss STATUS, ZERO
goto next3
goto fourLED

next3 movf COMreg,0
andlw B'11111011' ;W=4? then 5 sec
btfss STATUS,ZERO
goto next4
goto fiveLED

next4 movf COMreg,0
andlw B'11111010' ;W=5? then 6 sec
btfss STATUS, ZERO
goto next5
goto sixLED

next5 movf COMreg,0
andlw B'11111001' ;W=6? then 7 sec
btfss STATUS,ZERO
goto next6
goto sevenLED

next6 movf COMreg,0
andlw B'11111000' ;W=7? then 8 sec
btfss STATUS, ZERO
goto next7
goto eightLED

next7 movf COMreg, W
andlw B'11110111' ;W=8? then 9 sec
btfss STATUS, ZERO
goto next8
goto nineLED

next8 movf COMreg,0
andlw B'11111110' ;W=1? then 2 sec
btfss STATUS, ZERO
goto next9
goto twoLED

next9 goto AGAIN

; LED routine
nineLED

bsf PORTD, LED
call delay1s

eightLED
bsf PORTD, LED
call delay1s

sevenLED
bsf PORTD, LED
call delay1s

sixLED
bsf PORTD, LED
call delay1s

fiveLED
bsf PORTD,LED
call delay1s

fourLED
bsf PORTD,LED
call delay1s

Chapter 6. LCD Displaying and IR Remote Controller Applications

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

135

threeLED
bsf PORTD, LED
call delay1s

twoLED
bsf PORTD,LED
call delay1s

oneLED
bsf PORTD,LED
call delay1s
goto AGAIN

;subroutines BELOW

;subroutines ABOVE

;END OF CODE
END

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

