EMBEDDED COMPUTING WITH PIC16F877
- Assembly Language Approach

CHARLES KIM
hirstbrook.com

Charles Kim
About the author
Dr. Charles Kim is a professor in the Department of Electrical and Computer Engineering at Howard University in Washington, DC, USA. He has taught for years both for undergraduate and graduate students at many universities including Texas A&M University, University of Suwon, and Howard University. Dr. Kim wrote this book originally for his Microcomputer course and Embedded Computing course, and currently this book is used as the refernece of Embedded Computing, which is basically project-based robot building course. It will be also adopted for the Microcomputer course for assembly language programming. His approach in the book is simple: code in assembly language, which is free, instead of using C which costs you with cross compiler. Dr. Kim is active in embedded computing, smart sensor network, and AI and expert systems. His most recent award is the "professor of the year" award in April 2006 by the College of Engineering, Architecture, and Computer Sciences of Howard University Student Assembly.

Figure/Diagram Credits
Most of the photos, diagrams, figures are my own and my product, however, I freely adopted numerous diagrams to explain the modules of PIC16F877 from the following two materials published by Microchip Technology Inc:

- PIC16F87X 28/40-pin 8-Bit CMOS Flash Microcontroller, 1999. DS30292B.

There are figures, diagrams, photos of the parts and elements I introduced that are not mine but of manufacturers. By indicating manufacturer's name and/or web-site, I tried to give proper credit and, at the same time, small space of indirect advertisement.

If, however, there is any photo, figure, diagram, or any other materials not properly credited, it just slipped my attention at the time of writing, and I sincerely apologize my sloppiness, and promise that, in the next edition, I will correct the mistake. Please contact me if anyone deserves proper credit of any material I used in the book.

Charles Kim
Contents

Preface vi

Chapter 1 Introduction 1

Chapter 2 PIC16F877 Microcontroller -Overview
1. PIC16F Architecture 2
2. PIN and Package 3
3. Block Diagram 4
4. Program Memory 5
5. Data Memory 6
6. Input/Output Ports 9

Chapter 3 Instruction Sets
1. PIC16F877 Instruction 14
2. Instruction Cycle and Execution Time 17
3. Coding Practice -Tricks and Tips 17
 Turn On/Off LED 17
 Variable Declaration 18
 Content Check 19
 Monitoring Digital Inputs 21
 Loops and Repetitions 23
 Time Delay 25

Chapter 4 Coding Environment
1. MPLAB v5.2 28
2. MPSIM v5.2 34
3. MPLAB v6.40 37
4. Hex Code Downloading 43
 Minimum Hardware 44
 PIC Bootloader 48
 PIC Burner 48
 PIC Bootloader and Program Memory 49
 PIC Code Downloader 50
5. Troubleshooting with Bootloaded 16F877 52
 Power Problem 52
 Reset Button Problem 52
 PIC Downloader Configuration Problem 53
 Burning Problem 53
 Serial Communication Problem 53
 PIC Chip Problem 54
6. Connection of Parts to 16F877 54
7. Piezoelectric Buzzer Example 55
Chapter 5 Serial Communication
1. Serial Communication Review 59
2. Terminal Program in Computer 64
3. 16F766 Serial Communication USART Module 67
4. 16F877 Serial Communication Coding Example 72
 - Hex Number Display 76
5. Serial Communication without Using the USART Module 82
 - Reception 82
 - Transmission 84
 - Hardware and Example Code 85

Chapter 6 LCD Displaying and IR Remote Control Applications
1. LCD Displaying 89
 - LCD Controller/Driver HD44780 89
 - LCD Example 90
 - Initializing LCD Module 92
 - Operation Example 92
 - Hardware Connection 99
 - Code Example 99
2. LCD Displaying - 4-bit Interface Example 104
 - Serial Character Display CGROM 106
3. LCD Displaying - Serial LCD 107
4. Decoding IR Remoter Controller 114
 - Sony Protocol 115
 - Sharp Protocol 116
 - Hardware Implementation 117
 - Program for Sony Remote Controller 117
 - Program for Sharp Remote Controller 125
5. Remote Control of LED On/Off by Sony Remote Controller 129

Chapter 7 Motor Control
1. Motors 136
 - DC Motors 136
 - Stepper Motors 136
 - Servo Motors 137
2. DC Motor Control 138
 - Control by Relay 138
 - Control by Transistors and H-Bridge Drivers 143
 - DC Motor Control using H-Bridge Driver 148
3. Stepper Motor Control 153
 - Bipolar Stepper Motor Control 154
 - Unipolar Stepper Motor Control 159

Chapter 8 A/D Conversion and Data Acquisition
1. A/D Conversion Module 170
2. First Example of A/D Conversion 175
3. A/D Application to IR Ranger for Distance Measurement 196

Chapter 9 Timer Modules and Digital Clock Application
1. Timer 0 208
2. Timer 0 Application 1 - LED Blinking 210
 Timer0 Application with Polling Approach 210
 Timer0 Application with Interrupt Approach 212
3. Timer 0 Application 2 - Digital Clock 215
 Clock 1 - Display on PC Monitor 215
 Clock 2 - Time Setting with PC Monitor Display 227
 Clock 3 - LCD Display Version 233
 Clock 4 - LCD Display with Time Setting 238
4. Timer 1 Application to Color Sensing 250
 Timer1 Module 250
 Timer 1 Counter Application to Color Sensor 251

Chapter 10 Synchronous Serial Communication and Keyboard Connection
1. Synchronous Communication 260
2. IBM AT or PS/2 type Keyboard Protocol 261
3. First Code - Display of Key Code Sequence 266
4. Second Code - Display of Key Itself 273
5. Third Code - Display Key in LCD 293
6. A Complete Keyboard-LCD operation with BS and CR Keys 303

Chapter 11 Voice Synthesizer Project
1. DoubleTalk RC8650 Voice Synthesizer 310
2. Operating Modes of RC8650 313
3. Commands of RC8650 314
4. Some Global Commands for RC8650 314
5. Coding Example for RC8650 315
6. Coding for a Complete System of Voice Synthesizer, LCD, and Keyboard 325

Chapter 12 Internal EEPROM Access
1. FLASH Memory and EEPROM 351
2. EEPROM Access 352
3. Reading EEPROM 353
4. EEPROM Writing 363

Chapter 13 CCP (Capture/Compare/PWM) Module and PWM
1. CCP Module of 16F877 369
2. Capture Mode 371
3. Compare Mode 371
4. PWM Mode 372
5. PWM Application with 16F877 375
 Configuration Steps for PWM 375
Chapter 14 SSP Module and I2C Bus for External EEPROM Access
1. SSP Module and SPI Operation 384
2. I2C Bus Operation 385
 I2C Bus Overview 385
 I2C Bus Protocol 388
 7-Bit Addressing 392
 Electrical Characteristics of I2C Bus Devices 395
3. Serial EEPROM 396
 Basic Serial EEPROM Operation 396
 2-Wire Bus Operation 397
4. Serial EEPROM Access with 16F877 398
 MSSP Module Initialization and Set-Up 398
 Writing a Byte of Data to Serial EEPROM 400
 Reading a Byte of Data from Serial EEPROM 407
 Writing and Reading a Byte of Data to/from 24LC16B - A Complete Code 409

Chapter 15 Armatron Robot Control
1. Motion Control of Armatron Robot 416
2. Motion Control by Relay 419
3. Armatron Control Project 421
4. Source Code 426

Chapter 16 Digital Control using PC with IR
1. Introduction 442
2. Digital Control Using PC - Overview 442
3. Hardware Description 443
 IR Master Station 443
 IR Receiver/Controller 445
4. PIC16F877 Code Segment - General 447
 PORT setup in the IR Master 447
 Serial Communication Initialization 448
 Check-up the Link between PIC and PC 449
 Main Part of the Coder 449
 Appliance On/Off Control 452
5. Details of the 16F877 Code 453
7. 16F877A INC File 469
Preface

I have been teaching microcomputer application including embedded computing several years in both undergraduate and graduate classes. Teaching and learning microcomputers and microcontrollers in college classroom is challenging in that hardware development systems are usually not well equipped for installation of microcontroller systems. Also, software development systems for specific microcontrollers are too costly for an engineering department. My approach, to overcome the limitations, has been to use microcontrollers with easily installable IC package on breadboard, notably DIP, which comes with manufacturer provided freely available programming software. Another important criterion is if executable code downloading is also freely available.

The result of the approach and criterion led me to choose the PIC16F877 microcontroller from Microchip. Microchip provides its own, free of course, development system called MPLAB which provides assembly language programming and simulation environment. Assembly language program takes a longer learning period than high-level language like C. However, once learned, assembly programming gives better control of the microcontroller, let alone better understanding of the internal structure and operation of it. There is a problem in assembly language programming of the PIC microcontroller: there is no book on the subject.

This book is the collection of my own lecture notes of last few years on assembly language programming of PIC16F877 and its application to autonomous robots, robot arm controllers, and other interesting projects. As clearly put in the cover, this electronic textbook is a beta edition and it is solely for internal use for the students who take my course, Embedded Computing. Since I am the only person worked for this edition, without help of editors or proof-readers, I do not expect this edition is without errors or typos. So I am asking your favor: if you find errors, typos, or spelling and grammar errors, please kindly send me your findings to me at ckimson@gmail.com or doc@hirstbrook.com

My objective of this book is to give students an independent and complete source of 16F877 programming. The source codes in whole in the book are accurate and tested by me, and I hope these source codes put you head start for your intended projects. Following my goal, I made this book self-learning and self-training manual. I added detailed explanation behind each code with illustration and diagram.

First three chapters cover the basic of 16F877 with architecture, memory, I/O ports, and instruction sets. Chapter 4 details about the coding environment, namely PIC Assembler. two versions of PIC Assembler, MPLAB, of Microchip Technology are thoroughly covered step by step. Then, hex code downloading is detailed. Also covered are the minimum hardware needed for hex code downloading to 16F877 and commercially available PIC board for 16F877. At the end, troubleshooting and connection tips are discussed followed by the first serious example of piezoelectric buzzer problem.

Chapter 5 discusses about asynchronous communication utilizing 16F877's built-in communication module. Serial communication between 16F877 and a PC is discussed with example code. Additionally and very importantly, serial communication without using the
module is discussed. This example is very important can find many applications, a few of them are discussed in Chapters 6, 10, and 11. Chapter 6 is the extension of serial communication with LCD displaying. Here infrared remote control protocols and applications are demonstrated.

Chapter 7 is for motor control and robot building. DC and stepper motors and their control using relays, H bridges, and other solid state control chips are discussed. Robot building schemes are also suggested along with code examples.

Chapter 8 is about analog-to-digital conversion using the A/D conversion module of 16F877. Infrared ranger for distance measurement and current measurement are demonstrated as parts of the A/D application.

Chapter 9 discusses about another built-in function of timer module in 16F877. Time delay using Timer 0 are thoroughly discussed and expanded to a digital clock project. Several version of digital clock codes are discussed. In the application of Timer 1, a color sensing scheme is illustrated.

Chapter 10 discusses synchronous serial communication and its application to keyboard reading. Many different aspects of keyboard reading and LCD displaying are detailed in the chapter.

Chapter 11 covers a voice synthesizer project in which we try to build a system which generates voice from the text typed in a keyboard. The text is also displayed on a LCD display. A long and complete code is provided for the readers.

Chapter 12 focuses on the subject of storing and retrieving data into/from the internal EEPROM of 16F877. The internal EEPROM has about 1/4 K Byte of memory space, and very valuable when you want to keep your data even after you turn off your PIC board. Reading from and writing to the internal EEPROM are detailed with full explanation and full source code.

Chapter 13 deals with the CCP module of 16F877 but the focus is on the PWM mode operation of the module. PWM output example is discussed with source code.

Chapter 14 is about accessing external EEPROM access. In this chapter, we assume that we need more EEPROM space and want to read from and write to an external serial EEPROM. The serial EEPROM we selected as an example is Microchip's 24LC16B, which has 2KByte memory space. Since the control access is based on synchronous serial communication and I²C (Inter-IC) bus protocol, a lengthy introduction precedes the main application part using 16F877 and 24LC16B. Hardware connection diagram is also included.

Chapter 15 controls a legacy robot called Armatron. The Armatron has several motors inside and its control is to turn motors according to the motion control need. Detailed control scheme, which cannot be easily found even from Googling, is illustrated and relay control is discussed. Lastly, an example control project is described with diagrams and source code.

Chapter 16 tries to control using a PC, which gets signal from IR transmitter controlled by 16F877. Since control button is implemented as a window in the Windows operating system, a
Visual Basic code for Windows programming is included as well as the source code for 16F877.

The draft of this book was finished last summer and this year, I could merely revise, only slightly, because of my tight schedule. I regret that I could not finish the intended chapter on projects which would contain various application of 16F877 applying the knowledge you gained from the previous chapters. Fortunately, I have draft on the subject along with actual working code, but I do not have enough time to put all things together in to a very long chapter. I plan to take this summer to add this subject in to a final copy of the book.

I sincerely hope you enjoy this rough edition, and complete your project with a great success.

Charles Kim
January 2006
Washington, DC