
ProgrammableProgrammable LogicLogic DesignDesign

Grzegorz BudzyGrzegorz Budzyńń

LLectureecture 12:12:
VHDL VHDL vsvs VerilogVerilog

Plan

• Introduction

• Verilog in brief

• VHDL/Verilog comparison

• Examples

• Summary

Introduction

Introduction
• At present there are two industry standard

hardware description languages, VHDL and
Verilog.

• The complexity of ASIC and FPGA designs has
meant an increase in the number of specific tools
and libraries of macro and mega cells written in
either VHDL or Verilog.

• As a result, it is important that designers know
both VHDL and Verilog and that EDA tools vendors
provide tools that provide an environment
allowing both languages to be used in unison.

Introduction
• VHDL (Very high speed integrated circuit Hardware

Description Language) became IEEE standard 1076
in 1987.

• The Verilog hardware description language has
been used far longer than VHDL and has been
used extensively since it was launched by Gateway
in 1983.

• Cadence bought Gateway in 1989 and opened
Verilog to the public domain in 1990.

• Verilog became IEEE standard 1364 in December
1995

Verilog in brief

Verilog – design flow

Verilog – abstraction levels

• Verilog supports three main abstraction levels:

– Behavioral level – a system is described by

concurrent algorithm

– Register-transfer level – a system is characterised by

by operations and transfer of data between registers

according to an explicit clock

– Gate level – a system is described by logical links and

their timing characteristics

Verilog – „Hello world”

Verilog – 8-bit counter example

Basic constructs

Verilog - hierarchy

• Verilog structures which build the hierarchy are:

– modules

– ports

• A module is the basic unit of the model, and it may

be composed of instances of other modules

Verilog - hierarchy

• the top level module is not instantiated by any

other module

• Example:

module foo;

bar bee (port1, port2);

endmodule

module bar (port1, port2);

...

endmodule

Verilog

• Port types in Verilog:

– Input

– Output

– Inout

• Matching ports by names:

foo f1 (.bidi(bus), .out1(sink1), .in1(source1));

versus normal way

foo f1 (source1, , sink1, , bus);

Verilog - modules
• Verilog models are made up of modules

• Modules are made of different types of
components:

– Parameters

– Nets

– Registers

– Primitives and Instances

– Continuous Assignments

– Procedural Blocks

– Task/Function definitions

Verilog - parameters
• Parameters are constants whose values are

determined at compile-time

• They are defined with the parameter
statement:

parameter identifier = expression;

Example:

parameter width = 8, msb = 7, lsb = 0;

Verilog - nets
• Nets are the things that connect model

components together – like signals in VHDL

• Nets are declared in statements like this:

net_type [range] [delay3] list_of_net_identifiers

• Example:
wire w1, w2;

tri [31:0] bus32;

Verilog – types of nets

• Each net type has functionality that is used to
model different types of hardware such as CMOS,
NMOS, TTL etc

Verilog – net drivers

• Nets are driven by net drivers.

• Drivers may be:

– output port of a primitive instance

– output port of a module instance

– left-hand side of a continuous assignment

• There may be more than one driver on a net

• If there is more than one driver, the value of the

net is determined by a built-in resolution function

Verilog - registers
• Registers are storage elements

• Values are stored in registers in procedural
assignment statements

• Registers can be used as the source for a primitive
or module instance (i.e. registers can be connected
to input ports), but they cannot be driven in the
same way a net can

• Examples:
– reg r1, r2;

reg [31:0] bus32;
integer i;

Verilog - registers
• There are four types of registers:

– Reg:
• This is the generic register data type. A reg declaration can

specify registers which are 1 bit wide to 1 million bits wide

– Integer
• Integers are 32 bit signed values

– Time
• Registers declared with the time keyword are 64-bit unsigned

integers

– Real (and Realtime)
• Real registers are 64-bit IEEE floating point

Verilog - memories
• Verilog allows arrays of registers, called memories

• Memories are static, single-dimension arrays

• The format of a memory declaration is:

– reg [range] identifier range ;

• Example:
• reg [0:31] temp, mem[1:1024];

• ...

• temp = mem[10]; --extract 10th element

• bit = temp[3]; --extarct 3rd bit

Verilog - primitives
• Primitives are pre-defined module types

• The Verilog primitives are sometimes called gates,
because for the most part, they are simple logical
primitives

• Examples:
– And, nand, or, nor, xor, xnor

– Buf, not

– Pullup, pulldown

– bufif0, notif0

Verilog - primitives
• Examples:

module test;

wire n1, n2;

reg ain, bin;

and and_prim(n1, ain, bin);

not not_prim(n2, n1);

endmodule

Procedural blocks

Verilog - Continuous assignments
• Continuous assignments are known as data flow

statements

• They describe how data moves from one place,
either a net or register, to another

• They are usually thought of as representing
combinational logic

• Examples:

assign w1 = w2 & w3;

assign (strong1, pull0) mynet = enable;

Verilog - Procedural blocks
• Procedural blocks are the part of the language

which represents sequential behavior

• A module can have as many procedural blocks as
necessary

• These blocks are sequences of executable
statements

• The statements in each block are executed
sequentially, but the blocks themselves are
concurrent and asynchronous to other blocks

Verilog - Procedural blocks
• There are two types of procedural blocks, initial

blocks and always blocks

• All initial and always blocks contain a single

statement, which may be a compound statement,

e.g.:

initial

begin statement1 ; statement2 ; ... end

Verilog - Initial blocks
• All initial blocks begin at time 0 and execute the

initial statement

• Because the statement may be a compound
statement, this may entail executing lots of
statements

• An initial block may cause activity to occur
throughout the entire simulation of the model

• When the initial statement finishes execution, the
initial block terminates

Verilog - Initial blocks
• Examples:

initial x = 0; // a simple initialization

initial begin
x = 1; // an initialization
y = f(x);

#1 x = 0; // a value change 1 time unit later
y = f(x);

end

Verilog – Always block
• Always blocks also begin at time 0

• The only difference between an always block and
an initial block is that when the always statement
finishes execution, it starts executing again

Tasks and functions

Verilog – Tasks/functions
• Tasks and functions are declared within modules

• Tasks may only be used in procedural blocks

• A task invocation is a statement by itself. It may
not be used as an operand in an expression

• Functions are used as operands in expressions

• A function may be used in either a procedural
block or a continuous assignment, or indeed, any
place where an expression may appear

Verilog – Tasks
• Tasks may have zero or more arguments, and they

may be input, output, or inout arguments

• Time can elapse during the execution of a task,
according to time and event controls in the task
definition

• Exmaple:
task do_read;

begin

adbus_reg = addr; // put address out

end

endtask

Verilog – Functions
• In contrast to tasks, functions must execute in a

single instant of simulated time

• That is, not time or delay controls are allowed in a
function

• Function arguments are also restricted to inputs
only.

• Output and inout arguments are not allowed.

• The output of a function is indicated by an
assignment to the function name

Verilog – Functions
• Example:

function [15:0] relocate;

input [11:0] addr;

input [3:0] relocation_factor;

begin
relocate = addr + (relocation_factor<<12);

count = count + 1; // how many have we done end
endfunction

assign absolute_address = relocate(relative_address,
rf);

VHDL/Verilog comparison

Capability

• VHDL – like Pascal or Ada programming languages

• Verilog – like C programming language

• It is important to remember that both are

Hardware Description Languages and not

programming languages

• For synthesis only a subset of languages is used

Capability
• Hardware structure can be modeled equally

effectively in both VHDL and Verilog.

• When modeling abstract hardware, the capability
of VHDL can sometimes only be achieved in
Verilog when using the PLI.

• The choice of which to use is not therefore based
solely on technical capability but on:
– personal preferences

– EDA tool availability

– commercial, business and marketing issues

Capability
• The modeling constructs of VHDL and Verilog

cover a slightly different spectrum across the
levels of behavioral abstraction

S
o
u
rc

e
:
[1

]

Compilation
• VHDL:

– Multiple design-units (entity/architecture pairs), that
reside in the same system file, may be separately
compiled if so desired.

– It is good design practice to keep each design unit in it's
own system file in which case separate compilation
should not be an issue.

Compilation

• Verilog:
– The Verilog language is still rooted in it's native

interpretative mode.

– Compilation is a means of speeding up simulation, but
has not changed the original nature of the language.

– The care must be taken with both the compilation
order of code written in a single file and the
compilation order of multiple files.

– Simulation results can change by simply changing the
order of compilation.

Data types
• VHDL:

– A multitude of language or user defined data types can
be used.

– This may mean dedicated conversion functions are
needed to convert objects from one type to another.

– The choice of which data types to use should be
considered wisely, especially enumerated (abstract)
data types.

– VHDL may be preferred because it allows a multitude
of language or user defined data types to be used.

Data types
• Verilog:

– Compared to VHDL, Verilog data types a very simple,
easy to use and very much geared towards modeling
hardware structure as opposed to abstract hardware
modeling.

– Unlike VHDL, all data types used in a Verilog model are
defined by the Verilog language and not by the user.

– There are net data types, for example wire, and a
register data type called reg.

– A model with a signal whose type is one of the net data
types has a corresponding electrical wire in the implied
modeled circuit.

– Verilog may be preferred because of it's simplicity.

Design reusability
• VHDL:

– Procedures and functions may be placed in a package
so that they are available to any design-unit that
wishes to use them

• Verilog:
– There is no concept of packages in Verilog.

– Functions and procedures used within a model must be
defined in the module.

– To make functions and procedures generally accessible
from different module statements the functions and
procedures must be placed in a separate system file
and included using the `include compiler directive.

Ease of learning
• Starting with zero knowledge of either language,

Verilog is probably the easiest to grasp and
understand.

• VHDL may seem less intuitive at first for two
primary reasons:
– First, it is very strongly typed; a feature that makes it

robust and powerful for the advanced user after a
longer learning phase.

– Second, there are many ways to model the same
circuit, specially those with large hierarchical structures

High level constructs
• VHDL:

– There are more constructs and features for high-level
modeling in VHDL than there are in Verilog.

– Abstract data types can be used along with the
following statements:

• package statements for model reuse,

• configuration statements for configuring design structure,

• generate statements for replicating structure,

• generic statements for generic models that can be
individually characterized, for example, bit width.

– All these language statements are useful in
synthesizable models.

High level constructs
• Verilog:

– Except for being able to parameterize models by
overloading parameter constants, there is no
equivalent to the high-level VHDL modeling statements
in Verilog

Libraries
• VHDL:

– A library is a store for compiled entities, architectures,
packages and configurations. Useful for managing
multiple design projects.

• Verilog:
– There is no concept of a library in Verilog. This is due to

it's origins as an interpretive language.

Low level constructs
• VHDL:

– Simple two input logical operators are built into the
language, they are: NOT, AND, OR, NAND, NOR, XOR
and XNOR.

– Any timing must be separately specified using the after
clause.

– Separate constructs defined under the VITAL language
must be used to define the cell primitives of ASIC and
FPGA libraries.

Low level constructs
• Verilog:

– The Verilog language was originally developed with
gate level modeling in mind, and so has very good
constructs for modeling at this level and for modeling
the cell primitives of ASIC and FPGA libraries.

– Examples include User Defined Primitives (UDP), truth
tables and the specify block for specifying timing delays
across a module.

Managing large designs
• VHDL:

– Configuration, generate, generic and package
statements all help manage large design structures.

• Verilog:
– There are no statements in Verilog that help manage

large designs

Operators
• The majority of operators are the same between

the two languages.

• Verilog does have very useful unary reduction
operators that are not in VHDL.

• A loop statement can be used in VHDL to perform
the same operation as a Verilog unary reduction
operator.

• VHDL has the mod operator that is not found in
Verilog.

Procedures and tasks
• VHDL:

– concurrent procedure calls are allowed

• Verilog:
– concurrent procedure calls are not allowed

Readability
• This is more a matter of coding style and

experience than language feature.

• VHDL is a concise and verbose language;

• Verilog is more like C because it's constructs are
based approximately 50% on C and 50% on Ada.

• For this reason an existing C programmer may
prefer Verilog over VHDL.

• Whatever HDL is used, when writing or reading an
HDL model to be synthesized it is important to
think about hardware intenthardware intent.

Structural replication
• VHDL:

– The generate statement replicates a number of
instances of the same design-unit or some sub part of a
design, and connects it appropriately.

• Verilog:
– There is no equivalent to the generate statement in

Verilog.

Verboseness
• VHDL:

– Because VHDL is a very strongly typed language models
must be coded precisely with defined and matching
data types.

– This may be considered an advantage or disadvantage.

– It does mean models are often more verbose, and the
code often longer, than it's Verilog equivalent.

Verboseness
• Verilog:

– Signals representing objects of different bits widths
may be assigned to each other.

– The signal representing the smaller number of bits is
automatically padded out to that of the larger number
of bits, and is independent of whether it is the assigned
signal or not.

– Unused bits will be automatically optimized away
during the synthesis process.

– This has the advantage of not needing to model quite
so explicitly as in VHDL, but does mean unintended
modeling errors will not be identified by an analyzer.

Examples

Binary up counter
• VHDL:

process (clock)

begin

if clock='1' and clock'event then

counter <= counter + 1;

end if;

end process;

Binary up counter
• Verilog:

reg [upper:0] counter;

always @(posedge clock)

counter <= counter + 1;

D FilpFlop
• VHDL:

process (<clock>)

begin

if <clock>'event and <clock>='1'
then

<output> <= <input>;

end if;

end process;

D FilpFlop
• Verilog:

always @(posedge <clock>) begin

<reg> <= <signal>;

end

Synchronous multiplier
• VHDL:

process (<clock>)

begin

if <clock>='1' and <clock>'event
then

<output> <= <input1> * <input2>;

end if;

end process;

Synchronous multiplier
• Verilog:

wire [17:0] <a_input>;

wire [17:0] <b_input>;

reg [35:0] <product>;

always @(posedge <clock>)

<product> <= <a_input> *
<b_input>;

Summary

NoYesRecords/structs

NoYesEnumerated types

NoYesPhysical types

NoYes
Dynamic memory

allocation

NoYesUser-defined types

NoYesStrong typing

VerilogVHDL

Yes

Builtin

primitives

Yes

VITAL
Gate level modeling

Yes

Include files

Yes

Packages
Separate packaging

YesYesSubprograms

Yes
Partial

(by libraries)

Bit (vector) / integer

equivalence

VerilogVHDL

Yes

• if-else (priority)

• case (mux)

• casex (mux)

• ?: (conditional

used in

concurrent

assignments)

Yes

• If-then-else/elsif

(priority)

• Case (mux)

• Selected assign

(mux)

• Conditional assign

(priority)

• No “don’t care”

matching capability

Conditional

statements

VerilogVHDL

Yes

• repeat

• for

• while

Yes

• Loop

• while-loop

• for-loop

• exit

• next

Iteration

VerilogVHDL

Thank you for your attention

References

[1] Douglas J. Smith, „VHDL & Verilog Compared & Contrasted Plus

Modeled Example Written in VHDL, Verilog and C”

[2] http://www.stanford.edu/class/ee183/handouts_win2003/

VerilogQuickRef.pdf

[3] www.asic-world.com

[4] http://www.ece.umd.edu/courses/enee359a/verilog_tutorial.pdf

