Introduction/Review of FPGA Programming using Quartus II

CANDACE ROSS

EECE494 COMPUTER BUS AND SOC INTERFACING

ELECTRICAL AND COMPUTER ENGINEERING

HOWARD UNIVERSITY

INSTRUCTOR: DR. CHARLES KIM

FEBRUARY 10, 2014

Overview of Presentation

Quartus II Software w/ De2i-150 board

- Beginning with an idea
- Writing and compiling code
- Assigning I/O's to corresponding pins
- Programming board via USB-blaster

• Examples:

- 1. Flashing LED based on inputs
- 2. Seven segment display from binary to decimal

Example #1: Lighting LED

• Goal: Light an LED when either of two switches is on

• Implementation:

- Find the logical equivalent:
 - $\mathbf{X} \mathbf{Y} = \mathbf{A} + \mathbf{B}$
- \odot Write the corresponding VHDL code to implement
- \odot Assign pins to the I/Os from the code
- Compile the design
- O Load the board with the code and test!

Quartus II 32-bit - C:/Users/foo/Documents/Howard U/C File Edit View Project Assignments Processing Too	ip (omputer E	Description_LED - presentation_LED		
D 🖆 🖬 🗿 🍜 X 🖻 🛍 🕫 🖓 presentation_LED 🔷 🕅 🏹 🏆 🦉 🏈 🚳 🕨 🕨 😵 🍈				
Project Navigator 🖉 🗗 🗙	٠	presentation_LED.vhd		
Entity Det Cyclone IV GX: EP4CGX150DF31C7 Presentation_LED	ach 1 2 3 4 5 6 7 8 9 10 11 12 13 14	<pre> A ********************************</pre>		

Table 3-4 Pin Assignments for LEDs				
Signal Name	FPGA Pin No.	Description	I/O Standard	
LEDR[0]	PIN_T23	LED Red[0]	2.5V	
LEDR[1]	PIN_T24	LED Red[1]	2.5V	
LEDR[2]	PIN_V27	LED Red[2]	2.5V	
LEDR[3]	PIN_W25	LED Red[3]	2.5V	
LEDR[4]	PIN_T21	LED Red[4]	2.5V	
LEDR[5]	PIN_T26	LED Red[5]	2.5V	
LEDR[6]	PIN_R25	LED Red[6]	2.5V	
LEDRI71	PIN T27	LED Red[7]	2.51	

Example #2: Binary to Seven Segment Display

 <u>Goal</u>: convert a 3-bit binary number to decimal and display on seven segment display

Implementation:

- Write the VHDL code to implement
- Assign pins to the I/Os from the code
- Compile the design
- Load the board with the code and test!

VHDL Code to Implement

- Necessary I/Os:
 - \circ 3 bits for binary number (000₂ to 111₂)
 - \circ 7 bits to display decimal (0₁₀ to 7₁₀)

Implementation:

- Each switch is assigned to a bit, and the seven segments are each a pin on the display
- We'll run through the display from decimal numbers zero to seven

Focusing on the Seven Segment Display..

- Each segment is active low
- In this example, the segments are represented as a seven bit vector with the LSb corresponding to HEXO

Quick Debugging Tips

- Check the assigned input and output pins
 Is an input mistakenly assigned to an LED?
- Save changes by both compiling the design AND reloading the board
 - It's easy to forget to reload the board, hence there are not any design changes
- Ensure the logic is being used correctly
 - **o** Truth tables, K-maps