
DIGITAL STOPWATCH

Getting an initial idea Pseudo-coding Actual Coding/Debugging Pin Planning Verifying Design Finalizing Design

Overview

LEDS
LCD
Seven-Segment Display
Push pins
Switches
RAM

man

pieces, which to

choose??

Narrowing Down Parts Just choose 1-2 parts to be the "flashy part" of your design. Ex: using switch to control speed of LED flashing. Using LEDs to count in binary while Seven Segment counts in decimal. Displaying words on LCD

What to do with parts you have? Seven Segment - can display words or

- seven segment can display words or numbers.
 - Numbers: digital clock/stop watch/etc
 - Words: Spell out a word across the displays.
 - LEDs can use green or red LEDs
 Display a set pattern
 - Flash lights randomly etc

Choosing Which Project To Go With

Know your coding/Google capabilities
 Will it be feasible without tearing your hair out.
 Don't do excessive amounts of extra.
 Is easier to add onto a basic project than to shell out an extravagant one from the get go.

I Choose You!

Digital StopwatchLet's get to work

What does a stopwatch do?

 Seconds turn into minutes
 Minutes turn into hours
 Designer issue- should implementation be to make 12 hours and restart at 1

for hours, o<mark>r g</mark>o to <mark>23</mark> then go to 00.

Using that knowledge

- Will need 6 seven-segment sessions.
- Segments are controlled using activelow logic- so a '0' will turn a segment on. And a '1' will turn segment off.
- Each decimal will have to have a seven segment equivalent that updates as time progresses.

Closer look at Seven Segment

http://program-plc.blogspot.com/

Pseudocoding- Timing Control

- Increment seconds using a clock control.
- \Box If (seconds = 59)
 - Reset seconds to 0
 - Increment minutes by 1
 - If (minutes = 59)
 -Reset minutes to 0.
 -Increment hours by 1.
 If (hours = 23)
 - reset hours to 00.

Pseudocoding - Control segments

- If (digit = 0) display 0 on seven
 seg
- If (digit = 1) display 1 on seven
 seg
- Etc Etc...

Time to Code

- Inputs: Just need a clock
- Altera board has a 50Mhz internal clock
- 50×10^6 Hz = 1 second for this clock
- Need a counter to keep track of each hertz
- Once counter reaches 50 mil, it should increment seconds and then reset value of counter to 1.

Implementing the counter

- process(clk1)
- begin
- if(clk1'event and clk1='1') then increment on rising edge
- count <= count+1;</pre>
- if(count = 50000000) then --50,000,000 Hz clock
 cycle
- □ clock <= not clock; --resets clock to falling edge
- count <=1; --resets counter</pre>
- end if;
- end if;
- end process;

Implementing "Clock" Functionality

- process(clock) --period of clk is 1
 second.
- begin
- if(clock'event and clock='1') then
 sec_ones <= sec_ones+ 1; --seconds go up</pre>
- if(sec_ones = 9) then -- 09 goes to 10, 19
 to 20, etc
- sec_ones <=0; -- reset ones_place
 </pre>
- sec_tens <= sec_tens + 1; --increment
 tens_place</pre>

Linking digits to the Seven Segment process(sec_ones)

🗉 begin

if sec_ones = 0 then ones_second <=
 "1000000"; -- displays 0</pre>

elsif sec_ones = 1 then ones_second <=
 "1111001"; -- displays 1</pre>

• elsif sec_ones = 2 then ones_second <=
 "0100100"; -- displays 2</pre>

Etc Etc...

Recall Though when implementing

Vectors are listed with MSB first.

■ 0 is used to turn part "on".

- Every case must be accounted for if using a case statement, but can circumvent this using if-else statement.
- Comment code using "--" in VHDL to keep track of what you're doing.

Compile just the code not a full project, to see if any syntax rule have been violated.

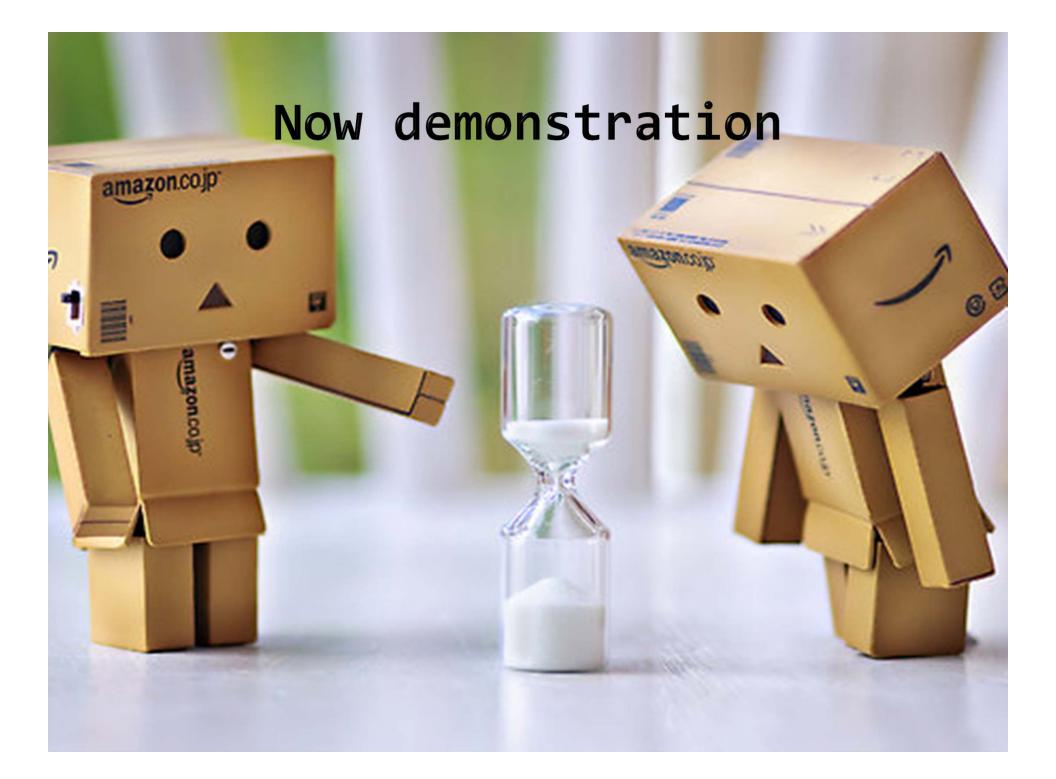
Once Code is Done

Processing - start - start analysis &
 elaboration.

Once code is done open pin planner and start to map pins to inputs/outputs.

Pin Planner

Each of the vector segments corresponds to a segment of the display.


Hours controlled by two leftmost displays. Minutes by middle two. And seconds by the right most.

Direct your attention to the board please

Venify the Design

 If it works correctly..Congratulations!!!
 If there is a bug, the fun process of debugging begins.
 Follow through logic of code on paper to see if train of thought is correct.

Once Design is Implemented

