
Atom-FPGA Communication using Ubuntu 13.10 on 
Development Machine

by
Emmanuel Ademuwagun

EECE 494: Computer Bus and SoC Interfacing
Department of Electrical and Computer Engineering

Howard University

Instructor: Dr. Charles Kim 

ckim
Typewritten Text
WWW.MWFTR.COM



Presentation
• Quartus 12.1 Installation
• USB-Blaster Configuration
• Task Execution
• Configuring FPGA using Qsys
• Loading SRAM Object File (.sof) on Board
• Setting Up TFTP
• PCIe Driver
• User Application
• Assignment Execution



Quartus 12.1 Installation (Ubuntu)



Quartus 12.1 Installation (Ubuntu)
Extract folder from compressed download (.tar.gz) in chosen directory

Navigate through directory and launch installer



Quartus 12.1 Installation (Ubuntu)
Complete Installation using a Graphical User Interface



USB-Blaster Configuration (Ubuntu)

Create a new rules file for USB Blaster

Copy the content below in the file

Feed the new rule into the OS by reloading all rules



USB-Blaster Configuration (Ubuntu)

Test Configuration



Task - Description

• Use 16 switches on the DE2i-150 to control 4 
hexadecimal switches on the board.

• 4 switches 1 Hexadecimal Value (0 – F)
• Download Source Files from:

– http://rijndael.ece.vt.edu/de2i150/designs/hellop
ci.tgz



Task - Sources
Extract Folder and View Contents



Configuring FPGA using Qsys

Launch Quartus

For convenience, add bin directory to your PATH variable in order to run your 
commands from anywhere in the terminal



Configuring FPGA using Qsys
Open Quarts II Archive File (.qar) from FPGA source folder



Configuring FPGA using Qsys

Click Okay for Quartus to restore project files using the archive file (.qar)



Configuring FPGA using Qsys
Launch Qsys: Tools > Qsys



Configuring FPGA using Qsys



Configuring FPGA using Qsys

View Memory Map. Used in PCIe Driver for Atom



Configuring FPGA using Qsys
Generate Verilog Code for Compilation and close Qsys



Configuring FPGA using Qsys

Auto-generated Pin Assignments. No worries



Configuring FPGA using Qsys

View Verilog 
Generated Code and 
Start Compilation



Loading SRAM Object File (.sof) on Board



Setting Up TFTP
Install Packages

Add TFTP entry



PCIe Driver - Sources
Makefile



PCIe Driver - Sources
Some Important Functions in Driver Code



PCI Driver - Build
Yocto Version

Build Kernel for .ko file

If you have v3.0.32, you do not have to do this step. You can do use the 
kernel object in the quick folder



User Application - Sources

Makefile

App Source Code



User Application - Build

Again, if you have Yocto v3.0.32, you do not have to do this step. You can 
do use the app in the quick folder



Task Execution
Copy PCIe Driver and Application Code via TFTP



Task Execution

Kernel Debug Messages

Insert Module into Yocto Kernel and run app



Thank you for your time!




