Chapter 5: Design Evaluation of Safety-Critical Computer Systems, continued

Howard University Department of Electrical and Computer Engineering EECE 692 System Safety Isaac Collins

Overview

- Design Evaluation Methods
 - Qualitative Analyses
 - Failure Modes and Effects Analysis (FMEA)
 - Fault Tree Analysis (FTA)
 - Event Tree Analysis (ETA)
 - Risk Analysis (RA)
 - Failure Modes and Effects Testing (FMET)

Risk Analysis: Mishap Risk

- Mishap Severity (in terms of dollar loss, extent of damage to environment, and human suffering):
 - Catastrophic
 - Critical
 - Marginal
 - Negligible
- Have meaning within context of application
 Start with mishap, work down

Risk Analysis: Mishap Risk

- Mishap Probability:
 - Probability of occurrence of event/hazard that create mishap
 - Ratio of number of undesirable events to total number of possible events (including desirable and undesirable)
 - P(n events occur) = n/N
 - n is equally likely (independent)
- Diesel Generator Example

Risk Analysis: Mishap Risk

- Diesel Generator Example:
 - 356 systems tested in simulated emergency condition
 - 4 fail to start
 - Probability that untested generator fails:

 $4/356 = 1.1 \ge 10^{-2}$

- Each system in actual test must be exactly the same condition
 - Maintenance, battery condition, fuel quality, ambient temperature, etc.
- MUST have large enough sample size...

Risk Analysis: Mishap Frequency

- Measures used to express mishap probability:
 - Probability per unit of time (hr./lifetime of operation)
 - Number of occurrences per unit of time (hr./year/lifetime)
 - Number of occurrences per event, population, item, or activity
- EXAMPLE 5.6

Risk Analysis: Component Failure

• Equation relating component failure probability and failure rate:

(5.1)

- Assumptions:
 - Component works at time t=0 (at initialization)
 - Constant failure rates
- Used to model HW/SW failure behavior.
- EXAMPLE 5.7

Risk Analysis: Probability Approximation

 Table 5.3 Approximate Versus Exact Probability Values

T (hours)	λΤ	P(approx.)	P (exact)
1	0.001	1.000×10^{-3}	1.000×10^{-3}
10	0.01	1.000×10^{-2}	0.995×10^{-2}
100	0.1	1.000×10^{-1}	0.952×10^{-1}
1000	1	1.000×10^{0}	0.632×10^{0}

Similar to Demand Failure Probability EXAMPLE 5.10

Risk Analysis: Acceptable Risk Mishap

Mishap Frequency per Hour	Mishap
10 ⁻²	
10 ⁻³	
10 ⁻⁴	 Passenger car injury (USA)
10 ⁻⁵	 Passenger car fatality
10 ⁻⁶	
10 ⁻⁷	 Fatal airliner accident (global)
10 ⁻⁸	 Workplace fatality (office related)
10 ⁻⁹	
10 ⁻¹⁰	 Lightning fatality

Figure 5.6 Mishap Statistics (c. 1995)

Risk Analysis: Calculating Mishap Risk Probability

- Risk Analysis Step 1 (already covered):
 - Use Fault Tree Analysis to trace mishap back to failure events/faults
- Risk Analysis Step 2:
 - Determine probability of each failure/fault
- Risk Analysis Step 3 (we'll start here):
 Combine probabilities to yield mishap probability

Risk Analysis: Oil Heater System Example

TANK Pressure Relief Valve

Figure 5.7 Oil Heater System

PLC

Risk Analysis: Oil Heater System Example

Figure 5.8 Fault Tree for Oil Heater Computer System

Risk Analysis: Excess Variables - More Boolean Algebra

Figure 5.9 Fault Tree for Excess Variable Illustration

Risk Analysis: Quantifying Failure Modes

- Two Types of Probabilities:
 - The given HW component fails in given failure mode in given period of time
 - Demand probability of HW component will fail to perform intended safety function
- Generic data used in design phase
 - Sources available include:
 - Failure Rates
 - Failure Mode Distributions
 - Demand Failure Probabilities

Risk Analysis: Probabilistic Risk Assessment (PRA)

- Characterized by probability distribution
 - Provides average of data values
 - Provides measure of data dispersion (variance)
- PRA analysts generally use lognormal distribution
 - Overkill for little data/ lack of knowledge of components

We will look at Nominal Value

 $V_{nom} = [V_{min} \times V_{max}]^{1/2}$

Risk Analysis: (PRA) – Heater Example, again

- Source A: 7.0 x 10⁻⁸/hr
- Source B: 5.2 x 10⁻⁷/hr
- Source C: 3.8 x 10⁻⁶/hr
- Source D: 2.8 x 10⁻⁵/hr

• V_{nom} is Geometric Mean (represents middle value for wide range of data)

Not Arithmetic Mean (data with closer values)

Risk Analysis: (PRA) – Heater Example, Nominal Value Chart

 Table 5.17
 Component Data for Oil Heater Computer System Example

Component	Variable	Nominal Value	UF	Source in text
Software (100 lines; 10 year average)	P _S	1.25×10^{-6}	15	Eqn. 5.23
Discrete input	P _{DI}	1.11×10^{-5}	10	Table 5.6
Discrete output	P _{DO}	1.65×10^{-5}	10	Table 5.6
Processor	P _{CPU}	1.89×10^{-5}	10	Table 5.6
Memory	P _M	1.30×10^{-5}	10	Table 5.6
Temperature switch	P _T	1.10×10^{-6}	8	Table 5.4
Temp. sw./DI interconnect	P_{TDI}	3.00×10^{-6}	3	Table 5.7
Heater/DO interconnect	P _{HDO}	1.00×10^{-8}	10	Table 5.7
Electrical heater	P _H	1.26×10^{-7}	20	Table 5.5 & Table 5.11
Relief valve	P _{RV}	1.00×10^{-5}	3	Table 5.12

Risk Analysis: (PRA) – Nominal Value Failure Rates

 Table 5.5 Effector Failure Rates – All Failure Modes

 Commercial Ground-fixed Environment

COMPONENT	FAILURE RATE Nominal Value (Geometric Mean)	UF
Actuator, hydraulic	$3.9 \times 10^{-6}/hr$	129
Clutch	$6.5 \times 10^{-7}/hr$	22
Electric motor, DC	$1.7 \times 10^{-5}/hr$	12
Heater, electrical	$1.4 \times 10^{-6}/hr$	20
Pump, hydraulic	$1.1 \times 10^{-5}/hr$	4
Pump, centrifugal	$1.3 \times 10^{-5}/hr$	4
Relay, electromagnetic	$5.2 \times 10^{-7}/hr$	41
Relay – fail to contact	$3.2 \times 10^{-7}/hr$	3
Relay – short across contact	$1.0 \times 10^{-8}/hr$	10
Relay – open contact	$9.5 \times 10^{-8}/hr$	3
Servo, DC	$2.2 \times 10^{-6}/hr$	6
Solenoid, electric	$1.3 \times 10^{-6}/hr$	3
Solid state relay	$1.4 \times 10^{-7}/hr$	24
Valve, electric motor	$2.2 \times 10^{-6}/hr$	224
Valve, pneumatic	$1.1 \times 10^{-6}/hr$	11

Sources: IEEE 500, NPRD-95, Wash 1400.

Risk Analysis: (PRA) – Nominal Value Failure Rates – Computer Modules

Table 5.6 Failure Rates for Computer Modules – All Failure ModesCommercial Ground-fixed EnvironmentUncertainty Factor (UF) = 10

COMPONENT	MODULE	FAILURE RATE Nominal Value (Geometric Mean)	
CPU and memory	Processor	$18.9 \times 10^{-6}/hr$	
Effector output	Memory	$13.0 \times 10^{-6}/hr$	
	Analog output	$17.9 \times 10^{-6}/hr$	
	Discrete output	$16.5 \times 10^{-6}/hr$	
Sensor input	Relay output	$9.2 \times 10^{-6}/hr$	
	Triac output	$33.8 \times 10^{-6}/hr$	
	A/D converter	$10.4 \times 10^{-6}/hr$	
	Analog input	$15.5 \times 10^{-6}/hr$	
	Discrete input	$11.1 \times 10^{-6}/hr$	
	Contact closure	$10.6 \times 10^{-6}/hr$	
Communications	Bus controller	$19.8 \times 10^{-6}/hr$	
Host electronics	Rack	$2.6 \times 10^{-6}/hr$	
Those electronices	Electrical power supply	$33.0 \times 10^{-6}/hr$	

Data source: See discussion.

Safety Related Testing: Failure Modes and Effects Testing (FMET)

- Failures inserted 2 ways:
 - Physically insert (HW)
 - Sensor/Effector alteration
 - Can be costly, cause damage
 - Data Alteration
 - Alter Signals

Review

- Design Evaluation Methods
 - Qualitative Analyses
 - Failure Modes and Effects Analysis (FMEA)
 - Fault Tree Analysis (FTA)
 - Event Tree Analysis (ETA)
 - Risk Analysis (RA)
 - Failure Modes and Effects Testing (FMET)