FPGAs in Safety-Critical Systems
Advantages and Disadvantages

Marlon C. Winder Jr.
March 22, 2012
Topics For Discussions

• Overview of FPGA Technology
• Modern applications of FPGAs
• Benefits of FPGAs in Safety-Critical Systems
 – Comparison against other technologies
• Example of a safety-critical system
 – Satellite Communication System
• Demonstration
• Questions
What is an FPGA?

• Field-Programmable Gate Array
 – Integrated Circuit
 – User-defined functionality
 • Flexible function
 – Array of high-density logic elements
 • Memory
 • Interconnect
 • DSP elements
 • High-speed Interconnects
 • Analog and Digital I/Os
Modern FPGA Applications

- Telecommunication
 - Satellite Communication
 - Digital signal processing
- ASIC prototyping
 - System-on-Chip (SoC)
 - Embedded processing
- Safety-Critical Systems
 - Medical Imaging
 - Built-In-Self Testing (BIST)
 - Telecommunication Networks
 - Satellite Communication Systems
Leveraging FPGAs in Safety-Critical Systems

- **Advantages**
 - Performance (vs. uProc)
 - Time to Market (vs. ASIC)
 - Cost (vs. uProc)
 - Reliability (vs. uProc)
 - Long-Term Maintenance (vs. ASIC)
 - Reprogrammable (vs. ASIC)
 - Increased reliability (vs. uProc)
 - Logical redundancy

- **Disadvantages**
 - Non-volatile (vs. CPLD)
 - Power consumption (vs. ASIC)
 - Large Package size (vs. ASIC)
 - Embedded processing are implementation-specific (vs. uProc)
 - Cost (vs. ASIC)
Are Communication Systems Safety-Critical?
Are Communication Systems Safety-Critical?

• Many other safety-critical systems are dependent:
 – National Security
 • Military
 – Emergency Response
 • Police
 • Fireman
 • Emergency Notification
 – Power Distribution Systems
 • Nuclear Power Plants

We cannot survive without communication systems!
Satellite Network System

Satellite Modem

Satellite Modem
Designed With Built-In-Self-Test Capability!
Schematic Of Satellite Modem
• **The Processor:**
 – Provides console interface
 – Buffers data packets
 – Implements IP stack

• **The FPGA:**
 – Interfaces with RF signals
 – Validates interfaces and communication to connecter peripherals
 – Communicates status to processor
FPGAs Role In Safety-Critical Systems

- Continuous testing
 - Passive, self checking
 - Detection of faulty parts
 - Useful for manufacturing testing
Demonstration

- FPGA provides BIST
 - Interface testing
- Component configuration
- RF Testing and characterization
- RF loopback testing
- Interactive test capabilities
- Embedded scripting support
 - Provides ability to for specialized test scenarios
 - Embedded Interface
Summary

- FPGAs are commonly used for testing PCB
- Embedded processing
- Self-checking
- Fast turn around time
- Easier to update for changes in future