
EECE 692

Presented by Chukwunweike Ugbome

Howard University

Computers and Risk

ckim
Typewritten Text
WWW.MWFTR.COM EECE691 System Safety Howard University Dr. Charles Kim

Computers and Risk
“We seem not to trust one another as much as would be
desirable. In lieu of trusting each other, are we putting too
much trust in our technology?... Perhaps we are not
educating our children sufficiently well to understand the
reasonable uses and limits of technology”

-T.B. Sheridan

Trustworthiness of command and Control System

Computers
Defined as the electronic machine..

It’s invention 50 years ago has drastically altered our society

The uniqueness and power of the digital computer over other
machines stems from the fact that, for the first time, we have
a general purpose machine.

We no longer need to build a mechanical or analog autopilot
from scratch

Computers
Diagram

Software + General-Purpose Computer

=Special-Purpose

These steps are then loaded into the computer, which while
executing the instructions, in effect becomes the special-purpose
machine(autopilot)

If changes are needed, the instructions can be changed instead of
building a different physical machine from scratch

It’s advantages have led to an explosive increase in their use,
including their introduction into potentially dangerous systems.

2.1 The Role of Computers in Accidents
What Computers do;

Few systems today are built without computers to provide
control functions, to support design, and sometimes to do
both

Computers now control most safety-critical devices

Computers often replace traditional hardware safety
interlocks and protection systems-sometimes with
devastating results

Even if the hardware protection devises are kept, software is
often used to control them

The Role of Computers in Accidents
What Computers cause;
A relatively new breed of hazards and associated problems have
appeared
They appear primarily in flight control systems, armament control
systems, navigation systems and cockpit displays
They add new dimensions to the human-error problem
Some of the hazards result from the crew’s multitude of choices in
aircraft management system, often during prioritization of tasks
Conversely, computer –based systems are supposed to relieve
pilot workload, but perhaps too much in some instances with
resultant complacency and/or lack of situation awareness

The Role of Computers in Accidents
Ways computers are used in safety-critical loops

1. Providing information or advice to a human controller
upon request (2.2a)

2. interpreting data and displaying it to the controller, who
makes the control decisions (2.2b)

3. Issuing commands directly, but with a human monitor of
the computer’s actions providing varying levels of
input(2.2c)

4. Eliminating the human from the control loop
completely(2.2d)

The Role of Computers in Accidents
Providing

information or
advice to a human
controller upon
request (2.2a)

interpreting data
and displaying it to
the controller, who
makes the control
decisions (2.2b)

The Role of Computers in Accidents
Issuing commands

directly, but with a
human monitor of
the computer’s
actions providing
varying levels of
input(2.2c)

Eliminating the
human from the
control loop
completely(2.2d)

The Role of Computers in Accidents

Even if human is eliminated from direct control, the
computer still needs to be supervised: the computer closes
the control loop but humans may be assigned the role of
setting initial parameters, making intermittent adjustments
and receiving information from the computer

SO WHAT?

The Role of Computers in Accidents
The safety implications of computers exercising direct
control over potentially dangerous processes can be beyond
our imagination

Figure 2.3a depicts the obvious danger and the safety laps

Less obvious are the dangers when (as depicted in fig2.3b)

The Role of Computers in Accidents
Figure (a) depicts

the absolute control
of a system by
computer

Figure (b) describes
an indirect control

The Role of Computers in Accidents
Safety implications:

1. software-generated data is used to make safety-critical decisions
(such as air traffic control and medical blood analyzers)

2. software is used in design analysis (such as CAD/CAM)

3. safety-critical data (such as blood bank data) is stored in computer
data bases

The FDA has received reports of software errors in medical
instruments that led to mixing up patients names and data, as well
as reports of incorrect output from laboratory and diagnostic
instruments (such as patient monitors, electro-cardiogram
analyzers and imaging devices

The Role of Computers in Accidents
Safety implications-direct control:

In 1979, the discovery of an error in the software used in the
design of nuclear reactors and their supporting cooling
systems resulted in the Nuclear Regulatory Commission’s
temporary shutdown of five nuclear power plants that did not
satisfy earthquake standards.

There is a serious danger in overreliance on the accuracy of
computer outputs and data bases.

The Role of Computers in Accidents
Safety implications-indirect control
In some cases, companies and government agencies have agued
that software that generate data but does not make decisions such
as air traffic control software is not safety critical or is less than
direct-control software because the human controller makes the
ultimate decision, not the computer.

If diagnostic devices produce incorrect results, the errors may be
readily noticed or may be inconsistent with other clinical signs.

The risk to the patient is less than in the case of software –driven
devices that directly affect patients.

The Role of Computers in Accidents
Safety implications-indirect control

Although risk may be reduced by the use of a human
intermediary , this reduction is by no means assured

If system safety truly is to be increased, then all the
components whose operation can directly or indirectly affect
safety must be considered, and the related hazards must be
eliminated or reduced

The Role of Computers in Accidents
Cost implication and complexity:
Computers add difficulty and cost to accident investigations
For example, in the case of the Therac-25 medical accelerator,
overdoses were first denied and not investigated or were attributed to
transient hardware failures.
Even if the possibility of software error is investigated, subtle errors
that cause accidents in well-tested and sometimes well-used systems are
not easy to find (or to prove that they may or may not exist).
One software error cost millions of dollars to investigate-- it caused the
loss of an F-14 military aircraft.
The widespread use of computers in safety-critical systems is creating
new problems for software and system engineers.

Methods to ensure the safety of computer-controlled systems have lagged
behind the development of these systems

The Role of Computers in Accidents
Proven system safety engineering techniques do not include
software, and because of the unique characteristics of this
new technology, are not easily adapted to software.
Recent introduction of computers to control potentially
dangerous systems and the relatively safe nature of computer
itself(in terms of explosion, fire, or other direct hazards),
few software engineering techniques have been developed to
cope with safety problems
For the most part, standard software engineering techniques
and processes are being used to develop safety-critical
software without any consideration of the special factors and
unique requirements for enhancing safety.

Risk?
Operating and design staff have been made to complain that
programmers resent being watched or checked and that they
produce programs that are not resistant to mistakes, cannot
tolerate plant errors, and are difficult to understand.

No doubt, programmers make similar remarks about
operators and designers.

2.2 Software Myths
If there are problems, why are computers being used so
widely?

The basic reason is that computers provide a level of power,
speed and control not otherwise possible;

-they are relatively light and small

-other supposed advantages of using computers are myths

To make competent decisions about using computers to
control safety-critical processes, it’s important to understand
these myths

Software Myths
Myth classification: based on initial decision to employ
computers to control safety-critical processes

Myth 1

Myth 2

Myth 3

Myth 4

Myth 5

Myth 6

Myth 7

Myth 1
The cost of computers is lower than that of analog or
electromechanical devices

o Reality : this myth like most myths have some superficial
truth

Microcomputer hardware is cheap relative to other
electromechanical devices, however

o The cost of writing and certifying highly reliable and safe
software to make that microprocessor useful together with
the cost of maintaining the software without compromising
reliability and safety, can be enormous

Myth 1 cont.
o The on-board space shuttle software, for example while

relatively simple and small (about 400,000 words) compared
to more recent control systems costs NASA approximately
$100.000,000 annually to maintain

o Designing an electromechanical system is usually much easier
and cheaper, especially when standard designs can be used.

o Software can be built cheaply, but then life costs—including
the costs of accidents and required changes when errors are
found—increase and may become exorbitant

Myth 2
Software is easy to change

Again, this myth is superficially true:

o Unfortunately making changes without introducing error os
extremely difficult

o like the hardware, the software must be completely reverified
and recertified every time a change is made, at what may be
an enormous cost

o software quickly become more “brittle” as changes are
made—the difficulty of making a change without introducing
errors may increase over the lifetime of the software

Myth 3
Computers provide greater reliability than the devices they
replace

Reality : although true in theory

o -software does not “fail” in the sense this term usually implies
in engineering

o -there is little evidence to show that erroneous behavior of
software is not a significant problem in practice

Myth 3 cont.
A study by the British royal signals and radar establishment used
commercially available tools to examine the number of errors in
software written for some highly safety critical systems
-up to 10% of the program modules or individual function were
shown to deviate from the original specification in one or more
modes of operation
-discrepancies were found even in software that had undergone
extensive checking using sophisticated test platforms
-many of the detected anomalies were too minor to have any
perceptible effects

For example, a discrepancy of 1 part in 32,000 in a computation
using 16-bit arithmetic

Myth 4
Increasing software reliability will increase safety

Reality: Software reliability can be increased by removing
software errors that are unrelated to system safety thus
increasing reliability while not increasing safety at all

Software reliability is defined as compliance with
requirements specification while most safety critical software
errors can be traced to errors in the requirements

Safety and reliability while partially overlapping are not the
same thing: Increased computer or software reliability does
not necessarily result in increased system safety

Myth 5
Testing software or “proving”

Reality: The limitations of software testing are well known

Basically the large number of states of most realistic software
makes exhaustive testing impossible only a relatively small
part of the state space can be covered

The use of mathematical techniques to verify the consistency
between the software instructions and the specifications is
another way to gain assurance

However such verification will not solve all of our problems

Myth 6
Reusing software increases safety
Reality: Although reuse of proven software components can
increase reliability, reuse has little or no effect on safety
Reuse can actually decrease safety because of the complacency it
engenders and because the specific hazards of the new system
were not considered when the software was originally designed
and constructed
Example of safety problems arising from reuse of software include
the following
The therac-20 parts of which were reused for the therac-25
contained the same error responsible for at least two deaths in the
therac-25

Myth 6 …
Software used successfully for air traffic control for many
years in the united states was reused in great britan with less
success

Aviation software written for use in the northern
hemisphere often creates problems when used in the
southern hemisphere

Safety is not a property of the software itself but rather a
combination of the software design and the environment in
which the software is used

Myth 7
Computers reduce risk over mechanical systems
Reality: Computers have the potential to decrease risk but not all uses of
computers achieve this potential
Computers can automate tedious and potentially hazardous jobs such as
spray painting and electric art welding thus reducing the risk to workers
in this particular jobs

1. Arguments:
Computers allow finer control in which they can check parameters
more often, perform complicated computations in real time, and take
action quickly

Counter argument:
Computers do provide finer control computations in real time and they
can take action quickly but finer control allows the process to be
operated closer to its optimum and the safety margins can be cut.

Myth 7 …
2. Argument

Automated systems allow operators to work further away from
hazardous areas

Counter argument
Because of lack of familiarity with the hazards, more accidents
may occur when operators do have to enter hazardous areas

3. Argument
By eliminating operators, human errors are eliminated

Counter argument
Operator errors are replaced by human design and maintenance
errors: Humans are not removed from the system, they are merely
shifted to different jobs

Myth 7cont.
4. argument :
Computers have the potential to provide better information
to operators and thus to improve decision making
Counter argument:
While theoretically true, in reality this potential is very
difficult to achieve
5. argument:
Software does not fail
Counter argument:
This common belief is true only for a very narrow definition
of “failure”

Software myth summary
Computers have the potential to increase safety, and surely
this potential will be realized in the future. But we can not
assume that we know enough to accomplish this goal.

Any increased potential may not be realized if those building
the system use it to justify taking more risks.

2.3 Why Software Engineering is Difficult
Why do we have so much trouble engineering software?

1. analog versus Discrete state systems

2. the “Curse of flexibility”

3. Complexity and Invisible Interfaces

4. Lack of historical usage information

Why Software Engineering is Difficult
Analog versus Discrete (software) state system
in control system, the computer is usually simulating the behavior of an
analog controller
the translation of the function from analog to digital form may introduce
inaccuracies and complications
The same type of mathematical analysis used to predict the behavior of
physical systems do not apply to discrete (software) systems
factors such as time, finite-precision arithmetic and concurrency are
difficult to handle (there is progress but we are far from being able to
handle even small software)
mathematical specification or proves of software properties may be the
same size as the program, more difficult to construct and often harder
to understand than the program
mathematical specification of discrete systems are as prone to error as
the code itself

Why Software Engineering is Difficult
The “Curse of Flexibility”

• A computer’s behavior can be easily changed by changing its
software
--in reality, the apparent low cost and ease of changing software is
deceptive
--it encourages major and frequent change, which often increases
complexity rapidly and introduces errors
--flexibility encourages redefinition of task late in the
development process in order to overcome deficiencies found in
other parts of the system
--major design modifications are much more difficult to make than
minor ones as the properties of the physical material in which the
design is embedded provide natural constraints on modification

Why Software Engineering is Difficult
The “Curse of Flexibility” cont.

While natural constraints enforce discipline on the design,
construction and modification of a physical machine, these
constraints do not exist for software

Nature imposes discipline on the design process which helps
to control complexity, in contrast software has no
corresponding physical limitations or natural laws which
makes it too easy to build enormously complex designs
(figure 2.4)

Why Software Engineering is Difficult
Software has no

physical limitations
or natural laws
which makes it too
easy to build
enormously
complex designs

Why Software Engineering is difficult
The myth of software flexibility also encourages premature
construction before we fully understand what we need to do

Another trap of software flexibility is the ease with which partial
success is attained often at the expense of unmanaged complexity

Software works correctly most of the time, but not all of the time

Once a programs complexity has become unmanageable, each
change is likely to hurt as to help

Like airplane complexity, software complexity can be controlled
by appropriate designed discipline which people must impose not
nature

Why Software Engineering is difficult
Complexity and invisible interfaces

one way to deal with complexity is to break the complex
object in to pieces or models

Errors occur because the human mind is unable to fully
comprehend the many conditions that can arise though the
interactions of components

An interface between two programs is comprised of all the
assumptions that the programs make about each other

Humans can only cope with very little complexity

Why Software Engineering is difficult
Lack of historical usage information

A final difficulty with software not found in hardware
systems is that no historical usage information is available to
allow measurements, evaluations, and improvements on
standard designs

2.4 The reality we face
When systems were composed of only electromechanical and
human components, engineers knew that random wear out
failures and human errors could be reduced and mitigated
but never completely eliminated

They accepted ways to build systems that were robust and
safe despite random failures

Design errors could also be handled fairly well through
testing and reused of proven design

In reality the time to create perfect software is never there,
and never can be

Questions!!!!

