Chapter 1: Safety-Critical Computer System Design and Evaluation

Howard University Department of Electrical and Computer Engineering
EECE 692 System Safety
Isaac Collins
1.1 The Safety-Critical Computer System

- “Safety-Critical” applies to wide family of applications

- Failure can lead to:
 - Injury
 - Death
 - Property/Environmental Damage
1.1 The Safety-Critical Computer System

- Reasons for Broad Applications:
 - Global Perspective
 - Most safety-related systems don’t fall into high-visibility category
 - **Combined losses of these systems far exceed those that command widespread public attention**
 - In terms of total human suffering and loss of property
1.1 The Safety-Critical Computer System: The Computer System

- In this system, the computer provides real-time control/monitoring of an application
 - Chemical process
 - Aircraft in flight
 - Automobile anti-skid brake
 - Artificial heart
 - Production assembly line

- Application also referred to as “plant” or “process”
1.1 The Computer System, cont’d

- Sensors (Field Instruments)
 - Let computer know what is happening in application
- Effectors (Actuators/Final Elements)
 - Allow computer to control physical parameters in application based on sensed information
1.1 The Computer System, cont’d

- **The Computer**
 - Single-chip microcontroller
 - Custom microprocessor-based controller
 - PLC (Programmable logic controller)
 - DCS (Distributed control system)
 - Airborne flight computer
 - PC-based controller
 - Other programmable electronic systems

- **The Operator**
1.1 The Computer System: Two Basic System Types

- **Computer Control Systems**
 - Operator, computer, sensor, effectors are employed to actively control the application
 - Continuous monitoring, continuously issuing controls

- **Computer Safety Systems**
 - Same components but used to passively monitor the application
 - Continuous monitoring, controls issued when dangerous state is sensed
1.2 Safety-Critical Computer System Design - Overview

- Partitioning the Design Problem:
 - Functional/Operational requirements not directly safety-related
 - Safety-related requirement
 - System does not fail and produce an unsafe condition
1.2 Safety-Critical Computer System Design: Example

- **Industrial Gas Furnace**
 - First (non-safety) Requirement?
 - Automatically control gas flow to maintain temperature
 - Second (safety-related) Requirement?
 - System shouldn’t fail
 - Should not produce an over-temperature condition
1.2 Safety-Critical Computer System Design: Safety Requirements

- **System Safety**
 - Employs distinct set of engineering/management principles, criteria, techniques
 - Help define safety requirements
 - Show how the design process should be structured to realize safe system

- **Key Elements**
 - Addresses the system life cycle
 - Requires a distinct management effort
 - Is a multidisciplinary effort
 - Is built around safety standards
1.2 Safety-Critical Computer System Design: Safety Requirements

- **System Life Cycle**
 - All phases of system’s life
 - Design
 - Research
 - Development
 - Test and Evaluation
 - Production
 - Deployment (inventory)
 - Operations and Support
 - Disposal
1.2 Safety-Critical Computer System Design: Safety Requirements

- **System Safety Management**
 - System may change hands (management) many times
 - Normal Employee Turnover
 - Effective Management Will Include
 - Design and documentation standards and practices
 - System configuration management
 - Tracking system for verifying safety issues raised are resolved
1.2 Safety-Critical Computer System Design: Safety Requirements

• Multidisciplinary Effort
 ▫ Systems are made safe through efforts of all responsible: involved in creation, operation, maintenance, and retirement from service
 ▫ Includes
 • HW/SW design engineers
 • Test engineers
 • Reliability and risk analysts
 • Operating Engineers
 • Maintenance Engineers/Technicians
 • Managers
1.2 Safety-Critical Computer System Design: Safety Requirements

- System Safety
 - Governed by Safety Standards
 - Public Law/Government Regulations
 - Documents produced through work by industry committees, professional societies, safety-related institutions
 - Two Important/Common Standards
 - MIL-STD-882D (Military Standard)
 - IEC 61508 (Commercial Standard)
1.2 Safety-Critical Computer System Design: Safety Requirements

- **MIL-STD-882D**
 - “Standard Practice for System Safety”
 - Issued by DoD in February 2000
 - Presents basic requirements that apply to computer control systems and computer safety systems
 - Contains both *requirements* and *guidance* to aid user in applying standard
 - *Over 300 pages?*
1.2 Safety-Critical Computer System Design: Safety Requirements

- IEC 61508
 - “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems”
 - Approved by International Electrotechnical Commission (IEC) in 2000
 - Several hundred pages
 - Addresses safety-critical computer control systems and computer safety systems
 - Chapter 6...
1.2 Safety-Critical Computer System Design: Mishaps and Mishap Risk

• Mishap
 ▫ An unplanned event or series of events resulting in death, injury, occupational illness, damage to or loss of equipment or property, or damage to environment (MIL-STD-882D)
 • Airliner crash
 • Nuclear meltdown
 • Refinery fire
 • Toxic gas release
 • Natural gas explosion
1.2 Safety-Critical Computer System Design: Mishaps and Mishap Risk

- Mishap Risk
 - An expression of the impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence (MIL-STD-882D)
 - Possibility of automobile accident
 - Think about not only severity, but also likelihood that the severity could happen
1.2 Safety-Critical Computer System Design: Mishaps and Mishap Risk

- Acceptable Risk?
 - MIL-STD-882D has Four Categories:
 - Negligible
 - Marginal
 - Critical
 - Catastrophic

 - Each level assigned based on degree of
 - Human suffering
 - Amount of dollar loss
 - Extent of damage to the environment
1.2 Safety-Critical Computer System Design: Mishaps and Mishap Risk

- Acceptable Risk for IEC 61508?

<table>
<thead>
<tr>
<th>Safety Integrity Level</th>
<th>Consequence of Safety-Related System Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minor property and production protection.</td>
</tr>
<tr>
<td>2</td>
<td>Minor property and production protection. Possible employee injury.</td>
</tr>
<tr>
<td>3</td>
<td>Employee and community protection.</td>
</tr>
<tr>
<td>4</td>
<td>Catastrophic community impact.</td>
</tr>
</tbody>
</table>

- Safety Integrity
 - The probability of a system satisfactorily performing safety functions under all stated conditions within stated period of time.
1.3 The Design Process: Hazards

- **Hazard**
 - *Any real or potential condition that can cause*
 - Injury, illness, death to personnel
 - Damage to/loss of system, equipment, or property
 - Damage to environment
 - **Examples**
 - Loss of flight control
 - Loss of nuclear reactor cooling
 - Use of flammable substances
 - Presence of toxic gases in populated environment
 - Presence of natural gas
1.3 The Design Process: Safety-Critical Computer System Design Approach

- **Safety-Critical Approach**
 - Identify hazards and mitigate them so acceptable level of mishap risk is achieved

- **Design Steps**
 - System definition
 - Hazard identification and analysis
 - Mishap risk mitigation
 - Mishap risk assessment and acceptance
1.3 The Design Process: Hazard Identification and Analysis

- After system is defined, identify hazards
 - Based on systematic examination of sources of energy and toxicity in application
 - (formal process beyond the scope of this book)
- Once identified, causes must be determined before design proceeds
 - Fault Tree Analysis (Chpt. 5)
 - Failure Modes and Effects Analysis (Chpt. 5)
1.3 The Design Process: Hazard Identification and Analysis

- **Failure vs Fault**
 - Failure: does not perform a duty or expected action
 - Fault: a defect
- **Example: Effector Failure**
 - System employs computer-actuated safety valve that closes if computer senses a hazardous event
 - Event occurs, computer senses and signals valve
 - Valve may experience *failure* (may not close) due to *fault* of worn bearing (hardware fault), missing spring (personnel error), or excessive ambient temperature (environmental condition)
1.3 The Design Process: Hazard Identification and Analysis

- Mishap Analysis for the Basic System with no safety features
1.3 The Design Process: Mishap Risk Mitigation

- MISHAP
 - INCORPORATE EXTERNAL SAFETY DEVICES
 - HAZARD EVENT (APPLICATION)
 - INCORPORATE INTERNAL SAFETY AND WARNING DEVICES
 - SENSOR FAILURE
 - EFFECTOR FAILURE
 - COMPUTER HARDWARE FAILURE
 - COMPUTER SOFTWARE FAILURE
 - OPERATOR FAILURE
 - IMPROVE RELIABILITY AND QUALITY
 - ONE OR MORE OF:
 - HARDWARE FAULTS
 - SOFTWARE FAULTS
 - PERSONNEL ERROR
 - ENVIRONMENTAL CONDITIONS
 - DESIGN INADEQUACIES
 - PROCEDURAL DEFICIENCIES
 - OTHER CAUSES
1.3 The Design Process: Mishap Risk Mitigation

• Incorporate Internal/External Safety Devices
 ▫ Internal: placed within the computer system
 • Software patches, additional sensors
 ▫ External: placed outside computer system
 • Change of location, personnel, management

• Layers of Protection
 ▫ Distribute effort across all three risk mitigation measures in balanced manner
 • Produces minimum mishap risk
Review

- 1.1 The Safety-Critical Computer System
- 1.2 Safety-Critical Computer Design
- 1.3 The Design Process