Chapter 1: Safety-Critical Computer System Design and Evaluation

Howard University Department of Electrical and Computer Engineering EECE 692 System Safety Isaac Collins

1.1 The Safety-Critical Computer System

- "Safety-Critical" applies to wide family of applications
- Failure can lead to:
 - Injury
 - Death
 - Property/Environmental Damage

1.1 The Safety-Critical Computer System

- Reasons for Broad Applications:
 - Global Perspective
 - Most safety-related systems don't fall into highvisibility category
 - **Combined losses of these systems far exceed those that command widespread public attention
 - In terms of total human suffering and loss of property)

1.1 The Safety-Critical Computer System: The Computer System

- In this system, the computer provides real-time control/monitoring of an application
 - Chemical process
 - Aircraft in flight
 - Automobile anti-skid brake
 - Artificial heart
 - Production assembly line
- Application also referred to as "plant" or "process"

1.1 The Computer System, cont'd

- Sensors (Field Instruments)
 - Let computer know what is happening in application
- Effectors (Actuators/Final Elements)
 - Allow computer to control physical parameters in application based on sensed information

1.1 The Computer System, cont'd

• The Computer

- Single-chip microcontroller
- Custom microprocessor-based controller
- PLC (Programmable logic controller)
- DCS (Distributed control system)
- Airborne flight computer
- PC-based controller
- Other programmable electronic systems
- The Operator

1.1 The Computer System: Two Basic System Types

- Computer Control Systems
 - Operator, computer, sensor, effectors are employed to actively control the application
 - Continuous monitoring, continuously issuing controls
- Computer Safety Systems
 - Same components but used to passively monitor the application
 - Continuous monitoring, controls issued when dangerous state is sensed

1.2 Safety-Critical Computer System Design - Overview

- Partitioning the Design Problem:
 - Functional/Operational requirements not directly safety-related
 - Safety-related requirement
 - System does not fail and produce an unsafe condition

1.2 Safety-Critical Computer System Design: Example

- Industrial Gas Furnace
 - First (non-safety) Requirement?
 - Automatically control gas flow to maintain temperature
 - Second (safety-related) Requirement?
 - System shouldn't fail
 - Should not produce an overtemperature condition

- System Safety
 - Employs distinct set of engineering/management principles, criteria, techniques
 - Help define safety requirements
 - Show how the design process should be structured to realize safe system

• Key Elements

- Addresses the system life cycle
- Requires a distinct management effort
- Is a multidisciplinary effort
- Is built around safety standards

- System Life Cycle
 - All phases of system's life
 - Design
 - Research
 - Development
 - Test and Evaluation
 - Production
 - Deployment (inventory)
 - Operations and Support
 - Disposal

- System Safety Management
 - System may change hands (management) many times
 - Normal Employee Turnover
 - Effective Management Will Include
 - Design and documentation standards and practices
 - System configuration management
 - Tracking system for verifying safety issues raised are resolved

- Multidisciplinary Effort
 - Systems are made safe through efforts of all responsible: involved in creation, operation, maintenance, and retirement from service
 - Includes
 - HW/SW design engineers
 - Test engineers
 - Reliability and risk analysts
 - Operating Engineers
 - Maintenance Engineers/Technicians
 - Managers

- System Safety
 - Governed by Safety Standards
 - Public Law/Government Regulations
 - Documents produced through work by industry committees, professional societies, safetyorelated institutions
 - Two Important/Common Standards
 - MIL-STD-882D (Military Standard)
 - IEC 61508 (Commercial Standard)

• MIL-STD-882D

- "Standard Practice for System Safety"
- Issued by DoD in February 2000
- Presents basic requirements that apply to computer control systems and computer safety systems
- Contains both *requirements* and *guidance* to aid user in applying standard
- Over 300 pages?

- IEC 61508
 - "Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems"
 - Approved by International Electrotechnical Commission (IEC) in 2000
 - Several hundred pages
 - Addresses safety-critical computer control systems and computer safety systems
 - Chapter 6...

- Mishap
 - An unplanned event or series of events resulting in death, injury, occupational illness, damage to or loss of equipment or property, or damage to environment (MIL-STD-882D)
 - Airliner crash
 - Nuclear meltdown
 - Refinery fire
 - Toxic gas release
 - Natural gas explosion

- Mishap Risk
 - An expression of the impact and possibility of a mishap in terms of potential mishap severity and probability of occurrence (MIL-STD-882D)
 - Possibility of automobile accident
 - Think about not only severity, but also likelihood that the severity could happen

- Acceptable Risk?
 - MIL-STD-882D has Four Categories:
 - Negligible
 - Marginal
 - Critical
 - Catastrophic
 - Each level assigned based on degree of
 - Human suffering
 - Amount of dollar loss
 - Extent of damage to the environment

• Acceptable Risk for IEC 61508?

Safety Integrity Level	Consequence of Safety-Related System Failure
1	Minor property and production protection.
2	Minor property and production protection. Possible employee injury.
3	Employee and community protection.
4	Catastrophic community impact.

- Safety Integrity
 - The probability of a system satisfactorily performing safety functions under all stated conditions within stated period of time

1.3 The Design Process: Hazards

- Hazard
 - Any real or potential condition that can cause
 - Injury, illness, death to personnel
 - Damage to/loss of system, equipment, or property
 - Damage to environment
 - Examples
 - Loss of flight control
 - Loss of nuclear reactor cooling
 - Use of flammable substances
 - Presence of toxic gases in populated environment
 - Presence of natural gas

1.3 The Design Process: Safety-Critical Computer System Design Approach

- Safety-Critical Approach
 - Identify hazards and mitigate them so acceptable level of mishap risk is achieved
- Design Steps
 - System definition
 - Hazard identification and analysis
 - Mishap risk mitigation
 - Mishap risk assessment and acceptance

1.3 The Design Process: Hazard Identification and Analysis

- After system is defined, identify hazards
 - Based on systematic examination of sources of energy and toxicity in application
 - (formal process beyond the scope of this book)
- Once identified, causes must be determined before design proceeds
 - Fault Tree Analysis (Chpt. 5)
 - Failure Modes and Effects Analysis (Chpt. 5)

1.3 The Design Process: Hazard Identification and Analysis

• Failure vs Fault

- Failure: does not perform a duty or expected action
- Fault: a defect

• Example: Effector Failure

- System employs computer-actuated safety valve that closes if computer senses a hazardous event
- Event occurs, computer senses and signals valve
- Valve may experience *failure* (may not close) due to *fault* of worn bearing (hardware fault), missing spring (personnel error), or excessive ambient temperature (environmental condition)

1.3 The Design Process: Hazard Identification and Analysis

1.3 The Design Process: Mishap Risk Mitigation

1.3 The Design Process: Mishap Risk Mitigation

- Incorporate Internal/External Safety Devices
 - Internal: placed within the computer system
 - Software patches, additional sensors
 - External: placed outside computer system
 - Change of location, personnel, management
- Layers of Protection
 - Distribute effort across all three risk mitigation measures in balanced manner
 - Produces minimum mishap risk

Review

- 1.1 The Safety-Critical Computer System
- 1.2 Safety-Critical Computer Design
- 1.3 The Design Process