

Howard University Department of Electrical and Computer Engineering

VOLTAGE FAULT PROTECTION SYSTEM FOR GRID-TIED RENEWABLE ENERGY SYSTEM

11-14-2007

Member:

Abdoulaye Sy Kalifa Llewellyn Emmanuel Ekatah Opeyemi Liadi

Background

☐ Total use of Renewable Energy will increase to 53% by 2020.

Renewable Energy poses a problem of Voltage fluctuations.

□Customers need a device that will protect them and their appliances from damages due to sag and surge in voltage.

Consumer's need the voltage supply to be constant.

Problem Formulation

Homes with grid-connected RE have a greater risk of voltage fault

Fig: 1: Failures by main component as reported by the system owners under the »1000-Roofs-Programme« (Erge et al. 1998).

Design Requirements

Alternative Solutions

- Use three-level converters
- Install a voltage regulator (Voltage stabilizer)

Constraints

- Safety measures must be followed
- Must be automated
- The range rated voltage on appliance

Knowledge Contents

- Electronics
- Power Analysis
- Power communications
- Network Analysis

Solution Methodology

Fig: Methodology Flow chart

- •system functionality will be:
- •Detect fault in the system by:
 - Measurement of voltages
 - •Evaluate the fault
- •Protect system:
 - •Isolate the Fault

Solution Approach – Main

Protection Control unit

- Voltage Data Logger
- •CPU
- Switch

Fig: Overall system of a grid-connected RE system with Voltage Fault Protection System.

Alternative Solutions

Use of a voltage regulator (Voltage stabilizer)

Drawback:

 Will not be able to isolate the fault caused on the distribution side.

O Three-level converters

o reduces high voltage ratings for the switches and good dynamic switching

Drawback:

 Does not address the situation whereby we have low voltage ratings

Tasks and Project Management

Milestones	Timeline
Problem Definition	November, 2007
Technology and Implementation Selection	December, 2007
End-product Design	January, 2008
End-product Prototype	February, 2008
End-product	March, 2008
Demonstration and Final Report	March, 2008

Verification Plan and Deliverables

Verificatioon Plan:

- Investigate several devices that could be used to mitigate unforeseen voltage fault problem
- Get the range/zone based on the information provided by the devices.
- Design a device that will eliminate the use of voltage not within the safety range.
- Check that the system operates within the specified range.
- Troubleshoot system

Deliverables:

- A control unit mounted on board :
- Voltage data logger
- CPU
- Switch

Cost and Resources

Component	Order cost
Voltage Data Logger	\$70
PIC16F877A- I/P	\$10.00
RS232 Converter	\$15.00
Switch	\$5.00
Miscellaneou s	\$20.00

\$120.00

Conclusion

- Protect loads against voltage faults arising from the grid-tied
 - Vulnerable to voltage faults
- Need for further advancements in the technology that provides protection
 - Security and Financial benefits