WWW.MWFTR.COM

Hockey Puck Tracking System

Paul Booker Nia Bradley Ebonie Davis Pameshanand Mahase Duane Smiley Daniel Ward

Background

 Ease of loss of the hockey puck due to parameters such as:

- Small size—NHL regulation pucks are 3 inches in diameter: 1 inch thick
- Puck moves very quickly, sometimes in unexpected directions

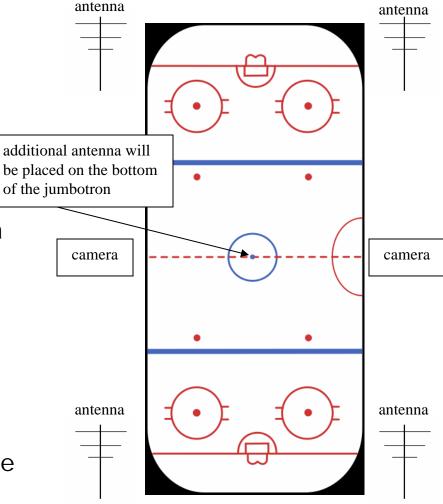
Problem vision

 Need for better hockey puck tracking system

Problem Formulation

o Components

- Transmitter device for hockey puck
- Antenna
- Transmitter-receiver
- Computer controlled motor for camera movement
- Electronic equipment operation
 - 12-24 VDC
 - 120 VAC (US & Canada) and 220- 240 VAC (other countries)
- o Embedded transmitter
 - 70mm x 70mm
- Antennas inconspicuous
- Camera base large enough to accommodate all camera tripod sizes

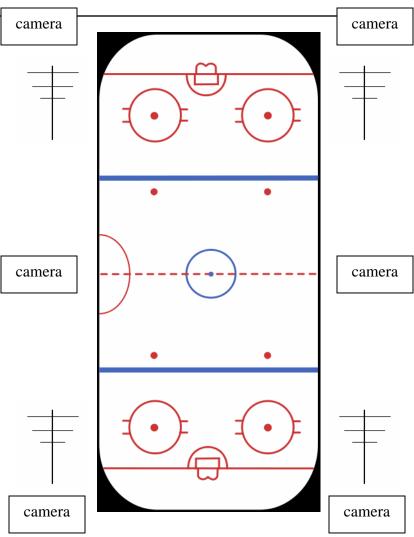

Problem Formulation

Regulations

- Comply with FCC part 15 subsections C and D
- Transmitter device
 - IEEE 1902.1
- Final product
 - Product reliability IEEE Standard 1332-1998
- European Union Directive (90/544/EEC) must be followed for European customers
- Adherence to Canadian ICES-003 is mandatory for sales in Canada

Solution Approach – primary idea

- Primary Solution: Radio
 Signaling System
 - Embedded radio tag
 - 4-5 antennas
 - 2 motorized camera bases
 - 1 reader for each camera
- Advantages:
 - Fewer cameras makes position programming simpler
- Disadvantages:
 - Lack of cameras could complicate situation if one camera fails


Solution Approach – Alternative 1

Alternate Solution: Integrated Camera Circuit

- Camera tracks the puck instead of the motorized base.
- Setup of cameras, tag, and antennas will be the same
- o Advantages:
 - Less mechanical parts
- o Disadvantages:
 - More complicated to design

Solution Approach – Alternative 2

- Alternate Solution:
 6-camera grid
 - 6 cameras cover 6 areas of rink
- Advantages:
 - Less stress on motors
- o Disadvantages:
 - More position programming needed

Tasks & Project Management

November 2007

 Prepare to present proposed idea to a group of professors for evaluation.

December 2007

- Finalize Low-Level specifications
 - Design schematics
 - Identify all components
 - Component Interfaces
- Budget review
- Buy parts for prototype

January 2008

- Initial Building and Testing
 - Implant Transmitting device
 - Create Controlled Environment

- Establish Communication
 - Transmitting Device w/Antennas
 - Antennas w/Receiver
- Test Functionality

February 2008

- Build Motor Base
- Create Motor Control Program
- Establish communication
 - Transmitter w/Motor Base
 - Test Functionality
- Control of Motor Base
- March 2008
 - Completed design

Planned Deliverables

- Complete:
 - High-level and low-level concepts
 - Management of project
 - Assembly of prototype
- o Major Deliverable
 - Hockey Puck Tracking System
- o Demonstration
 - Create Controlled Environment
 - Box (size of average door)
 - Utilize Hockey Puck Tracking System
 - o Antennas
 - o Transmitted
 - Transmitter-Receiver
 - Motorized Base
 - LED Pointer
 - Replica

Cost & Resources

Resources

- The Internet
- CEACS Faculty and Professors
- NHL National Hockey League

OProjected Budget

- Electric Motor \$350
- Framing Material for Base \$50
- Transmitter device \$2/device
- Antenna \$150
- Transmitter-receiver \$200
- Computer Software Free
 - VHDL
 - C++

Conclusion

 Team HPT is looking forward to exploring various approaches to meeting the needs of a tracking system for implementation into the game of hockey

Design Process Outline

- Project approval
- High-level and low-level concepts
- Management of project
- Prototype assembly
- Completion of final design