WWW.MWFTR.COM

INNOVATION

Hockey Puck Tracking System

Nia S. Bradley Ebonie Davis Daniel Ward

Rick Mahase Duane Smiley Paul Booker

April 17, 2008

Problem Formulation

- Problem Statement
 - Tracking a high speed moving hockey puck
- Background
 - A common complaint among American hockey fans is that the puck is difficult to follow on the ice when watching a game on TV.
 - Team HPT devised a means of tracking a hockey puck in specific areas to make the hockey puck more visible to the audience on television.

Difficulty viewing the puck?

Video courtesy of Michigan Technical University

Alternative Designs

Ultrasonic Technology
Visual object tracking algorithm
Tracker with Single Board Computer Interface
Transmitter & Receiver with Repeaters

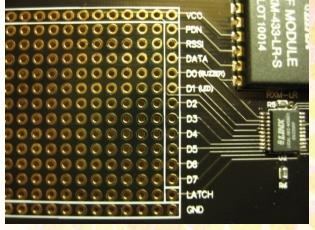
Magnetic Sensor with Grid

Final Design

- Use a transmitter and receiver to determine intensity level of signal transmission
- Use two receivers with various level ranges to determine positioning of the transmitter located inside the hockey puck
- When hockey puck location is identified, motor turns in direction of puck positioning

Implementation Plan

Aspects of Implementation: Transmitter and Receiver Analog readings from receiver PIC Coding Voltage Identification Motor Control A/D Conversion Soldering


Gantt Chart

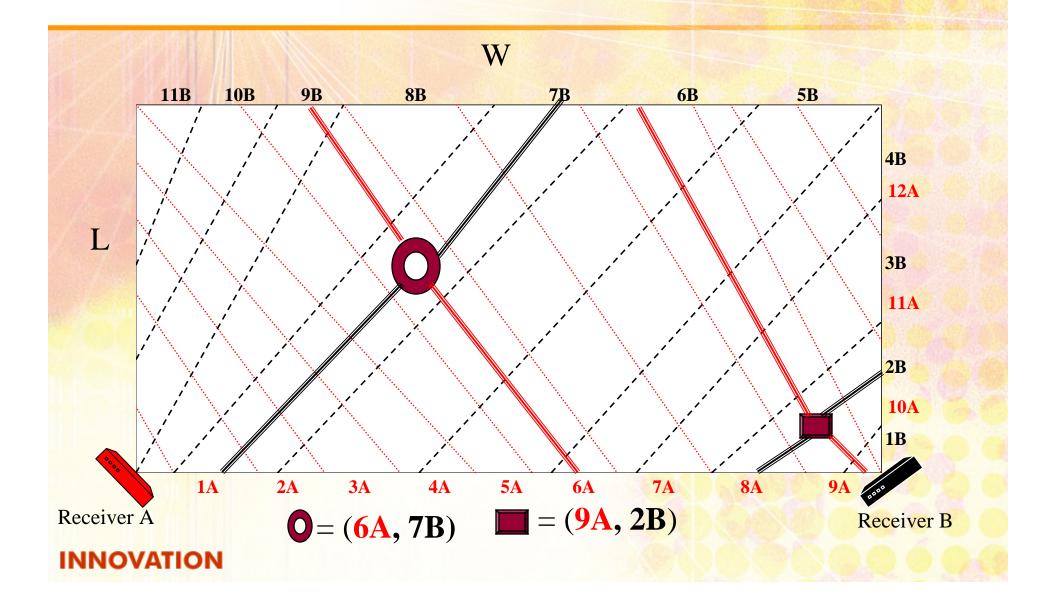
Activity	Spring 2008										
CONTRACT AND	8-Jan	22-Jan	29-Jan	4-Feb	27-Feb	6-Mar	13-Mar	19-Mar	31-Mar	7-Apr	17-Apr
Consultations and Advising							12		T.C.		
Parts Researched											
Component Purchase				4\\\							
PIC Chip Coding	Servo Motor Transmitter & Receiver										
Receiver Testing PIC Chip Interface Testing											
						Servo Motor	Servo Motor/	Transmitter & I	Receiver		
Complete System/ Troubleshooting									Comple	ete Project	

Transmitter & Receiver

- 1 Transmitter & 2 Receivers
 - 433 MHz op. freq.
 - 3V power supply on eval. boards
 - 9V power supply on dev. board
- Receive voltage output reading at the RSSI pin
- Voltage output is proportional to the signal intensity.

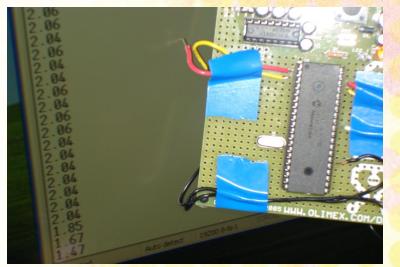
Servo Motor

- 6 voltage max
- 0 to 180 degrees rotation
- 20ms Period
- Use timing delays to specify position of motor to desired degrees

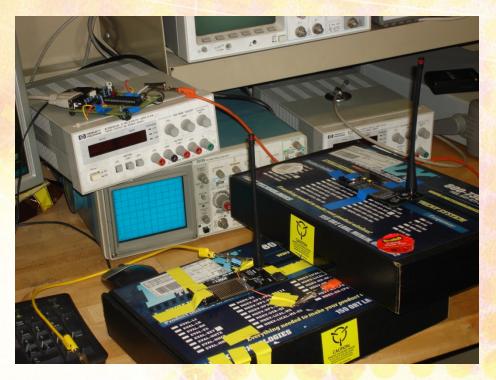


Microcontroller - PIC16F877A

- 20 MHz clock input
- Read voltage from RSSI pin on receiver
- Used 10-bit analog-todigital conversion to convert voltage from receiver to digital value
- Controls motor


Coordinate System

Implementation


- Communication between transmitter and receiver
- Voltage is outputted from RSSI pin
- Voltage used as an input to the PIC
- A/D conversion performed input voltage

Implementation

- Digital voltage stored in memory
- Tested voltage valued stored in RAM
- Voltage read from the RSSI pin compared to tested voltage

Implementation

- If the compared voltages match the motor subroutines are then called to instruct the motor to move the motor
- Motor moved to specified position based off predetermined coordinate system

Design Challenges

- Inaccurate voltage readings between receiver and microcontroller
- Delay time between components very slow
- Time constraint for entire design implementation
- Budget constraint for entire design implementation

Future Recommendations

- Recommend quality components for implementation
- Research time delay for each component and calculate total delay time for system vs. delay time needed to track a hockey puck

Special Thanks

College of Engineering, Architecture, and Computer Science

- Hobby Works
- National Hockey League

INNOVATION

Thank you for your time Questions or Comments?

