E-TRIKE

By;

TiAuna Dodd,Breyonna Pinkney,
Mercy J. Daniel-Aguebor, Felicia Long,
Adaugo Anyamele, Kasandra Price

Advisor: Tim Brown

Background: Why an Electric Tricycle?

- Clean energy transportation
- Less expensive
- Conveniency of a vehicle and efficiency of a bicycle
- Eases stress for Commuters, people of older age, people who have trouble balancing a bike
- Comfortability

Problem Formulation

Target Users: Commuters, people of older age, people who have trouble balancing a bike

Problem Definition: To create a mainstream source of transportation that

is safe and reliable. This is the Recumbent Electric Tricycle

Primary Objective: Make the bike user friendly

Constraints

- Sociocultural: Consideration of users with different smartphones and the type of connectivity
- Financial: The total cost of each part \$800.
- Intellectual: No prior experience in app development
- Size: Battery is less than 750 watts

Standards and Regulations

- The Consumer Safety Product Commission (CSPS)
 - Does not require a license or registration
 - wheels at least 16 inches in diameter
 - o a source of power no more than 20 mph.
 - o Class 2 Bike
- Code of Federal Regulation
 - 16 CFR 1512 "FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES"
- USPTO
 - The E-trike must not infringe on the rear axle Tricycle Apparatus pattern

Design Requirements

- Have a lithium battery that weighs less than 5 pounds and at least 700W
- The entire trike should weigh between 80-100 pounds
- Go at least 10 mph on a single charge and the max speed must be 20 mph
- Be rechargeable in a safe and user friendly way

What is on the market now?

- Price \$2,200
- Est. Max Range 15 miles
- Pedal Assist

- Price \$12, 985
- Est. Max Range 65 miles
- Capability for Solar Charging

Current State of Art

- Cheaper <\$1000
- Comfortable and safe to ride
- Not exposed to the elements
- Cool Factor

Solution Approaches - Design 1

- Buttons
- Signals
- Throttle Assist
- Light Signals

Solution Approaches: Design 2

Dashboard

BATTERY MANAGEMENT

Solar Panels

Lithium Battery

- Battery level Indicator
- LED battery display
- GPS
- Input Function

Solution Approaches: Design Matrix

	Weight	Design1	Score	Design2	Score
Functionality	5	Tricycle, battery, App,lights	5	Solar panels, seat belt	5
Connectivity	3	App, Sensor	5	n/a	0
Weight	2	Heavy due to battery	3	2-4lbs per sq ft. solar panels+mounting equipment	1
Power	5	lights=more power	3	Solar Panels	4
Convenience	2	High-has an App	4	No phone needed	3
Price	5	High: <\$1,000	3	Higher: >\$1,000	1
TOTAL			111		83

Top Solution Design - Crunching the numbers

Assuming: Total Weight [Bikers weight plus weight of bike] = 280 pounc

Constant speed, no gear/acceleration, optimal efficiency

$$P_{total} = P_{drag} + P_{R_c} + P_{hill}$$

Average power of an human pedaling is 400W

Using a Simulator

Human Provided Power	Range	Battery Power Needed
200W	32 miles	600W(47.5V)/25A
ow	25 miles	742W(46.8V)
400W	48.3	473W(48.3V)

Important Parts of the Electric Bike

Rear mounted Geared Motor

- Moves the bike
- Single rear wheel
- 700W, 48V
- Lightweight

18650 LIPO cells

- Powers the bike
- 700W, 48W
- Durable
- Lightweight

Arduino BT Microcontroller

- Controls everything
- Cheap
- Easily customizable

IOS Mobile Application

- Has potential for internet of things
- Improves user experience
- Fun!

Top Solution Design

Final Schematic

INPUT

Battery

Arduino

Battery Management
System

Arduino

Battery Management
System

Motor(Wheels)

OUTPUT

Phone Application

GPS

Speedometer
Battery Charge
Smart Lights

Signal Lights

Motor(Wheels)

How the Final Product will work

- The principle stay the same but we will be decreasing cost
- Improving user experience
- And solving a problem to increase usage
- Improving safety
- And opening the limits for internet of things with bikes

THANK YOU

