Electric-Tricycle

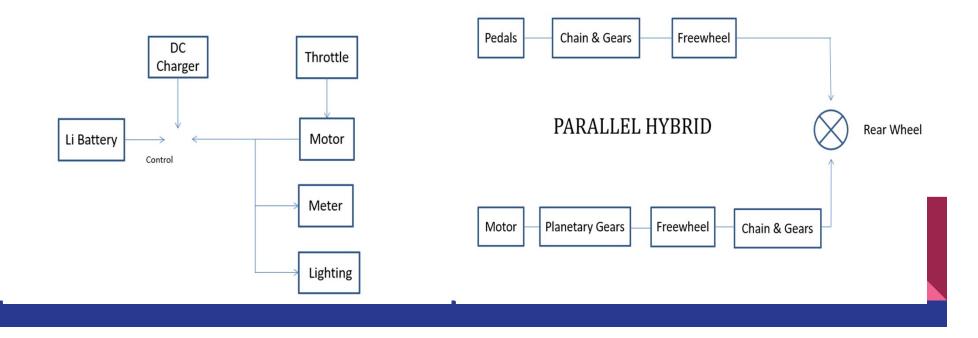
BY:

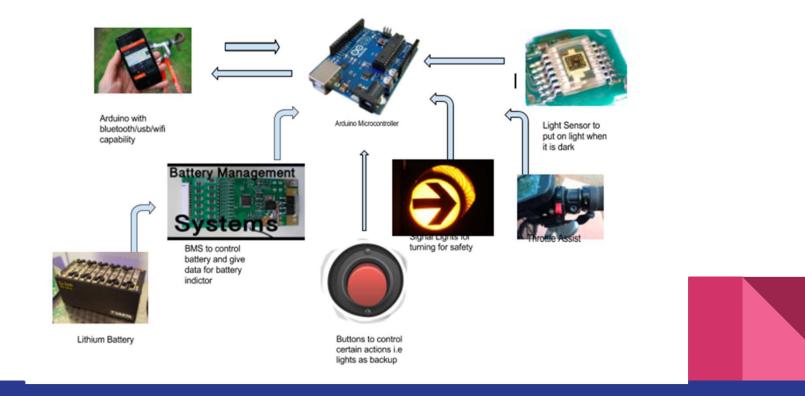
Kasandra Price, Mercy Daniel-Aguebor, Felicia Long, Breyonna Pinkney, Tiauna Dodd, Adaugo Anyamele

Problem

- Clean energy transportation
- Less expensive
- Conveniency of a vehicle and efficiency of a bicycle
- Change target market
- Comfortability
- Advanced design

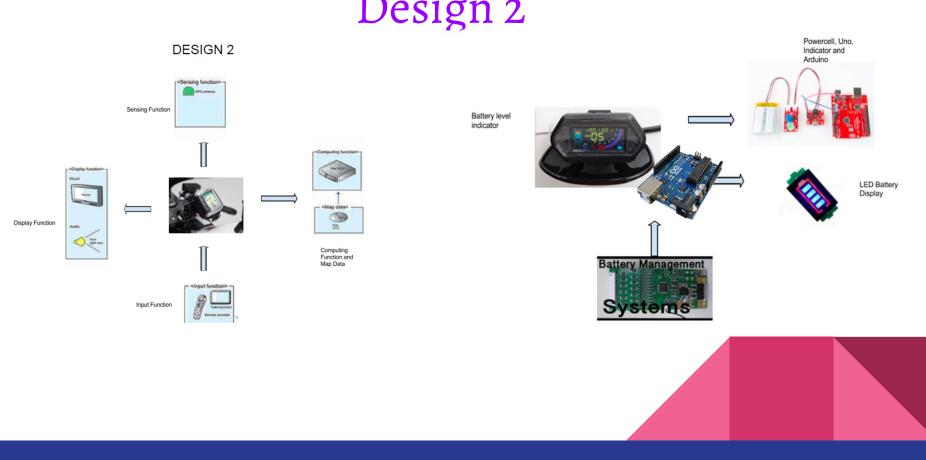
The Need E-Trike 2016


- Design
- Dashboard functions
- Safety
- Convenience


The Layout Design

ELECTRICAL LAYOUT

MECHANICAL LAYOUT



Design 1

Pros and Cons

Pros	Cons	
Smart Phone App	Requires internet connection	
Arduino works with BMS to provide data to battery indicator	Requires power for microcontrollers	
Signal Lights can eventually be programmed to come on if a turn is detected		
Light Sensor increases safety by coming on automatically	Switch is needed in case of error	
Battery is lighter, smart and more efficient		
Arduino microcontroller is low-cost	It cannot be updated easily	
Throttle Assist does not need pedaling, can be beneficial for disabled people	Reduces pedaling range	

Design 2

Pros and Cons

PROS	CONS
Always Available	Depends on phone availability
Pedal Assist increases the range of the battery	Does not have the option for the user to stop pedalling
Dashboard does not rely on external features such as wifi/bluetooth to work hence increasing reliability	Dashboard drains additional power
Arduino works with BMS to provide data to battery indicator	Power required for two microcontrollers
Regenerative Brakes help to conserve energy, Dynamo included can produce energy	Twice as much energy is needed to pedal and charge at the same time.

Design Matrix

	Weight	Design1	Score	Agg.Score	Design2	Score	Agg.Score
Functionality	5	Tricycle, battery, App,lights	5	25	Solar panels, seat belt	5	25
Connectivity	3	App, Sensor	5	15	n/a	0	0
Weight	2	Heavy due to battery	3	6	Heavier- bike+solar panels	1	2
Power	5	lights=more power	3	15	Solar Panels	4	20
Convenience	2	High-has an App	4	8	No gas needed	3	6
Assistance Mode	4	Throttle Assist	3	12	Pedal Assist	2.5	10
User Experience	5	SmartPhone App	5	25	Dashboard	3	15
Price	5	High: <\$1,000	3	15	Higher: >\$1,000	1	5
TOTAL				111			83

BATTERY

Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2 or NMC)

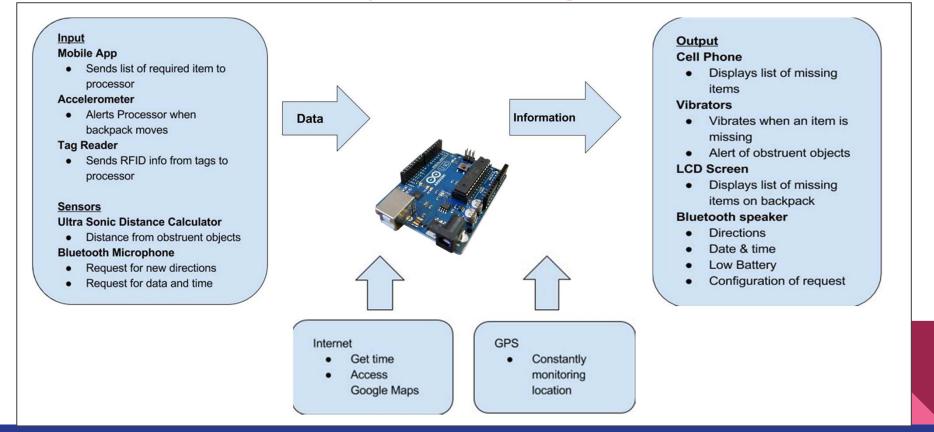
- Used by Tesla, stores large about of energy
- \$300 for 300W
- Very Light

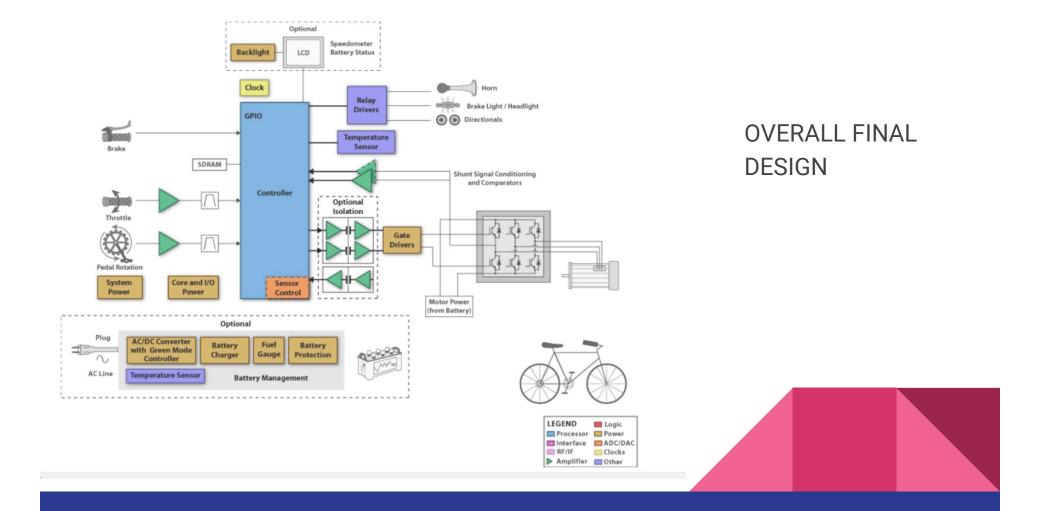
Nanophosphate® lithium iron phosphate (LiFePO4) batteries

- Does not lose charge as easily as other batteries
- More tolerant to full charge situations
- \$300 for 300W
- Produced specifically by A123 systems - lighter than other batteries in the same range

Building our own battery with 18650 cells

- Cheaper, about \$100 for just the battery
- Light
- Easily configurable




BATTERY DECISION MATRIX

CRITERIA	WEIGHT	LiNiMnCoO2	LiFePO4	18650
Weight	5	5	4	4
Price	5	2.5	4	5
Range/Energy	4	4	4	4
Safety	3	5	3	3
TOTAL(weighted)	21	68.5	65	70

System Design

