WWW.MWFTR.C

Team Terminator

A Tic-Tac-Toe Playing Robot

Cory Bethrant & Maxime Keita

Faculty AdvisQy
"d EECS Day April 20, 2018

Electrical Engineering and Computer Science

Howard University

Charles
Typewritten Text
WWW.MWFTR.COM

Problem Definition

Long Term Goal is to create an
Al Robot capable of playing Problem

multiple games like Tic-Tac-Toe Statement
and Chess in the Physical Is it possible to create

Space for Cheap. an Al Robot capable of
playing games in the
physical space?

2017-18 Goal is to create an
Al robot capable of playing
Tic-Tac-Toe

Design Requirements

Can Cost Be Kept Below

$1es USD? WARNING:
Follows all FCC Rules and CHOKING HAZARD
Regulations as components Small parts. Not for

are already thoroughly
tested according to the
FCC'’s standards for
Electronic Devices.

children under 3 yrs.

Current Status of Art

A paper based on this project was presented at
the International Conference on Computer Vision
and Robotics 2012 held at Bhubaneswar, India.
There is no machine learning component in this

device. It uses a brute force algorithm to compete.

Solution Design

GPIO Pinout Diagram

round

crioto

i
o
®
3

woso | 27 25 [wsc

Grouna ao opioz1

®
!

w3

L2100 B
L O O |2
ted 00 e
el © O [ath
el OO
dd © © Eiad
spiozr @@ around
crI022 @@ apI023
v @@ arioza
0
orm o@ ori025

4 Squarely Placed 40 GPIO SMSC LAN9514 USB
Mounting Holes Headers r ntroller

Run Header Used
to Reset the Pl

Broadcom BCM2835

MicroSD Card Slot
(Undemnea th)

DS Display Connector

Switching Regulator for

Less Power Consumption = Ethernet Out Port

5V Micro USB HOMI Out Port 3.5mm Audio and
Power Composite Output Jack

CSI Camera

Connector

e
B "

Implementation
Process

Major Steps

Assemble Arm and Controller/Raspberry
Pie and Mount Camera

Develop MiniMax algorithm to use
recursive machine learning to defeat the
human opponent

Use OpenCV to feed in real-time data to
algorithm to determine where the board
Is and where pieces are located. (Pieces
are required to be in frame)

Modify MiniMax Algorithm to use the
Arm and OpenCV events instead of
console for game output

Arm Assembly

Raspberry Pi

Arduino Uno

Arm Movement

2] e Untitled-2 - Visual Studio Code - X

File Edit Selection View Go Debug Tesks Help

£ Untitled-2 ®

“ OPEN EDNTORS Eiiacunier) ArmMove(Duration, ArmCmd):
ntitled-1
L] Untitled-2 #Start Movement
4 NO FOLDER OPENED Arm.ctrl_transfer(@x48,6,0x100,0
time.sleep(Duration)
have not yet open
#Stop Movement
ArmCmd=[9,0,ArmLight]
Open Folder Arm.ctrl_tra (0x100,0, ArnCnd, 1000)

#Establish a connection with the wiimote
print "Connected to arm successfully

print
print "Press 1 and 2 on the wiimote at the same time.

ct to mote and if it doesn’t connect then it tells us and tries again
sleep(3)

tablishing Connectiol

print °"Establishing Connecti
time.sleep(1)
print "Establishi ection

cwiid.Wiimote()
except RuntimeError:

print ‘Error connecting to the wiimote, press

+ EctaRld r | ar

OuTPUT

ing for git in Program Files\
Looking for git in: C:\Program Files (x
Ln1,Col1 Spaces:d4 UTF-8 CRLF PlainTet @ &

12:01 PM

Q Type here to search £~ D a L L B

MiniMax Algorithm

game.cpp

#include <iomanip> emptySpace = true; if(checkWin(HUMAN)) { return 10; }
#include "game.h" } else if(checkWin(Al)) { return -10; }
return lemptySpace; return O; // draw
using namespace std; } }
Game::Game() { bool Game::checkWin(Player player) { Move Game::minimax(char Alboard[3][3]) {
for(inti=0;i< 3;i++) { char playerChar; int bestMoveScore = 100; // -100 is arbitrary
for(intj=0;j < 3; j++) { if(player == HUMAN) playerChar = human; Move bestMove;
else playerChar = ai;
board[i][j] = - for(inti=0;i<3;i++) {
} for(inti=0; i< 3; i++) { for(intj = 0;j < 3; j++) {
} 1/l Check horizontals
} if(board]i][0] == playerChar && if(Alboard][i][j] == "-") {
board]i][1] == playerChar
void Game::printBoard() { && Alboard[i][j] = ai;
COUt << Memmmmmmmmmeeeee N board]i][2] == playerChar)
for(inti=0;i< 3;i++) { return int tempMoveScore =
cout << '\n'<<"|"; true; maxSearch(Alboard);
for(intj = 0;j < 3; j++) {
1l Check verticals if(tempMoveScore <=
cout << setw(3) << board]i][j] << setw(3) << " |*; if(board[0][i] == playerChar && bestMoveScore) {
} board[1][i] == playerChar
} &&
COUt << \N' <K Memmmmmmmmmmnnee " <<\n board[2][i] == playerChar) bestMoveScore = tempMoveScore;
} return
true;
bool Game::gameOver() { } bestMove.x =i;
if(checkWin(HUMAN)) return true;
else if(checkWin(Al)) return true; /I Check diagonals
if (board[0][0] == playerChar && board[1][1] == playerChar bestMove.y = j;
bool emptySpace = false; && board[2][2] == playerChar) {
for(inti=0;i< 3;i++) { return true; }
if(board[i][0] == "' || } else if (board[0][2] == playerChar && board[1][1] ==
board[i][1] == "' || board][i][2] == '- playerChar Alboard[i][j] = -
&& board[2][0] == playerChar) {
return true; }
} }
}

return false;
} return bestMove;

MiniMax Algorithm

Game.cpp - cont

Move bestMove;
int bestMoveScore = -1000;
for(inti=0;i< 3;i++) {
for(intj = 0;j < 3; j++) {
if(Alboard[i][j] == "-') {
Alboard[i][j] = human;

int tempMoveScore =
minSearch(Alboard);

if(tempMoveScore >=
bestMoveScore) {

bestMoveScore = tempMoveScore;

bestMove.x = i;
bestMove.y =j;
}
Alboard[i][j] = -
}
}
}

return bestMoveScore;

}

int Game::minSearch(char Alboard[3][3]) {
if(gameOver()) return score();
Move bestMove;

int bestMoveScore = 1000;

}

if(Alboardf[i][j] =="-') {

Alboard[i][j] = ai;

int tempMove = maxSearch(Alboard);
if(tempMove <= bestMoveScore) {

bestMoveScore = tempMove;

bestMove.x = i;
bestMove.y =j;
}
Alboard[i][j] = -
}
}
}

return bestMoveScore;

void Game::getHumanMove() {

coordinate form, ex: (1,3)."

garbage chars after move

int x, y = -1; // arbitrary assignment to init loop

while(x <0 || x>2||y<0]ly>2){
/I Loop until a valid move is entered
cout << "Enter your move in

" << endl;

cout << "Your Move: ";
charc;

string restofline;
cin>>c>>c;

x=c-'0'-1;

cin>>c>>c;

y=c-'0'-1;

getline(cin, restofline); // get

}

void Game::play() {

lgameOver()) {

Wins" << endl;

endl;

<< endl;

board[x][y] = human;

intturn = 0;
printBoard();
while(!checkWin(HUMAN) && !checkWin(Al) &&

/' human move
if(turn % 2 == 0) {

getHumanMove();

if(checkWin(HUMAN)) cout << "Human Player

turn++;

printBoard();
}else {

cout << endl << "Computer Player Move:" <<

Move Almove = minimax(board);
board[Almove.x][Almove.y] = ai;

if(checkWin(Al)) cout << "Computer Player Wins"

turn++;
printBoard();

}

MiniMax Algorithm

game.h

#include <iostream>

using namespace std; int score();
const char human =X
const char ai ='0';
enum Player { HUMAN, Al };
struct Move {
intx;
inty;
h
class Game {
char board[3][3]; .
public: %
Game();

void printBoard();
/I Prints the board pretty-ly

bool gameOver();
/I Returns true if a winner has been found or there are no empty spaces

bool checkWin(Player player);
1/l Checks for a win

void play();
/I Primary game driver, loops through turn-by-turn until there's
/l'a winner or full game board (draw)

void getHumanMove();
/I Takes in values from the input stream and places them on the board
/l'if valid. Expects input in coordinate notation, ex (1,3)

/I Function to score game board states based on their outcome
/I Returns 10 for human win, -10 for Al win, 0 for draw

Move minimax(char Alboard[3][3]);
/I Returns the best Al move's x, y coords via the minimax algorithm

int minSearch(char Alboard[3][3]);
/I minimax helper fn for finding the next move for Al player, chooses the
/I move with the least possible score

int maxSearch(char Alboard[3][3]);
/I minimax helper fn for finding the next move for human player, chooses
/I the move with the least possible score

MiniMax Algorithm

play.cpp

#tinclude <iostream>

#include "game.h"

using namespace std;

int main() {
Game tictactoe;
tictactoe.play();

return 0;

Implementation

Conclusion

We have had the pleasure to see through the project in 8 months period of time.

First of all, it helped us in managing a project and sharing the load of work.
Secondly, it showed that simple but well adapted algorithms are often more efficient
than more general and complex ones.

Lastly, it gave us the opportunity to work at the interface between three related
disciplines: Artificial Intelligence, Vision and Robotics, which lead to very interesting
iIssues when studied together.

Acknowledgment

Special Thanks to the VIP Program for
Making This Possible

VI P @Howard

