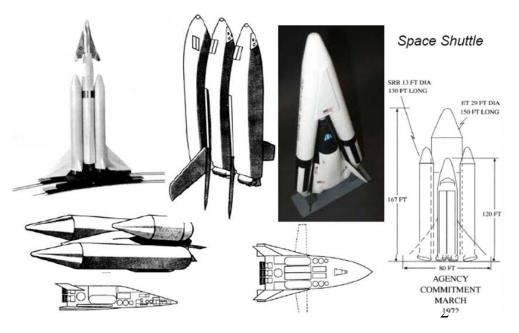

www.mwftr.com


# Alternative Designs and Decision Making for Top Design Selection



#### Step 1. Generation of Alternatives (>2 Conceptual Designs)

- Multiple Alternative conceptual designs
  - Optimal Solution (by balanced capability, development cost, operating cost, and satisfying any constraints)
  - Different Architecture
  - Different Components
  - Sensor selection
  - Data Speed selection
  - Interface Selection

Remember these alternatives Before reaching the final Shuttle design !!



#### Step 2. Analysis of the Alternative Conceptual Designs

- Concept Screening
  - Remove those that do not meet the functional requirements
- Analysis Methods: Choose based on the project characteristics
  - Modeling and simulation Equations, Modeling and Simulation tools and Software
    - What Software tool? Matlab, Pspice, COMSOL, etc, etc
  - Experimentation (with prototype)
    - What do we prototype? Entire system? A component?
  - Qualitative Reasoning Analytical Analysis and/or Expert Opinion
    - What analytic methods? Who knows the best?
  - Other Methods
    - What? How?

### Which analysis approach to use? Example

- 3 types of sensors on the table and need to choose 1
  - Datasheet & Experimentation
- Can a red LED be used as a light source for photo-diode based measurement in place of white LED?
  - Experimentation
- In handling numerous inputs and outputs, which one do I use? Do I need an additional microcontroller?
  - Datasheet and Qualitative reasoning
  - Experimentation with Prototype
- Which motor is better for the project, 1/2hp with 5lb weight or ¼ hp with 1 lb weight?
  - Simulation and Qualitative Reasoning
  - Experimentation with prototype

## Step 3. Selection of Top Designs

- Top Design Selection is decision-making
- Decision-making involves making tradeoffs
  - The results of the analyses
  - Requirements from customer
  - Attribute Selection Criteria: which is more important in making decision?
- Decision Tool
  - Decision Matrix

### Selection of Top Designs

#### <u>iPhone vs Android Phone --- Example</u>

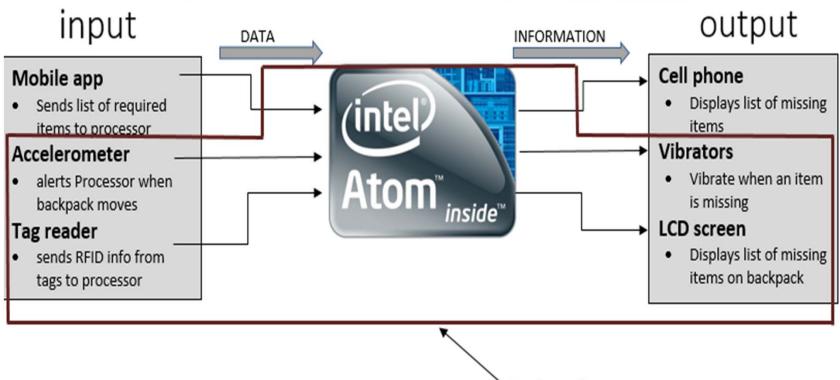


### **Decision Matrix - Example**

| Purchase of a used car |        |                     |                               |                   |  |
|------------------------|--------|---------------------|-------------------------------|-------------------|--|
| CAR                    | соѕт   | ODOMETER<br>READING | MECHANIC'S<br>RATING (1 - 10) | LOOKS<br>(1 - 10) |  |
| RED                    | \$2000 | 50,000              | 7                             | 5                 |  |
| BLACK                  | \$2500 | 40,000              | 5                             | 6                 |  |
| BLUE                   | \$3000 | 20,000              | 8                             | 8                 |  |

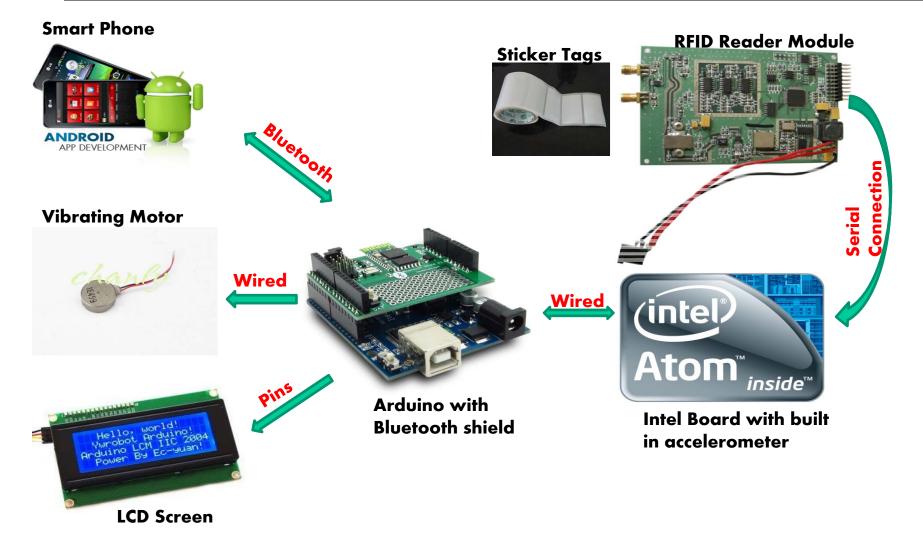
- Which car would you buy under the following two different weight scenarios (Choice of "Attributes")
  - You concerned about all four attributes equally.
  - You concerned about cost and fairly indifferent about looks. Mileage and the mechanic's ratings are equally important for you.

# Alternative Designs and Decision Making


# Examples

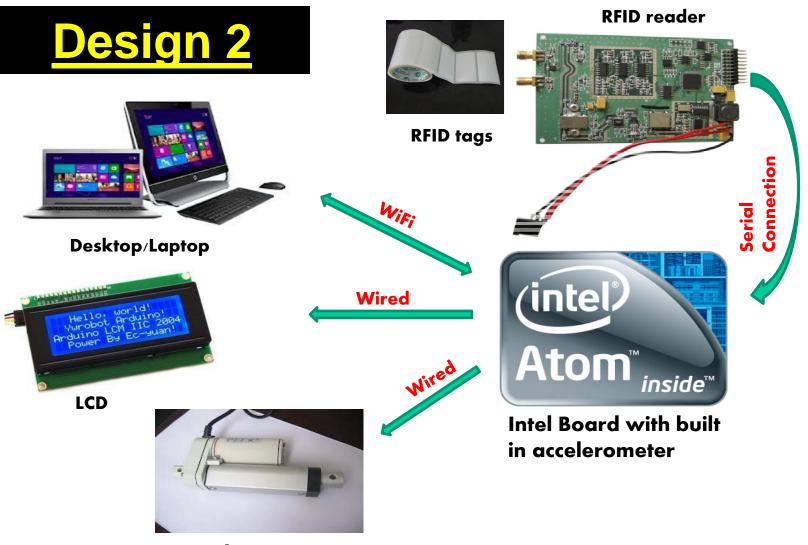
# **SMART BACKPACK**




#### 2013 Intel-Cornell Cup "Honorable Mention" & 2013 23rd ECE Day 1st Place

# **Conceptual Design**




Backpack

# Design 1



# **Design 1 Pros and Cons**

| Pros                                                                | Cons                                                          |
|---------------------------------------------------------------------|---------------------------------------------------------------|
| Convenient view/edit of schedule through smartphone                 | Interference with surrounding Wi-Fi using UHF tags and reader |
| Wireless connectivity through<br>Bluetooth                          | Bluetooth battery consumption on the smartphone               |
| Built in accelerometer to detect movement                           | Limited programming choice for application                    |
| Easy input and output connectivity through the Arduino              |                                                               |
| Multiple notification (Smartphone, Vibrating motor, and LCD screen) |                                                               |



Actuator


# **Design 2 Pros and Cons**

| Pros                                                                        | Cons                                                                                                        |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| More choices of programming<br>languages for the application<br>development | Since the user's schedule is pulled<br>from a calendar on the desktop,<br>changes cannot be made on the go. |
| Using the built-in accelerometer reduces cost.                              | Mode of communication between the backpack and the CPU is limited to Wi-Fi.                                 |
| Desktop computers are less susceptible to theft than smartphones.           | Standard ports on the Intel board (USB ports, VGA ports)                                                    |
|                                                                             |                                                                                                             |
|                                                                             |                                                                                                             |

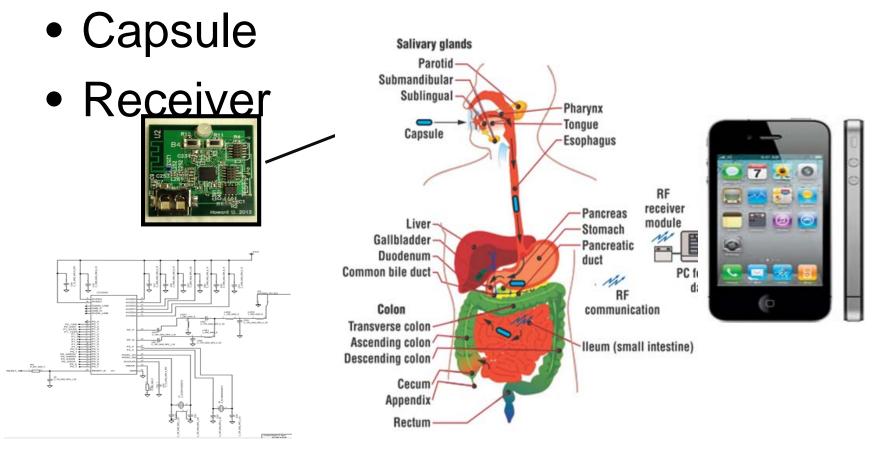
# **Design Decision Matrix**

|               | Weight | Design 1                                 | Score | Agg.<br>Score | Design 2                             | Score | Agg.<br>Score |
|---------------|--------|------------------------------------------|-------|---------------|--------------------------------------|-------|---------------|
| Functionality | 5      | Smartphone<br>Arduino<br>Vibrating motor | 5     | 25            | Desktop<br>Actuator                  | 3     | 15            |
| Connectivity  | 2      | Bluetooth<br>Wired<br>Wi-Fi              | 5     | 10            | Wired<br>Wi-Fi                       | 3     | 6             |
| Weight        | 3      | Approx. 940g                             | 4     | 12            | Approx. 890g                         | 5     | 15            |
| Power         | 4      | More<br>components to<br>be powered      | 3     | 12            | Fewer<br>components to<br>be powered | 5     | 20            |
| Convenience   | 1      | On the go edit                           | 5     | 5             | At home edit                         | 3     | 3             |
| TOTAL         |        |                                          |       | 64            |                                      |       | 59            |

# **Final Design**



# **Final Result**









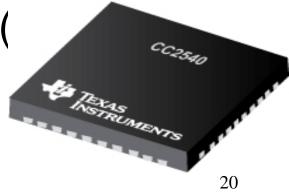

# Swallowable Capsule



#### 2012 ECE Day 2<sup>nd</sup> Place

# Microprocessor 1: EM250

- Manufacturer: Ember
- Size: 7 x 7 mm
- **RF Protocol**: ZigBee 802.15.4


- Max. Data Rate: 250 kbps

- Surface Mount Technology (SMT)
- Dev. Kit: \$2,500



## Microprocessor 2: CC2540

- Manufacturer: Texas Instruments
- Size: 6 x 6 mm
- **RF Protocol**: Bluetooth Low Energy (BLE)
  - Max. Data Rate: 1 Mbps
- Surface Mount Technology (
- Dev. Kit: \$299

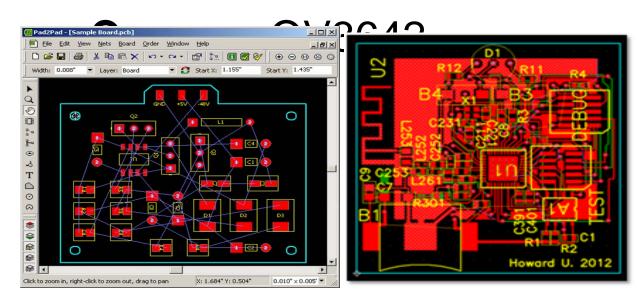


# Microprocessor 3: nRF8001

- Manufacturer: Nordic Semiconductor
- **Size**: 5 x 5 mm
- **RF Protocol**: Bluetooth Low Energy (BLE)
  - Max. Data Rate: 1 Mbps
- Surface Mount Technology (SI
- Dev. Kit: \$400



# Microprocessor Comparison


| Name           | CC2540                                      | nRF8001               | EM250                  |  |
|----------------|---------------------------------------------|-----------------------|------------------------|--|
| Manufacturer   | Texas Instruments                           | Nordic Semiconductor  | Ember                  |  |
| Size           | 6x6 mm                                      | 5x5 mm                | 7x7 mm                 |  |
| Packaging      | SMT                                         | SMT                   | SMT                    |  |
| Memory         | 128/256kB Flash, 8kB RAM                    | -                     | 128kB Flash, 5kB SRAM  |  |
| Comm. Protocol | Bluetooth Low Energy                        | Bluetooth Low Energy  | 802.15.4 Zigbee        |  |
| Max. Data Rate | 1 MBps                                      | 1 MBps                | 250 kbps               |  |
| Frequency      | 2.4 GHz                                     | 2.4 GHz               | 2.4 GHz                |  |
| Software       | BTool                                       | nRF8001 SDK           | xIDE                   |  |
| Vendor         | Digikey                                     | Mouser                | Digikey                |  |
| Chip Price     | \$6.15                                      | \$4.56                | \$6.16                 |  |
| Kit Price      | \$299.00 \$400.00                           |                       | \$2,500.00             |  |
| Receiver       | Bluetooth 4.0 Compatible Device (iPhone 4S) |                       | WiFi Compatible Device |  |
| 2/1/2012       | Altern                                      | Alternative Solutions |                        |  |

# **Microprocessor Decision Matrix**

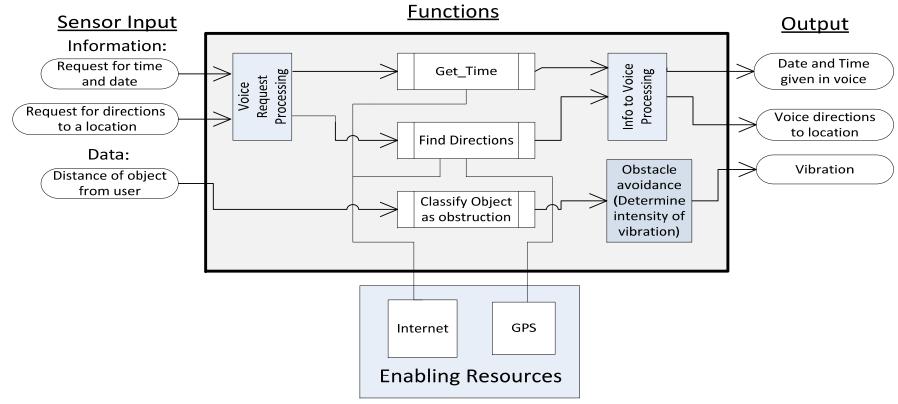
| Criteria       | Weight | ті сс | 2540 |   | rdic<br>8001 | Ember | EM250 |
|----------------|--------|-------|------|---|--------------|-------|-------|
| Cost           | 35     | 4     | 1.4  | 3 | 1.05         | 2     | 0.7   |
| Programming    | 30     | 3     | 0.9  | 3 | 0.9          | 3     | 0.9   |
| Receiver       | 10     | 2     | 0.2  | 2 | 0.2          | 4     | 0.4   |
| Data Rate      | 25     | 3     | 0.75 | 3 | 0.75         | 2     | 0.5   |
| Weighted Total |        | 3.2   | 25   | 2 | .9           | 2     | .5    |
| Rank           |        |       | 1    |   | 2            |       | 3     |

## Final Design Components

- Microprocessor: CC2540
- Temperature Sensor: TMP102
- PCB Manufacturer: Pad2Pad






# **Blind Assistant**



2012 Intel-Cornell Cup "Wild Card Winner" & 2012 ECE Day 1st Place

# **Conceptual Design**

#### **Atom Software Functions**



## Analysis of Alternative components

#### **OBSTACLE ALERT**

- ∞ Vibration Modules
  - Availability of already designed modules
  - Ease of connection?
  - Wireless communication with module?
- ∞ Audible tones

0

- Sounds are easy to make
- Might be confusing while providing direction to locations (horrible user experience

| Σ | Measure<br>(Weight)  | User<br>Experience | Ease of Implementation | Total |
|---|----------------------|--------------------|------------------------|-------|
|   | Vibration<br>Modules | 9                  | 6                      | 15    |
|   | Headset<br>tones     | 5                  | 8                      | 13    |

## Analysis of Alternative components

#### DISTANCE CALCULATION SENSOR

#### 50 Ultrasonic Sensor

- Good widespread connection
- Little interference based of weather (reliable)

#### 🔊 Infra red sensor

• Easily affected by sunlight

| Measure<br>(Weight)  | User<br>Experience<br>(0.7) | Ease of<br>Implementa<br>tion(0.9) | Accuracy<br>(0.9) | Reliability<br>(0.9) | Total |
|----------------------|-----------------------------|------------------------------------|-------------------|----------------------|-------|
| Ultrasonic<br>Sensor | 8                           | 7                                  | 7                 | 9                    | 26.3  |
| Infra red            | 6                           | 8                                  | 9                 | 6                    | 24.9  |

### Analysis of Alternative components

#### **INPUTTING DESIRED ADDRESSES**

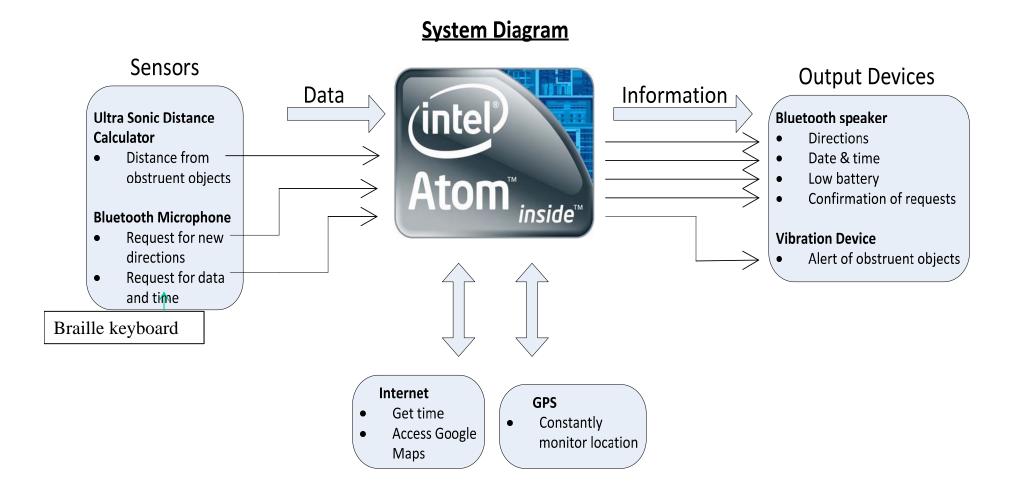
#### n Braille Keyboard

- Time to input address (poor user experience)
- Easy to integrate with system
- Allows for more accuracy

#### ∞ Voice (voice synthesis)

• Possible great user experience

#### Implementation requirements (use house time constraints)


| 0 | Measure<br>(Weight) | User<br>Experience<br>(0.9) | Ease of<br>Implementatio<br>n(0.8) | Reliability<br>(0.8) | Total |
|---|---------------------|-----------------------------|------------------------------------|----------------------|-------|
|   | Voice<br>Operation  | 9                           | 4                                  | 6                    | 16.1  |
|   | Braille<br>Keyboard | 4                           | 8                                  | 8                    | 16.4  |

# **Experimentation for Sensors**



I/O Controller and Ultrasonic sensor being tested on a PC

# Final Design and Components



#### SUMMARY: 4-Step Activity for Final Conceptual Design Selection

- Step 1: Generation of Alternatives (> 2 conceptual designs)
  - What are the alternatives in the conceptual design that need to be addressed for the final, good solution? What are <u>the key items, values,</u> <u>parameters, etc that have to be analyzed?</u> How to analyze? <u>What analysis method to be adopted and employed?</u> What are the <u>constraints?</u>
- Step 2: Perform Analysis
- Step 3: Decision Making Matrix for final design selection & Report submission
- Step 4: Presentation for Conceptual Design



- >2 Conceptual Designs
- Analysis of the Alternatives
- Selection of the Top Design

### Step 1 – Generation of at least 2 alternatives (Conceptual Designs)

- Bring up the conceptual designs
- Decide (in choosing the best) criteria:
  - What are the key items, values, parameters, etc, that have to be analyzed?
  - How to analyze?
  - What analysis method to be adopted and employed?
- Do this in the team meetings.

### **Step 2: Perform Analysis**

 Using the analysis method(s), analyze the alternative designs approaches considering the functional requirements (speed, response time, weight, power, life, etc) and other pertinent criteria

#### Step 3: Decision Matrix for Top Design Selection

- Decision trade study decision matrix
  - Selection of attributes which are relevant to meeting the design requirements
- Pick the top concept design and solution
- Refined the Final Solution Design with detailed description

# Timeline

| Date                   | Activities                                                                                                                                                                                                |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Week of Oct 22 - 28    | <ol> <li>From today, each member individually generates a solution concept/idea.</li> <li>Bring it to a weekly team meeting</li> <li>Discuss the individual concepts/ideas in the team meeting</li> </ol> |  |  |
|                        | Incubation period – 1 week                                                                                                                                                                                |  |  |
| Week of Oct 29 – Nov 4 | <ul> <li>Team meeting</li> <li>Discuss individual ideas and develop into 2 team Solution Concepts/Ideas</li> <li>Describe [type] the ideas with figures to 2 conceptual designs.</li> </ul>               |  |  |
| W 11/8/2017            | Submission of (1) all individual <u>concepts/ideas</u> and (2) (2a) Team Conceptual Design #1 (2b) Team Conceptual Design #2                                                                              |  |  |
| W 11/15/2017           | Submission and Presentation of the Analysis of 2 designs and Selection of the Top Design                                                                                                                  |  |  |
| W 11/29/2017           | Presentation of Solution and Conceptual Design                                                                                                                                                            |  |  |
| F 12/1/2017            | Submission of (1) Peer Evaluation (via email) (2) Individual Project Note, (3)<br>Team Project Binder                                                                                                     |  |  |
| W 12/6/2017            | Final Exam (10 am – 12 noon)                                                                                                                                                                              |  |  |