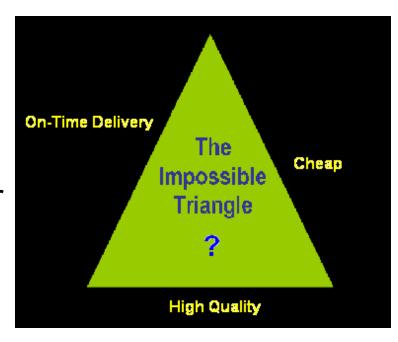

Implementation and Evaluation Planning

Paper Design Into Reality

Dr. Charles Kim www.mwftr.com/SD.html


EECE404 Senior Design II

Electrical and Computer Engineering

Howard University

Objectives

- Clarification on team's Deliverables
- Steps of Solution Implementation
- Consideration for Implementation Planning
- Elements of Good Test Plan
- Strategy for Evaluation
- 3 C's
 - Commitment
 - Communication
 - Coordination
- QCD: Key performance indicator
 - We go by
 - DQC (Delivery Quality Cost)

PLAN

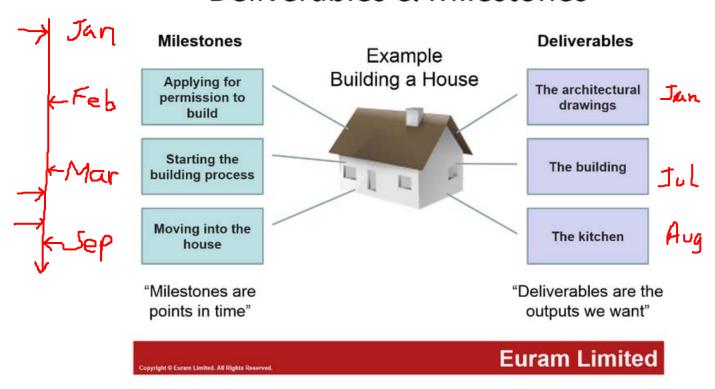
What's Involved

- The Final Product of the Project
- Milestones and Deliverables for "Semester-End Product for Demonstration"
- Conversion of Paper Design into Reality
- Make sure the implemented design meets the deign requirements ("Quality")
- Efficient Process to do the work ("Delivery")

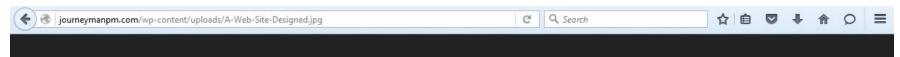
PLAN

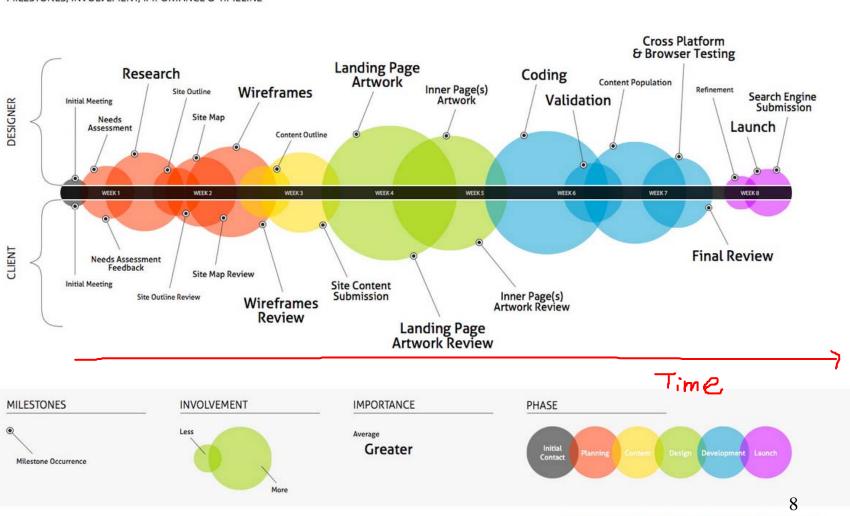
- "A road map to a goal"
 - Outline the navigation route (from Today to the End of the project)
 - Coordinate efforts to achieve Milestones and the Final Goal
- Manage the key resources
 - Time
 - Personnel

Final Product Milestones and Deliverables

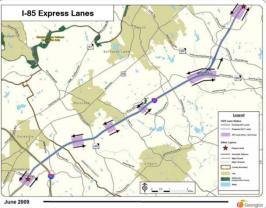

- Final Product and Deliverable of the project
- Class Activity to set the Final Product and Deliverable
 - Consider the project span toward the Final Product completion
 - Consider the features, functions, and specifications
 - Consider the inside components and operational mechanism
 - Consider milestones (intermediate products) over the project span
 - Draw/Describe so that
 - It works as a guidepost for the long-term project goal.
 - It is comprehensive enough so that anyone (not in the team) can clearly see and guess what is expected to be achieved when the project is finished.
 - Submission (today) of this class activity is required. (Later, a scanned copy will be emailed to each team leader.)
 - It [the initial description in scanned copy] should be extensively discussed in a weekly team meeting (and with academic and/or industry advisors) and may be revised and detailed for further clarification, which should be made in to the Final Description.
 - Submission (by next Wed)of the "Milestones and Deliverables of the Final Product" is required.

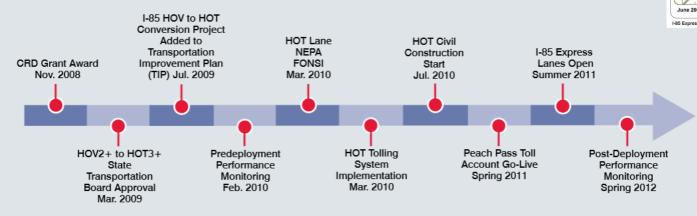
Semester-End Product Milestones and Deliverables


- Semester-End Deliverable ("Demonstration Product for April Presentation")
- Class Activity to set the Semester-End Deliverable
 - Consider the appearance
 - Consider the features, functions, and specifications
 - Consider the inside components and operational mechanism
 - Consider the software blocks and code
 - Draw/Describe so that
 - It works as a guidepost for everyone in the team,
 - It is comprehensive enough so that anyone (not in the team) can clearly see and guess what is expected to be presented in April presentation/demonstration
 - Submission (today) of this class activity is required. (Later, a scanned copy will be emailed to each team leader.)
 - It [the initial description in scanned copy] should be extensively discussed in a weekly team meeting (and with academic and/or industry advisors) and may be revised and detailed for further clarification, which should be made in to the finalized description.
 - Submission (by next Wed)of the "<u>Milestones and Deliverables of</u> the Semester-End Demo Product" is required.

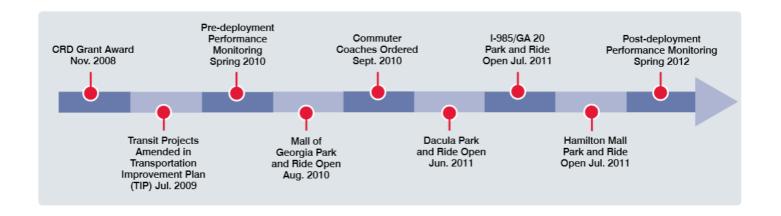

Deliverables & Milestones

Q Search 自 https://www.timelinemaker.com/samples/product-samplecharts-milestones.html **New Plant Schedule** MANUFACTURING lun Jul Aug Sep Oct Nov Dec lan Feb Mar Apr May lun Jul Aug 2007 2008 Professional Services Select City and Country Register Company Register Patents Register Trademarks Select Exact Location Acquire Land Hire Support Staff Hire Management Project Go Ahead Obtain Necessary Building Permits Construction of Building Acquire Equipment Move in to Building Start Production 2007 2008 Aug Oct Nov Dec Feb Mar May Jul Jul Sep lan lun Jun Planning Construction Key Milestone Acquisitons Created with Timeline Maker Professional. Printed on Jan 28 2009.


A Web Site Designed MILESTONES, INVOLVEMENT, IMPORTANCE & TIMELINE

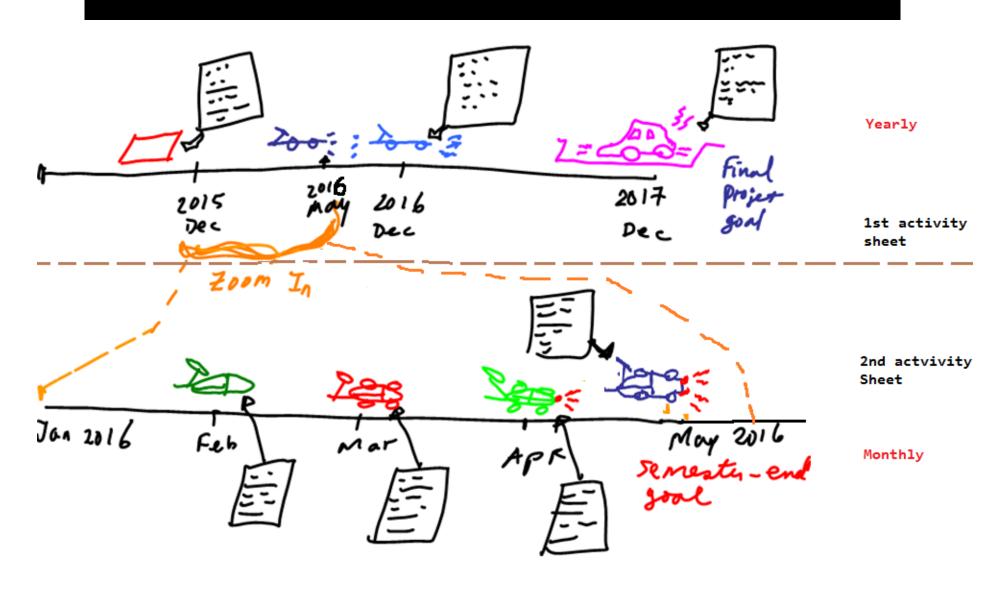

<u>Home</u> > <u>Federal Programs</u> > <u>Congestion Reduction Demonstrations</u> > <u>Atlanta</u>

UPA/CRD Annual Report Atlanta I-85 Express Lanes and Transit Projects



I-95 Everage Lange corridor approximately 16 mile

Timelines


I-85 Express Lanes milestones

C[®] Search ☆ 自 https://www.officetimeline.com/blog/project-plan-presentation Make professional timelines quickly, right inside PowerPoint. **Start Making Timelines** Project Plan Review Vendor Selection Kick-Off Review 3 9/30/13 6/20/14 3/15/15 Funding Internal Review Project Final Presentation Secured Certification 5/27/13 3/1/14 11/11/14 11/27/13 5/30/15 Feb 2015 2015 2013 Aug May Nov May May Nov Aug 10/30/13 Today 8/7/14 1/1/15 5/1/13 3/6/14 Stakeholder Documentation Prototype **Audit** Client Buy-In Complete Review Requirement Gathering 74 days Submission Analysis Implementation Phase 2 84 days Testing Roll out

Q Search www.ttopstart.com/news/frequently-asked-questions-to-prepare-for-successful-horizon-2020-applicati ☆自 Lead Tasks 2015 2016 2017 2018 partner 12 15 18 21 24 27 30 33 36 39 42 45 48 WP 1 - Title Task 1.1: Title D1.1 Task 1.2: Title Task 1.3: Title WP 2 - Title Task 2.1: Title D2.1 Task 2.2: Title D2.2 Task 2.3: Title

HOW TO MAKE OUT Project Milestones and Deliverables for Final Product and for Semester-End Demo Product

Milestones and Deliverables for the Final Product (for each team)

Deliverables and Milestones toward the FINAL PRODUCT

Milestones and Deliverables for Semester-End Demo Product (for each team)

• Semester-End Deliverables and Milestones ("Demonstration Product for April Presentation")

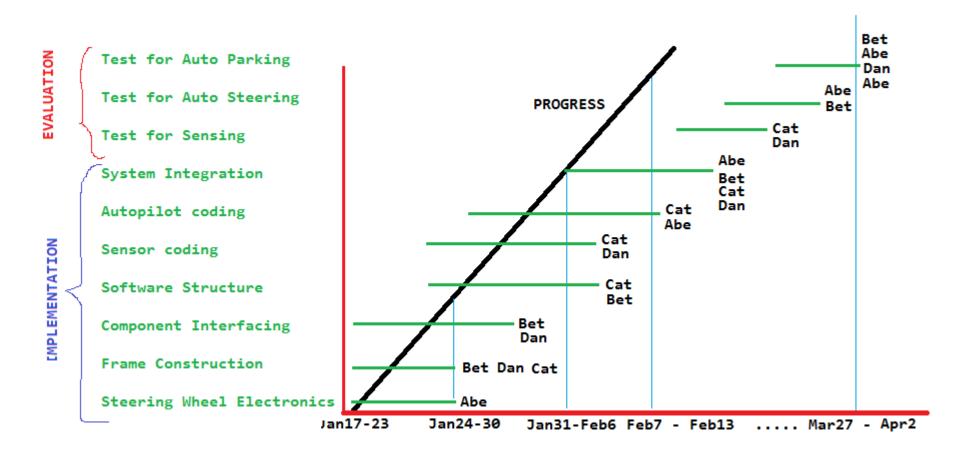
Components of Implementation Plan

- Final Product
- Clear Set for <u>Semester-End Deliverable</u> ("Demonstration Product for April Presentation")
- Next Step? --- Plan for Implementation
 - Produce/Deliver high quality product economically, environment-friendly, etc
 - Develop of Plan to Transfer the Design to Reality
- Strategy
 - Allocation of Time
 - Details of Tasks to be executed
 - The Order the Tasks to be done
 - Allocation of Personnel
 - Who will work on which tasks

Semester-End Deliverable: Implementation Planning

DETAIL

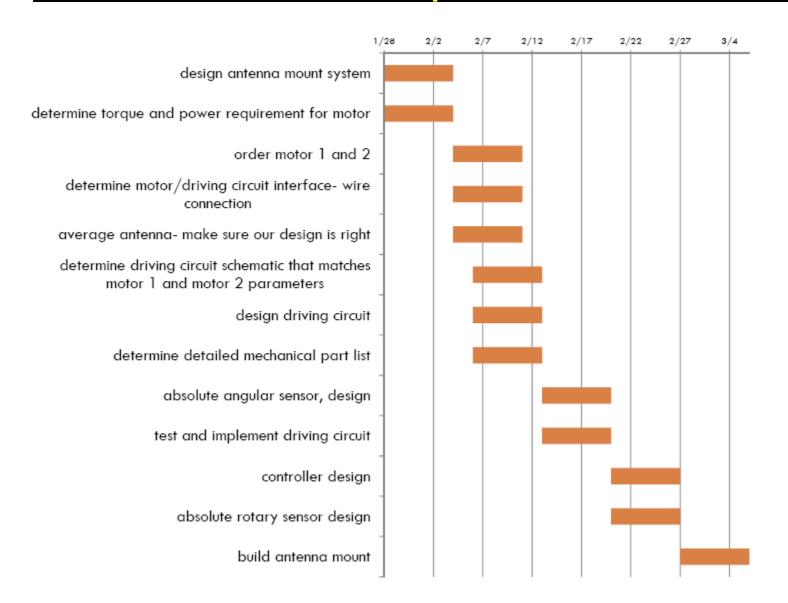
- You should be very detailed with your plan
- Instead of "construction"
 - Breakdown to much smaller tasks;
 - "order motor", "manufacture brackets", "align optical components"
- Instead of "Coding"
 - Breakdown to much smaller modules;
 - "video module A", "homing subroutines", "collision avoidance algorithm",
- Timeline (From Monthly to Weekly in the Milestones)
 - Gant Chart
 - Spreadsheet
 - Project Calendar


Implementation Planning -continued

- "x3"
 - Everything takes longer than you think even if you think it will take longer than you think.
 - Parts will not arrive when promised by suppliers
 - Building parts yourself will take longer than expected
 - Software coding takes much longer than you think
 - Rule of Thumb: (estimated time) x 3
- Include Evaluation Plan
 - Test plan/procedures to evaluate a design against all of the design requirements
 - What to test
 - How to test

Semester-End Deliverable: Implementation Planning

• Example-0


Semester-End Deliverable
"Rear-Right Collision-Avoidance with an
autopilot steering on a car frame of 4 wheels"

Sample - 1

- + ,,,,,,, -	Bariania - Bata	_	Deliterable — —
Week	Beginning Date		Deliverables
Week 1	08-Feb-09	1)	Order the following parts - Line Tracker Input Sensors - Miniature car - Basys System Board FPGA - Ultra-Bright LEDs - Connecting wires - Seat vibrators - Electric switch (for turn signal)
		2)	Use relevant block set to create simulation with Simulink [®]
Week 2	15-Feb-09		Develop LDWS system algorithm Consult with faculty advisor (Dr. Gloster) to critique the algorithm
Week 3	22-Feb-09	,	Use VHDL to develop the input module (interpret data from line tracker module) Use VDHL to develop the control unit module (process data received from line trackers module)
Week 4	01-Mar-09	- /	Construct demonstration set Critique and test VHDL software
Week 5	08-Mar-09		Test model on demonstration set Update VHDL code in input module if needed
Week 6	15-Mar-09		Develop user tests: Power User Test and Normal User Test Develop and critique plan for user documentation
Week 7	22-Mar-09	1)	Create user documentation based on previous plan
Week 8	29-Mar-09		Beta testing with select power users Update user documentation accordingly
Week 9	05-Apr-09	1)	Beta testing with normal users to ensure that user documentation is comprehensive and easy to follow

Sample -2

Sample -3

Cap II	implementation & Evaluation Plan (FINAL)	r2.15.12	
WEEK	TASKS	MEMBER	
	Finalization of parts to be ordered	Brima	
	Order parts (send list to Dr. Harris)	Bathiya	
	Study how to Interface microprocessor + sensors	Kurubel	
Feb. 6 - 11	Study software development guide for Btool (CC2540 programming IDE)	Bathiya	
	Finalization of camera sensor to use	Lauren + Kurubel	
	Calculate power requirements & identify battery required battery	Lauren	
	Sign up for Apple Developer Program and obtain Xcode IDE	Brima	
	Obtain an iPhone 48	Brima	
	Follow up with Dr. Harris on status of order	Bathiya	
Feb. 12 -	Create schematic on PSPICE	Bathiya + Kurubei	
18	Create PCB layout on Pad2Pad software	Bathiya + Lauren	
	Research antenna connection	Lauren	
	Investigate availability of IAR Embedded Workbench License	Lauren	
	Program mini-dev kit to get built-in temperature readings	Kurubel	
Feb. 19 -	Program dev. kit receiver to sync with the device	Lauren	
26	Complete PCS layout and send schematic to Pad2Pad	Bathiya + Lauren	
	Study reference iPhone app code	Brima + Kurubel	
	Program mini-dev kit to read values from accelerometer		
Feb. 28 -	- Set the sensor to provide continuous stream of data	Lauren + Bathiya	
Mar. 3	Deploy reference iPhone code and test the connectivity	Brima	
	Analyse accuracy and precision of these temperature readings	Brima	
	Prepare test environment		
	- Find warm and cold setting		
	- Prepare easy method of modifying ambient temperature quickly	Lauren	
	Program mini-dev kit to read values from built-in temperature sensor		
	- Start with one reading of temperature, then program to provide continuous		
Mar. 4 - 10	readings	Lauren + Bathiya	
	iPhone App Development - Identify main features needed to implemented in iPhone - Design and sketch user interface (block diagrams) to outline the app		
	- Address data storage format	Brima + Kurubei	

Sample – 3 (continued)

		Marie - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
Mar. 11 - 17	Program the microprocessor - First, deploy previous code to read built-in temperature sensor values - Then adapt accelerometer reading code for the external temperature sensor	Lauren + Bathiya
	iPhone App Development - Start programming a shell of the program with required user interface - Using reference code, incorporate required Bluetooth communication code	Kurubel + Brima
Mar. 18 - 24	Program the microprocessor - Continue to develop code to read values from external temperature sensor - Debugging - Test communications link between capsule and BLE receiver on PC IPhone App Development - Continue programming/incorporating Bluetooth code	Lauren + Bathiya Kurubel + Brima
Mar. 25 - 31	Finalize microprocessor programming, debug	Lauren + Bathiya Kurubel + Brima Bathiya + Kurubel
Apr. 1 - 7	Use test environment to evaluate performance of data collection	Lauren
Apr. 8 - 14	Prepare for ECE Day	All

Implementation and Evaluation Plan - Summary

Summary

- Detailed Road Map from Final Design to Reality
- Detailed Plan to achieve quality project and to deliver on time.
- Starting from this week

Today's Task

- We will do this as a class activity today
- Much more detailed plan than the samples
 - Implementation and evaluation (tests) tasks Detail (divide into small tasks)
 - Weekly Tasks
 - Monthly Deliverables
 - Members in charge
- Use fillable project calendar
- Submit the calendar file (by the end of the class)

Implementation and Evaluation Plan - FORM

Lecture Notes:

Syllabus of the course

Lecture 1: Introduction

Lecture 2: Design Process - Overview (assignment embedded)

Lecture 3: VIP and Teamwork

Lecture 4: TRIZ

Lecture 5: Problem Formulation (Team assignment at the last page)

Lecture 6: Design Requirement (Team Assignment)

Lecture 7: Solution Generation (Team Assignment for Individual and Team Conceptual Design)

Lecture 8: Alternative Designs, Analysis, and Top Design Selection (Team activity + Presentation Requirement)

Lecture 9: Oral Presentation + Elevator Pitch

Lecture 10: Project Implementation and Evaluation Plan (Plan Form in MS Word and PDF formats)

Project Calendar Form for Project Implementation and Evaluation

PROJECT IMPLEMENTATION AND EVALUATION PLAN

Electrical and Computer Engineering Howard University

Senior Design Class Dr. Charles Kim

TEAM NAI	ME:			
TEAM ME	MBERS:			
SEMESTER	R-END DEL	IVERABLE:		
MONTH		WEEKLY TASKS	MEMBER	MONTHLY
	Week (FROM day TO day)	TASKS	In CHARGE	DELIVERABLES
JAN	18 - 22			
	25 - 29			
FEB	1 -5			
	8 - 12			
	15 - 19			
	22 - 26			

Class Schedule Jan-Feb 2016

- Jan 27: Lecture on Progress Reporting & Presentation
- Feb 3: Guest Speaker (Anthony Waterman)
- Feb10: 1st Progress Presentation