Progress Report and Presentation # EECE404 Senior Design II Department of Electrical and Computer Engineering Howard University Spring 2015 Dr. Charles Kim ## **Progress Toward Final Product** Or Transform from a Bison to a Salmon or a Chicken? ECE Day Luncheon at the Blackburn Center April 2012 ## **Project Success** ## Successful Project - #1 On Time - Within Budget, and - To the Required Level of Quality (Satisfaction of Design Requirements) Question: How do we optimally allocate resources [i.e., person-hour] to be on time and on quality? ## **Project Tracking and Review** ### Tracking - Where is the project going? - Where are we in the project schedule and timeline? - Where do we need to go/do next? - When can it be done? #### Review - Answers to the above questions - Appropriate measurement of project progress - Identification of project (or component) <u>failure risks</u> ## Risk Management What is Risk? ## Risk Management - Risk Identification - Risk Monitoring and Control Your project ## Risk Management - Risk Identification - Risk Monitoring and Control - Avoid? Then who'd do the job? - Transfer? To whom? - Accept? With an unacceptable risk of being flunked? - Mitigate? We prepare and manage Your project Transfer Accept 11 ## **Risk Management Example** | Rank Risk | | Mitigation
Approach | |-----------|--|------------------------| | 1 | Motor Controller Failure | R | | 2 | Motion detector malfunction
Video feed incompatible | R | | 3 | Beacon circuit issues | R | | 4 | More testing may be required for Homing | R | | 5 | FPGA software behind schedule | W | | 6 | Cost growth for parts | Α | | 7 | Limited communication reception | W | | 8 | Resources insufficient | A | ## **Progress Presentation** #### Purpose - Track and Review Team's Works - Describes Progress (Milestone vs Outcome) - Present important highlights - Resolve issues - Risk Monitoring and Management #### Frequency Every 2 weeks #### Format - 10 minute presentation (including Q&A) - 7 10 slides #### Submission - Bring the presentation file (PPT or PPTX) to the class in a thumb drive on the presentation day - Keep this at your project webpage ## **Progress Presentation Contents** - Slide 1: Cover Page - Project Title / Member Names/Date - Slide 2: Final Design Solution Schematics (As a reminder) - Final Design Schematics - Hardware & Software Diagram - Slide 3: Milestone Summary - Implementation and Evaluation Plan vs. Achievement - Slide 4: Highlights of the Period - What went well over the last period - Key findings and results (with diagrams) - Any Changes made from the previous period - Explanation of the demo/hardware (completed so far) details - Photos and/or video clips of the hardware in action ## **Progress Presentation Contents (-Continued)** #### Slide 5: Lowlights of the Period - What did **not** go well during the period - Key problems faced (with drawing, photo, video, etc) #### Slide 6: Risk Mitigation Measures - Issues responsible to the lowlights - Identified Risks - Barriers to be removed - Risk mitigation measures and activities ---tabular format #### Slide 7: Focus of Next Period Activities - How lowlights and issues are to be resolved - Changes to be made in the approach - The next major milestone to achieve ## Grading for Progress Presentation #### Team score - Task (50%) - Presentation contents (the <u>amount of progress</u>) - Subject Understanding - Oral Presentation (50%) - Effective Use of Slides - Color contrast - Font Size, Etc - Professional communication skill - Eye Contact - Clear Voice - Body Language - Team presentation # Example Progress Report/Presentation ## Team "SMART BACKPACK" ### **Progress Report/Presentation** EECE404 Senior Design II Electrical and Computer Engineering Howard University ## 2. Final Solution Schematic Diagram ## 3. Milestones Vs. Outcomes - Summary | No | Date | Milestone | | Outcome | |----|--------|--|-------------|-------------| | 1 | Jan 20 | Receive RFID reader | EXAMPLE | DONE | | 2 | Jan 27 | Receive Intel funds | | DONE | | 3 | Feb 5 | Create inventory menu for application | | DONE | | 4 | Feb 12 | Implement file read and write for application | | DONE | | 5 | Mar 5 | Set-up Bluetooth file transfer | | In Progress | | 6 | Mar 15 | Determine current draw from RFID reader and DE2i-150 board | | In Progress | | 7 | Mar 21 | Program LCD functionality | In Progress | | | 8 | Mar 28 | Program RFID reader | | In Progress | ## 4. Highlights of the period EXAMPLE - Finally received Cornell Cup funds from Howard - Diagnosed the problem causing Intel Board not to boot previously - We received & set up the RFID reader (ZK-RFID-107) and antenna - The antenna increases the reader range to about 2-3 meters - Made some progress with the Android app (see pictures on next slide) - Improved calendar UI - Activated Bluetooth file transfer - Created pop-up menu - Implemented file read and write - Implemented text output to LCD screen - Schematics and Screen Shots flow ## 4a. Android App 4b. Bluetooth # 4c. Demonstration: Quartus II System Builder with System on Chip(SOPC) Application ## 4d. Demonstration: Quartus Programmer - Importing FPGA designations for usage in Nios II C++ environment ### 4e. Demonstration: Printing Text to LCD screen ## 5. Lowlights of Period - Challenges in rectifying Calendar App Code obtained from open source still persist - We have to consider the necessity of creating (importing) the entire android platform as well to be abe to take full advantage of said app code - Discovery that the team is going to need substantial knowledge of Verilog or VHDL for the FPGA programming - Team members' expertise is more focused on other languages - Realization that the presence of certain materials such as metal on laptops may significantly impact the frequency range of our RFID reader - The team may have to set this property to a dynamic range on the reader ## 6. Risk Mitigation Measures | Risk | Probability | Impact | Risk Control and
Management | | |--|-------------|--------|--|--| | Intel Board fails to
turn on | .2 | 5 | Study the capabilities
of the Intel Board such
as the boot manager | | | RFID reader fails to scan tags within desired region | .4 | 5 | Test the reader in various situations(stationary, mobile, different environments) Test the reader when its trying to scan different items | | | Information not successfully transmitted from RFID to board | .2 | 5 | Test the board in
various
situations(stationary,
mobile) | | | Battery life does not
allow system to
operate throughout
a normal day | .2 | 3 | Recharge battery dailyUse battery with
sufficient mAh | | ## 7. Focus of Next Period Activities | How the Low Points are to be Resolved | New Approach | Next Major Milestone | |---|---|---| | Explore the codes controlling
the RFID reader to read
multiply tags | Divide the system into
individual components
and explore each
workings/functions | Customize software code for the RFID reader Ensure RFID is reading multiple tags within proximity Import tags read to a list /file that can be manipulated by Intel Board and smart phone application Integrate RFID reader with the Intel board | | Study more about android platform/ development | Build on android 4.2 stocked calendar application Tie the created inventory to the existing calendar application | INTEL BOARD Continue learning the design suite Continue figuring out the workings of the LCD and accelerometer Sync controls between RFID reader, LCD and accelerometer Establish Bluetooth connectivity feature for the board | | Use weekly meetings more
effectively to achieve
measurable progress | Use C# to program the
RFID reader | SOFTWARE Continue calendar and inventory app development Establish Bluetooth reception on board | | | | OTHERSOrder all other hardware components | ## Jan- Feb Schedule #### Jan- Feb Schedule - W JAN 28: Lecture on Elevator Pitch - W FEB 4: First progress presentation - R FEB 5: Project Webpage due - W FEB 11: 1st Elevator Pitch (1 per team) - Subject or situation "what is your project about?" - W FEB 18: 2nd Progress Presentation - W FEB 25: 2nd Elevator Pitch (1 per team) - Subject: TBD