Sustainable Drinking Water Purification Device

Adegboyega Akinsiku Henok Mazengia Eric J. Turner

Overview

- Background
- Problem Formulation
- Current Status of Art
- Solution Approach
- Design Requirements
- Tasks and Project Management
- Deliverables
- Cost and Resources
- Summary
- Conclusion

Background

 Many drinking water sources throughout the world are contaminated by various
 Pathogenic Bacteria, Turbidity and/or Heavy Metals

•Failure to provide safe drinking water to all people has been noted as one of the greatest development failures of the 20th century¹

[1] Gleick, P.

"Dirty Water: Estimated Deaths from Water-Related Diseases 2000-2020" Pacific Institute for studies in Development, Environment, and Security, 2002

Problem Formulation

- It's estimated that as many as 135 million people will die from the diseases caused by waterborne contaminations by 2020¹
- 1.1 billion people lack access to improved drinking water supply²
- "Currently studies focused on optically based transduction methods aim to achieve a more robust, easy-to-use, portable, analytical system⁴."

[2] World Health Organization "Combating Waterborne diseases at the Household Level", *WHO Library Catalouging-in-Publication Data*, 2007

[3] Leonard, P., Hearty S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O'Kennedy, R."Advances in Biosensors for detection of pathogens in food and water", *Enzyme and Microbial Technology* 32, 2003

Current Status of Art

Solar Distillation

Chemical Tablets

Drawbacks:

Biosand Filters - Timely process, Limited to the amount of use per day **Solar Distillation** -Water bottles have to be present **Chemical Disinfection**- Supply of chemical tablets must be present

Methods do not use a technical approach

Solution Approach

DEVELOP A STATIONARY, <u>SUSTAINABLE</u> AND <u>TECHNICALLY APPROPRIATE</u> DEVICE THAT CAN DETECT AND PURIFY CONTAMINANTS IN 2 LITERS OF DRINKING WATER WITHIN 10 MINUTES

- Sustainability Portable Photovoltaic System
- Technical Appropriateness One-button/Color Coded LED Display
- Detection Biosensor Circuits
- Data processing Microprocessor
- Purification Ultraviolet Radiation

Solution Approach

Portable Photovoltaic System

Role: Sustainable Power Source

(a) PV array
(b) Charge Controller
(c) Battery
(d) DC load
(e) Inverter
(f) AC load

Biosensor Circuits

<u>Role</u>: Detect Pathogens, Heavy Metals, Turbidity and Acidic Water

(a) Bioreceptor
(b) Transducer
(c) Amplifier
(d) Microprocessor
(e) Results

LED Display

Role: Display a red if contaminants are detected and

a green light if not

(a) Intel Board
(b) Jumper link
(c) 10K resistors
(d) Red LEDs
(e) Green LEDs
(f) Breadboard

UV Radiation System

Role: Purify Water

(a)UV-C radiation attacks bacteria DNA directly(b)Bacteria loses its ability to reproduce and is destroyed

Design Requirements

Function	Requirements
Power	•The battery should be recharged by solar energy
Detection	 Red LED should light upon detection Green LED should light when nothing is detected and after proper purification
Selection	•The device should go directly to UV radiation if no Turbidity is detected
Time	•Purify 2 liters of water within 15 minutes
Quantification	•Test with known contaminated water and known purified water
Size	•3'x3'

Tasks and Project Management

Timeline		
November 2012	Learn Atom board, components and submit initial proposal	
December 2012	Purchase parts and components	
December 2012/January 2013	Build device	
February 2013	Test device	
February/March 2013	Make necessary modifications	
April 2013	Demonstrate device on ECE day	

Costs and Resources

Budget: \$2500

Product	Resource	Price
Portable PV Cell	AliExpress	\$200.00
Rechargeable Batteries	AliExpress	\$80.00
Biosensors	DigiKey.com	\$80.00
LED Lights	Radio Shack	\$5.00
Turbidity Filtration System	Budget Water International Inc.	\$399.87
UV purification system	Atlantic Ultraviolet Corporation	\$327.25
		Total -\$1092.12

Conclusion

Our aim is to develop a technical device:

That is <u>sustainable</u>, robust, time-efficient and <u>easy-to-use</u> for people in developing countries who do not have access to purified water

Questions

