Solar Clean Water Device

Adegboyega Akinsiku Henok Mazengia Eric J. Turner

April 18th, 2013

Overview

- Background
- Problem Definition
- Refined Problem Definition
- So what is turbidity and why filter it?
- Design Requirements
- Current Status of Art
- Solution Approach
- Turbidity Sensor (Concept)
- Testing
- Implementation
- Power Analysis
- Cost and Resources
- Conclusion

Background

"Failure to provide safe drinking water to all people is perhaps the greatest development failure of the 20th century"¹

Figure 1: Man drinking turbid water

Problem Definition

- It's estimated that as many as 135 million people will die from the diseases caused by waterborne contaminations by 2020¹
- 1.1 billion people lack access to improved drinking water supply²

Figure 2: Boy drinking available water

Refined Problem Definition

- There is no technology that can filter turbid water for people and communities in developing areas
- Develop an automated device in contrast to BioSand Filters ; which is the most commonly used method of filtering turbidity in developing

Figure 3: BioSand Filter

Major drawbacks of BioSand Filters:

1. Time

- a. 30-40 minutes per cycle
- 2. Produces less than 4 L of water/day
- 3. Take one month for the filter to reach full efficiency

What is Turbidity and why filter it?

Figure 4: River highly contaminated with turbid water

Turbidity is Muddiness created by stirring up sediment of having foreign particles suspended

Indicates possible sources of microbial contamination and should be minimized as much as possible⁶

Figure 5: Different levels of Turbidity

Design Requirements

Function	Requirement
Power (Photovoltaic Cells)	•Components total output voltage and current levels satisfy the I-V curve of the Photovoltaic Cell
Control	•Toggle Switch controls when power is distributed
Detection	 Sensor detects Turbidity Levels>5Nephelometric Turbidity Units (NTU) Values
Time	•Completes one cycle in <10 minutes
Data Processing (Intel Atom Processor & Arduino Microcontroller)	 Solenoid Valve Water Pump Sensor Values Battery Life Cycle Status

Current Status of Art

To our knowledge this is the first case of an automated clean water system implementing photovoltaic power generation for developing areas

Solution Approach

Figure 8: Solar Clean Water Device Flow diagram

Solution Approach

Implementation

Figure 9: Turbidity Sensor Circuit

Implementation

Figure 10: Turbidity Sensors

Figure 11: Voltage-to-NTU Conversion

Testing & Evaluation: Turbidity Sensor

Evaluated the turbidity sensor to define a distinguishing value between pure water and lightly turbid water

Trail #	Sensor Reading
Trial 1	5.00
Trial 2	4.99
Trial 3	4.98
Trial N	X.XX

Figure 13: Turbidity Sensor Submerged in pure water

Figure 12: Henok and Ade investigating the sensor concept

Power Analysis

Component	Voltages (Volts)	Current (Amps)	Power (Watts)	Hours of use per	Watt – hours
				day	energy
Intel Atom board	12	7.5	90	4	360
Turbidity Sensor	5	.3	1.5	4	6
VGA/LCD Screen	12	.3	3.6	4	14.4
Arduino	5	.09	.45	4	1.8
Solenoid Valve	12	.5	6	4	24
Pump	6	.8	4.8	4	19.2
Tota	1	9.49	106.35	42	5.4

Power Analysis

Characteristics

Figure 14: I-V Curve of 12V 120 Solar Panel

Power Analysis

•
$$I_{sc} = 3.23A$$

• $V_{oc} = 21.6V$
• $V_{MAX} = 17.2V$ at ($P_{MAX} = 50W$)
• $I_{MAX} = 2.91A$ at ($P_{MAX} = 50W$)

•Components excluding Atom: $I_{out} = 2A$ $V_{out} = 16.35W$

$$\bullet I_{sc} = 8.36A$$

 $\bullet V_{oc} = 21.6V$
 $\bullet V_{MAX} = 17.2V \text{ at } (P_{MAX} = 130W)$
 $\bullet I_{MAX} = 7.56A \text{ at } (P_{MAX} = 130W)$

 Intel Atom Board $I_{out} = 7.5A$ $V_{out} = 90W$

.

.

Cost and Resources

COMPONENT	MANUFACIUKEK	<u>IUIAL CUSI</u>
	General Electronics (TSW-	
Turbidity Sensors	10)	\$32.21
VGA/LCD Screen	AEI	\$196.47
Direct-Current (DC) Water		
pump x 2	Trossen Robotics	\$57.89
Turbidity Filtration		
System	Waterra	\$27.08
Solenoid Valve	EHCOTECH	\$32.72
Solar Panel Mounting		
Brackets	Unlimited Solar, INC	\$45.98
50 W 12 V Polycrystalline		
Silicon Photovoltaic Solar		
Cells	Unlimited Solar, INC	\$115.00
130W 12 V Polycrystalline		
Silicon Photovoltaic Solar		
Cells	Unlimited Solar, INC	\$219.00
10	\$726.85	

ОП

Conclusion

- Successfully integrated the system and completed different test cases that satisfied certain design requirements
- Further Work:

Integrate the device with the late solar panels then test and evaluate its performance before the Cornell Cup (May 3rd, 2013)

References

• [1] Gleick, P.

"Dirty Water: Estimated Deaths from Water-Related Diseases 2000-2020" Pacific Institute for studies in Development, Environment, and Security, 2002

- [2] World Health Organization
- "Combating Waterborne diseases at the Household Level", WHO Library Catalouging-in-Publication Data, 2007
- [3] Leonard, P., Hearty S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O'Kennedy, R.
- "Advances in Biosensors for detection of pathogens in food and water", *Enzyme and Microbial Technology 32*, 2003
- [4] Sadar, Mike

"Technologies for measuring Turbidity in Drinking Water Production" Water World Automation Technology, 2011

- [5] Lasnier, France, Ang, Tony Gan
 "Photovoltaic Engineering Handbook" *IOP Publishing Ltd*, 1990
- [6] World Health Organization
 "Guidelines for drinking water quality 4th edition", WHO *Library Cataloguing-in-Publication Data*, 2011

Questions

