
Problem Solving → Solution Generation

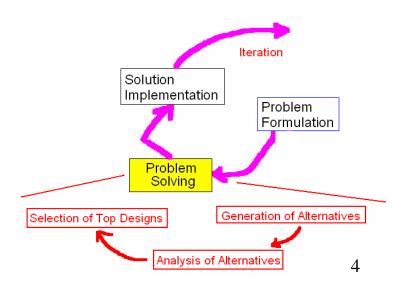
•Objectives:

- -The steps of problem solving
- -Strategies for generating, analyzing, and selecting alternatives
- -Making Progress

Class Schedule

Schedule

- -January: Initial System Design and Alternative Solution Generation
 - •System Design and Alternative solutions (of whole or parts) generation
 - •Final System Design
 - Parts and Components
 - Progress Report & Presentation
- -February: Implementation of the Project
 - •Implementation Plan + Evaluation Plan (Presentation)
 - •Implementation Process
- -March: Continuation of the Implementation
 - •ECE Progress Presentation -------> Public Presentation Event
 - Completion of the implementation
 - Evaluation
- •April: Final Month of the class (2 3 weeks)
- Final Project Presentation (ECE Day)
 - -Thursday, April 18, 2013 (*April 26 --- PG grade posting /End of formal class)
- Cornell Cup 2013 Presented by Intel
 - -Final competition May 3-6, 2013 at Disney Resorts
- Class Policy
 - -More time to teams team meeting log
 - -Progress Report Presentations


Grading Policy

• Grading:

- Team Works (t) 80%
 - Class activities + Presentation + contents (40%)
 - Team Binder (10%) with team meeting minutes and all works
 - Final Report Submission (Soft + Binding) (5 %)
 - ECE Day judgment (25%)
 - "No participation, no team work point"
- Attendance (a) 10%
- Individual presentation (or <u>elevator speech or pitch</u>) score (b):
 10%
- Peer Evaluation (p)
- Final Score = (a + b) + 0.6*t + 0.4*t*p
- A > 90
- 89>B>80
- 79>C>70
- 69>D>60
- 59>F

Problem Solving Process

- Problem Solving Process
 - Finding design solutions to a well-understood problem ---" Solutions Generation"
 - Exploring and Analyzing those designs, and -- "Analysis of Alternatives"
 - Selecting the most promising design for implementation ---"Top Design"

Step 1: Generation of Alternatives

- The act of expansion all possible solutions (<u>Entire design or a part or</u> <u>a few parts in the design</u>)
- Overcome the temptation to adopt the first idea
- Developing ideas individually and pooling them together generate more ideas
- Wide design space but true to the problem (functional requirements)
- Building onto existing solutions

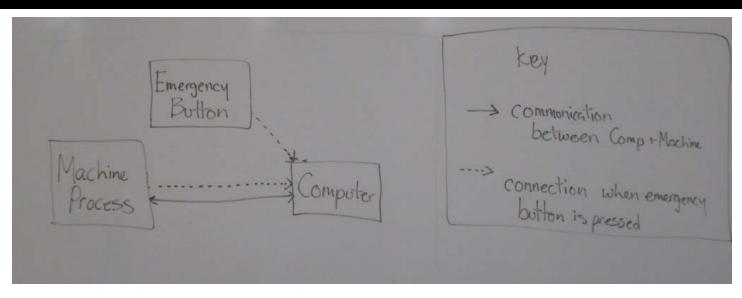
Step 2: Analysis of Alternatives

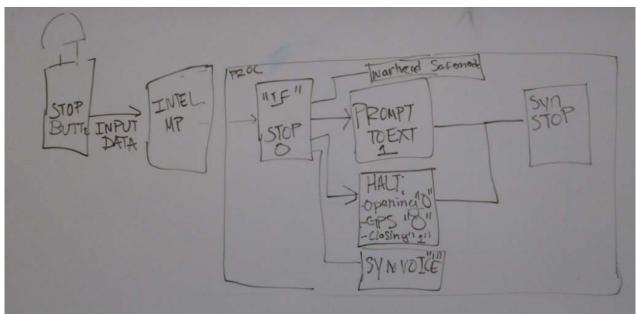
- Screening
 - Remove those that do not meet the functional requirements ("concept screening")
- In-depth analysis of final candidates
 - Modeling analytically with equations Equations are representations of reality, not reality itself
 - Modeling with a simulation You get what is modeled, not the reality
 - Experimentation (with prototype) Requires more time and money
 - Qualitative Reasoning Exert Opinion. Talk to your advisor

Which approach to use?

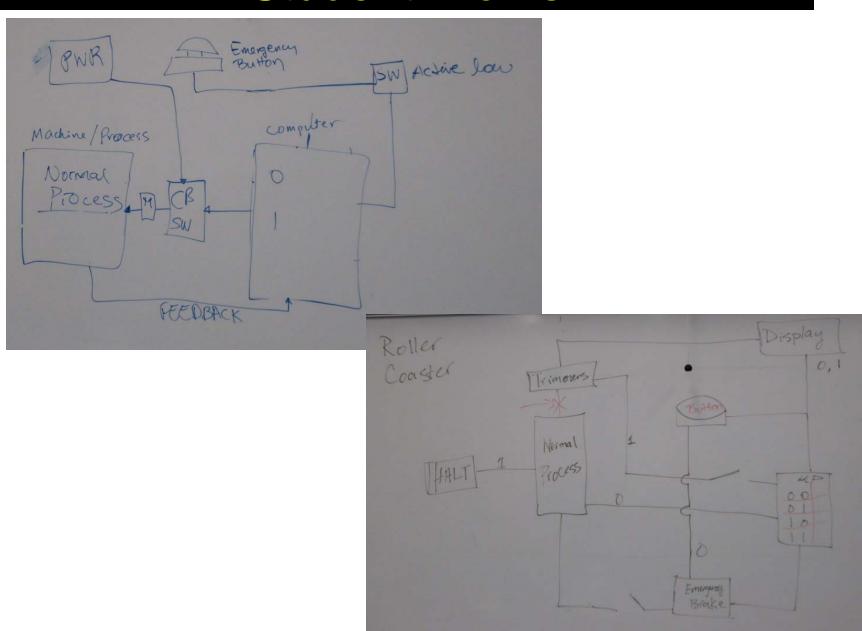
- 3 types of RFID readers on the table and need to choose 1
- Can a red LED be used as a light source for photodiode based turbidity measurement in place of write LED?
- In handling numerous inputs and outputs, which one do I use, Arduino or I/O explorer?
- Would a single-phase switching cause system unbalance? What condition could minimize the unbalance?
- Which motor is better with the Robo Table purpose,
 1/2hp with 5lb weight or ¼ hp with 1 lb weight

Example Design Study for Alternative Solution

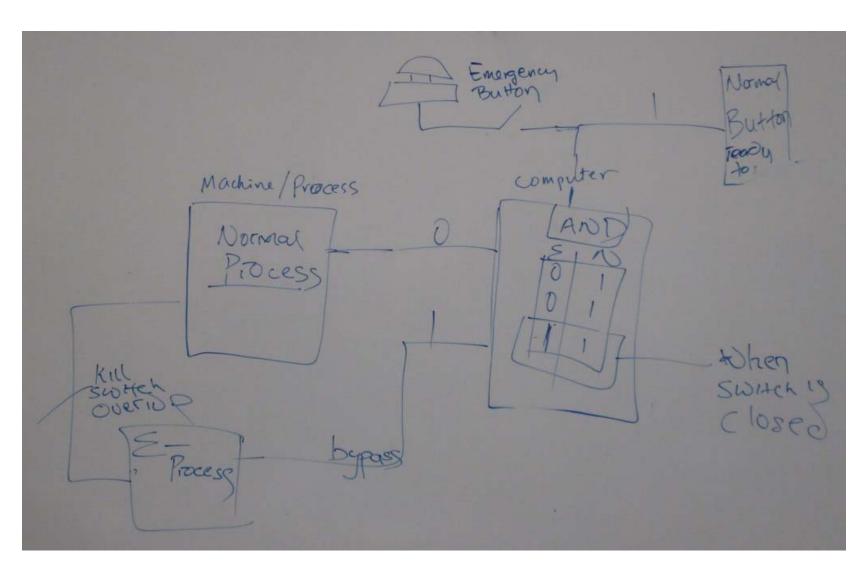

Background:

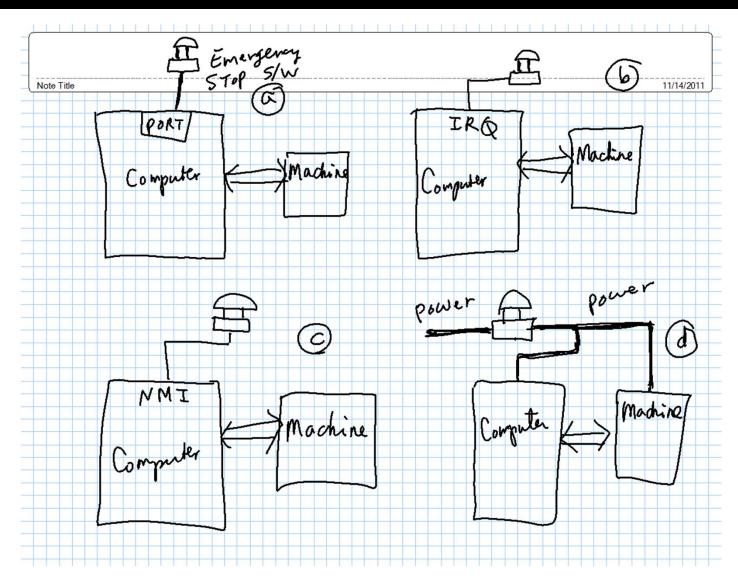

 Some aspects of designs may have safety implications which must be treated seriously to ensure that they operate correctly

Design Project:


- How should an emergency stop button be interfaced to a microcomputer based machine control system to ensure its correct operation?
- Each team generates a solution design (Block or Schematic Diagram – as detailed as possible): 10 - 20 minutes
- Each team explains the reason behind the design.

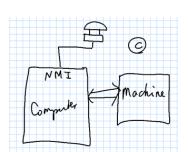
Students Works




Student Works

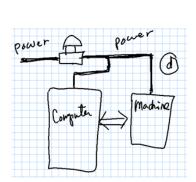
Student Work

4 different methods


4 Methods - description

I Emergency T STOP 5/W

PORT


Computer

- (a)
 - Serial/Parallel input port to S/W
 - Poll periodically: sense and act
- (b)
 - IRQ (Interrupt request) line to the S/W
- (c)
 - NMI (non maskable interrupt) line to the S/W
 - IRQ always accepted

IRO

- (d)
 - Main power supply line to switch operation
 - Safety function is provided by Power Switch

Solution Generation: Problems Observed

- The problems observed in the previous Senior Designs
 - No Serious Alternative Designs
 - Simulation for Simulation's Sake
 - No rigorous analysis for design comparison
 - No effort of designing a circuit
 - Instead, let Internet do for them
 - A purchased kit replaced the design
 - No evaluation of the design

Selection of Top Designs

- Selection is decision-making
- Decision-making involves making tradeoffs
 - The results of the analyses
 - Requirements from customer
 - Conflicting requirements
 - Requirements of different importance
- Decision Tool
 - Decision Matrix

Decision Matrix Example

Purchase of a used car										
CAR	COST	ODOMETER READING	MECHANIC'S RATING (1 - 10)	LOOKS (1 - 10)						
RED	\$2000	50,000	7	5						
BLACK	\$2500	40,000	5	6						
BLUE	\$3000	20,000	8	8						

- Which car do you buy under the following two different weight scenarios
 - You concerned about all four attributes equally.
 - You concerned about cost and fairly indifferent about looks. Mileage and the mechanic's ratings are equally important for you.

Using a Decision Matrix

- Step 1: Collect Information (Analyses)
- Step 2: Determine and Weight Attributes
- Step 3: Rate the Concepts
- Step 4: Rank the Concepts
- Step 5: Combine and Improve the Concepts
- Step 6: Resolve the Decision

		Bluetooth Development Boards								
Selection		Teleca	a Comtec	Stonestreet One		GCT		Atmel		
			Weighted		Weighted	S	Weighted		Weighted	
Criteria	Weight	Rating	Score	Rating		Rating	Score	Rating	Score	
Price	40	4	1.6	3	1.2	1	0.4	1	0.4	
Power	15	4	0.6	4	0.6	4	0.6	1	0:15	
Software	35	2	0.7	4	1.4	3	1.05	2	0.7	
Version	10	1	0.1	4	0.4	4	0.4	4	0.4	
Total Score			3		3.6		2.45		1.65	
	Rank		2		1		3		4	

Class Schedule of January - Feb

- Jan 23:
 - Elevator Speech (pitch)
- Jan 30:
 - Presentation of Alternative Designs (components and parts) and Analyses & Top Design Solution
 - Presentation
 - 15 minutes of presentation time
 - 2 presenters and 1 Answerer from each team
 - Presenter 1: Alternative Solutions and Analyses of them (5 min)
 - Presenter 2: Decision Making and Top Design Selection (5 min)
 - Answerer: Answer to Questions (5 min)
- Feb 6: No official Class
 - FINAL VERSION of [Top design + Component selection]
 - Submission: by Feb 6, 2013 (5:00pm) via email
 - Final Design (MS Word file)
 - Hardware component: detailed schematics
 - Software component: Flowcharts or block diagrams) in MS Word file
 - Final Component/Part list (MS Excel file)
 - product name, description, product no, vendor, price, etc.
- Feb 13: Lecture on Progress Reporting