SMART BACKPACK

Team Sigma

Paul Alade Samuel Omosuyi Jennifer Okafor Ellwood Lane Kalonji Bankole

23rd ECE Day Final Presentation April 17, 2013

Table of Contents

- Background
- Problem Definition
- Design Requirements
- Current Status of the Art
- Solution Approach
- Implementation
- Testing and Evaluation
- Costs and Resources
- Conclusion
- Q & A

Background

How do people ensure they have all items needed for an event?

REMINDERS

CHECKLISTS

How is monitoring and identification done in our society today?

RFID TECHNOLOGY
An RFID system consists of
Reader
Transponder or tag

Background

Goals

- Compensate for the failures of a reminder and checklist
 - Active Monitoring of items
- Avoid frustration of losing/forgetting important items

Who are our customers?

Problem Definition

What's Needed?

We need to monitor, track and crosscheck if user's essential items are within close proximity.

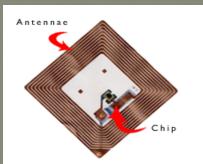
The Problem Statement

We want to design a system that monitors and keeps track of items needed based on a user's schedule and notifies the user whenever an item needed for any of the day's activities goes outside a certain range of the system.

Design Requirements

	Descriptions
Function	 Monitoring of users item when motion is first detected (10 Sec) Issue notification if user attempts to leave without an item needed at their projected destination. (1M Proximity Range)
User Interface	 Allow user to specify Events and items that are needed for each event (Android Application) Allow user to view and edit inventory, Associate Tagged Items with custom item name (Android Application) Notify the user of items needed if missing. (Smartphone)

Design Requirements


	Descriptions
System capabilities	 Motion Triggered (Motion Sensor) Automatically update inventory received from the User interface Automatic Notification Alerts (Less than 1min) Wireless Communication between user interface and microcomputer (Bluetooth 4.0) (10-12m range)
Compliance	> Adhere to the relevant standard (ISO 18185)
Others	 Low Noise level (20db) Light weight system (3lb) Optimum battery life (8hrs) Ease of use (10mins setup, 10mins learning)

Current Status of Art

Fundamental Theory

- RFID transceiver (reader) antenna emits radio waves
- RFID transponders (tags) within range absorb the energy discharged by the reader
- Absorbed signal is altered(amplitude shift keying) by the tag's data and backscattered to the reader
- The reader receives and compares this modified wave to the original to extract the data

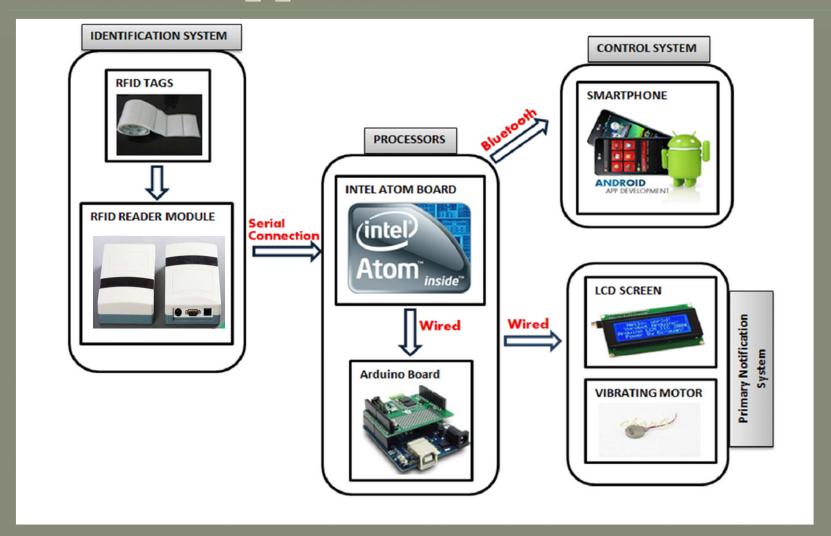
Current Status of Art

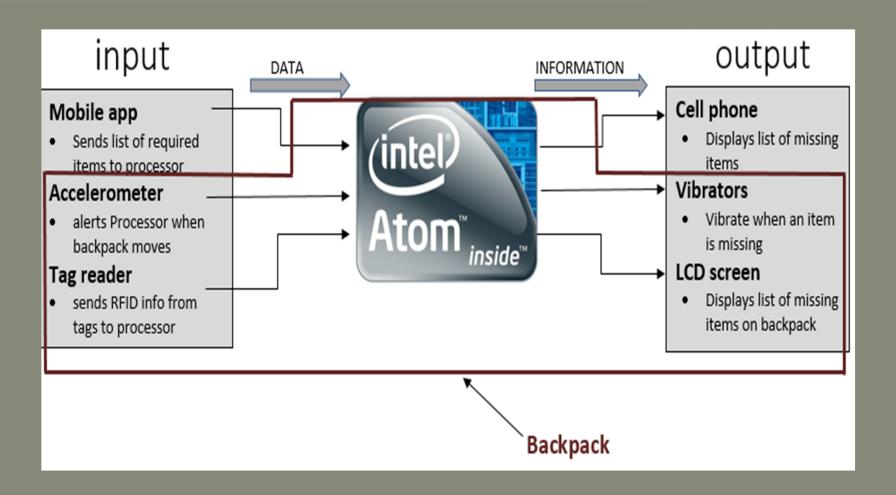
Features

- Tags can store 2KB of data
- No direct line of sight needed for system
- System can employ WIFI/Bluetooth technologies
- Tags can be located through triangulation

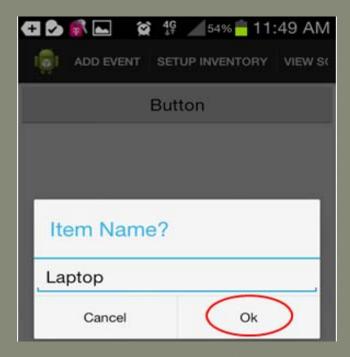
Weaknesses/Improvement Points

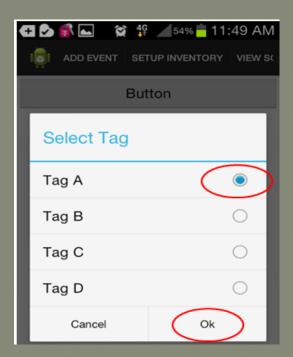
- Tradeoffs occur with change in RFID signal frequency
- Expensive
- Many metals and liquid(aluminum foil, water, etc.) can cause interference in the system



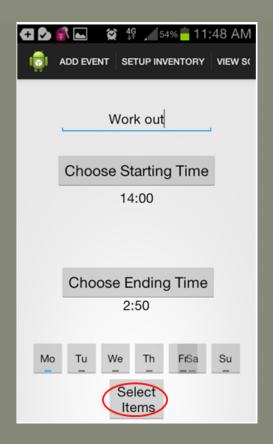

Solution Approach

- Microprocessor obtains user's schedule from organizer
- 2. Required items are decoded from tasks listed on the schedule
- 3. RFID reading action is triggered whenever motion is detected by accelerometer
- 4. Notification (tracking) system is triggered as user leaves the home
- 5. Microprocessor notifies user whenever items go outside the RFID reader's range
 - Vibration motion, alert sent to phone & displayed on LCD screen

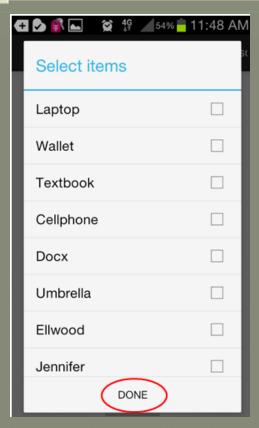

Solution Approach


System Implementation

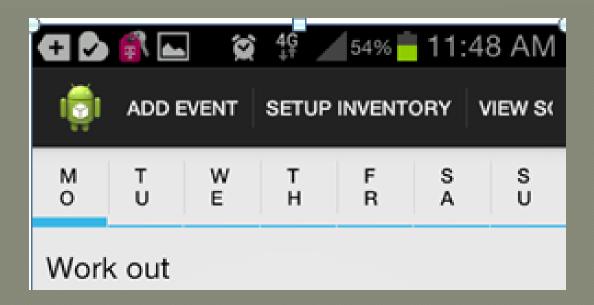
App Development:


Adding Item to Inventory

Associating Item with a Tag

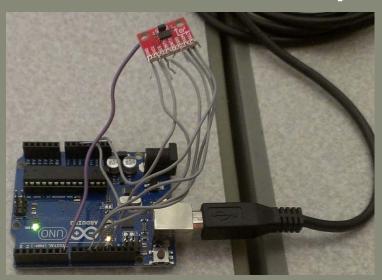


Adding an Event

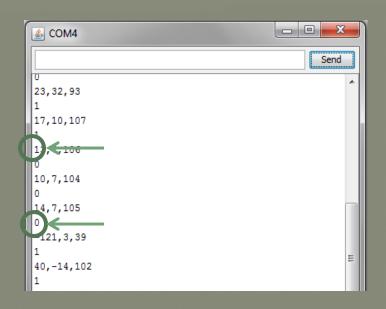


Associating an Event with its Items

ECE Day Final Presentation: April 17, 2013



Item Selection

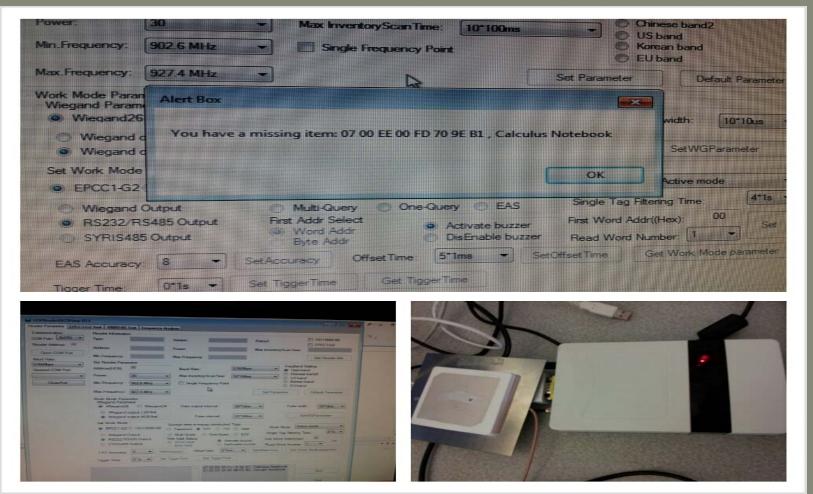


Finished Event for a Given Day

Accelerometer Functionality:

Arduino Uno + ADXL345 Accelerometer

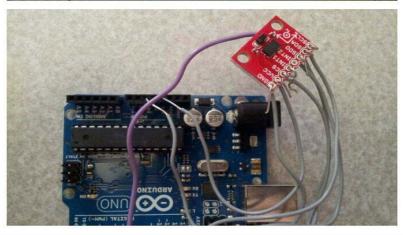
Serial Communication Port 4


Motion is detected when current accelerometer value is greater than past accelerometer value by more than a value of 15

FPGA and LCD Functionality

RFID Functionality

ECE Day Final Presentation: April 17, 2013


System Integration

```
public SerialPortMotionDetection()
{
    Console.WriteLine("Incoming Data:");

    // Attach a method to be called when there
    // is data waiting in the port's buffer
    port4.DataReceived += new SerialDataReceivedEventHa

    // Begin communications
    port4.Open();

    // Enter an application loop to keep this thread all
    //Form.
    // Application.Run();
```


Power Management

(Please Add Screenshots)

Team Sigma Smart Backpack Final Product

(Please Add Final Integration Picture)

Testing and Evaluation

Steps	Function	Test	Pass / Fail
	Information is		
	making it from	Information is	
Calendar	app/phone to	properly showing	
information	processor	on processor	Pass
		RFID reader	
		begins to scan	
	Motion turns on RFID	after motion is	
System state	reader scanning	detected	Pass
	Reader is		
Tag	recognizing tags	Tags are being	
identification	within region	read	Pass
		Processor	
	Error message is	correctly realizes	
	sent when tag moves	that a certain tag is	
Tag proximity	outside of region	missing	Pass
	Error message is	App/Vibrator/LCD	
	received by user	screen correctly	
User notification	through each outlet	function	Pass

Testing and Evaluation

Test	Pass Value	Value	Pass / Fail
Weight	3 lbs		
Read Range(Direct LOS)	lm	1.5 m	Pass
Read Range(No Direct LOS)	lm	0.7 m	Fail
Noise Level	20 dB	52 dB	Fail

Testing and Evaluation

Test	Pass Value	Value	Pass / Fail
Motion Detection Time	<5s	4s	Pass
Error Notification Time – Vibrating Motor	<5s	3s	Pass
Error Notification Time – Phone	<5s	18s	Fail
Error Notification Time – LCD Screen	<5s	52s	Fail

Costs and Resources

Budget(\$2500)		
Items	Cost	
RFID reader and tags	\$200	
Accelerometer	\$30	
Rechargeable Battery	\$140	
Vibrating Motors	\$30	
Bluetooth Adapter	\$20	
Travel to Orlando (CC Finals)	\$970	
Accommodation (CC Finals)	\$1,060	
Total	\$2,450	

Costs and Resources

Physical Resources	Technical Resources
Quartus II – FPGA Access	Classwork background
Visual Studio – RFID control	Practical corporate experience
Eclipse – Application development	

Conclusion

- Our Smart Backpack solution partially meets our customers' need of ensuring that important items are never left behind
- With additional time, we will continue finishing our system integration
- Also, we will improve our designs performance to align with our design requirements
- We compete in the Cornell Cup 2013
 Presented by Intel in May 2-4, 2013 at
 Disney's Contemporary Resort.

Team Sigma **Howard University**

In our daily lives, we have generally come to rely on our memory, reminders on mobile devices, and physical checklists for making preparations to take on our daily tasks; These preparations include knowing the time and location of each task, as well as what materials/items will be required for each engagement. Despite memory reminders and checklists, we still often find ourselves in situations where we either show up for our tasks without required materials or leave important items behind as we move between tasks. Thus, a noteworthy imperfection to the working of a

reminder is the reminder's failure to monitor and crosscheck if a user

For a user to avoid the frustration of losing/forgetting important item create a smart backpack that accesses a user's daily schedule, deduc scheduled tasks, and notifies the user whenever these required items the backpack. Sigma's solution seeks to alert the user if any required the computational power and storage ability of Intel's processor with accelerometer, an LCD screen, and a mobile application.

