Design of a Digital/Computer System – which most senior design projects belong to

Charles Kim

Howard University

Charles Kim - Howard University

Objectives

- Identify the major tasks associated with the design of an electronic/digital system
- Familiarize with a range of alternative system implementation methods
- Understand the principal characteristics of the various device technologies and identify the appropriate techniques for a variety of applications
- Recognize the relative merits of programmable and non-programmable systems and to suggest an appropriate strategy for a given task

Charles Kim – Howard University

Process of System Design

- "A good design": a design that solves a particular problem in the most appropriate and efficient manner.
- How to achieve a good design:
 - Know the problem
 - Know the available techniques and technologies
- Experience is important, so is a systematic and methodical approach
- System Design Methodology (of Topdown Approach) – our focus

Top-Down Design Approach

- 1. Customer Requirements ("Functional Requirements" or "Problem")
 - From Customer or final user
 - Expressed often in non-technical and sometimes imprecise terms
- 2. Top-Level Specification (← "Design Requirements" ← "Problem Definition")
 - From the Customer Requirements
 - What the system is to do in response to all possible inputs
 - Set out any restrictions on the design of the system physical size, weight, power consumption, or operating temperature limits
 - Man-machine Interface: how a user interacts with the system
 - This becomes now more important and plays an important part in determining the success or failure of the project.
 - System Block diagram
 - Identification of all inputs and outputs
 - Note: Spec sets out what the system is to do, but not to define how
 it is to do it.
 - Defines functions to be performed but does NOT dictate the methods to be used
 - The Specification must be approved by the customer as a correct expression of his/her requirements

Top-Down Design Approach - Continued

3. Technology Choice (→ "Solution Generation" →)

- What types of solution is suitable for the task?
 - Electronic solution --- analog, digital, or mixture of techniques?
 - Appropriate device technologies discrete components, standard IC, PLD, FPGA, uP?
 - Appropriate operating systems
 - Appropriate development environment of S/W and H/W
- Detailed knowledge on the characteristics of the various components and devices
 - Speed
 - Cost
 - Analog/Digital I/O
 - Power Consumption
 - Operating voltage
 - Noise levels
 - Physical size
 - Temperature range
 - Development cost
- Correct method of implementation
 - Important factor : success or failure of the project

Top-Down Design Approach - Continued

4. Top-Level Design

- System Partitioning: Split the works into a number of modules to produce tasks of manageable size and determine the techniques to be used in each module to achieve its required functions.
- Hardware/Software Trade-Off: Which parts of the system will be implemented in H/W and which in S/W (for uP based system).
- Block Diagram form of system description

5. Detailed Design

- Detailed circuitry, H/W/, and S/W design
- Implementation of various features and characteristics of the specification

6. Module Construction and Testing

- (→"Implementation")
- Construction of modules
- Testing of individual modules to ensure they conform to the specs
 - · Revision of design and construction of the design

• 7. System Testing (→"Verification and Evaluation")

- Assembly of modules and complete a system
- Verification and assessment to ensure that it meets the top-level specs
- Modification of the system if snecessary niversity

Design Study

 Some aspects of fairly conventional designs may have safety implications which must be treated seriously to ensure that they operate correctly

Example:

- Consider how an emergency stop button should be interfaced to a microcomputer based machine control system to ensure its correct operation
- 4 possible approaches

4 different methods

4 Methods - description

- (a)
 - Parallel input port to S/W
 - Poll periodically: sense and act
 - After system crash?
 - Noise spike → error in execution of program → missed S/W operation
- (b)
 - IRQ (Interrupt request) line to the S/W
 - After system crash?
 - Maskable interrupt maybe enables or disabled
- (c)
 - NMI (non maskable interrupt) line to the S/W
 - IRQ always accepted
 - After system crash?
 - Random hardware failure → missed S/W operation
- (d)
 - Main power supply line to S/W operation
 - Safety function is provided by Power S/W not by computer
 - Is this always better? arles Kim Howard University