

Pedometer-type Energy Harvester

Bodunrin Jawando

Dhanushka Fernando

Illium William

April 2011 | Senior Design Project | Howard University

Outline

- Introduction
- Problem Statement
- Design Requirements
- Solution Approach
- System Specifications
- Project Management
- Future Work
- Conclusions & Questions

Introduction

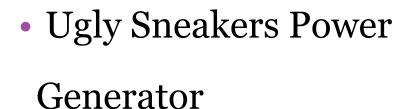
- The need for environmentally friendly energy solutions is the major driver for a system like the Pedometer-type Energy Harvester
- The PEH harnesses energy from the bodies of young/active persons for use as a power source

Problem Statement

Design a PEH that:

- is portable
- converts human motion into electrical energy
- stores harvested energy for use in recharging electrical accessories

Design Requirements


The PEH should:

- Generate 5Vdc @50 100mA (or 12V version)
- Charge battery up to 5 WHr
- Operating Temp: -10 − 40 Celsius
- Deliver Power: Nominal to a USB device, Large to battery reserve
- Provide external indicator of power condition

Current Status of Art

Sanyo's Pedometer Charger

Knee Brace

Current Status of Art

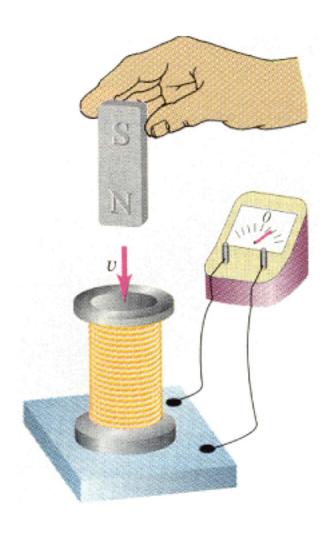
Knee Brace

• Nominal power output: 8-14W (1.5m/s walking sped)

Maximum power output: 25W (15 degree down slope)

Effort Level setting: 10 levels

• Output voltage: 5V to 16.8V (2 to 4 Li Ion cells)


Maximum output current: 5A

• Operating temperature: -20C to + 50C

• Storage temperature: -40C to + 70C

- Using Faraday's Law of Induction, we intend to use a magnet that passes through a copper coil which, when you move, induces voltage in the coil generating electricity
- The generated electric energy will then be stored in a rechargeable battery for use by the owner
- An adapter will be added at the other end of the battery for whatever suitable connector the user desires

 Alternative Solution: Series Combination of Tubes

Pros

- More redundant than the single tube approach. One tube can act as a failover for the other

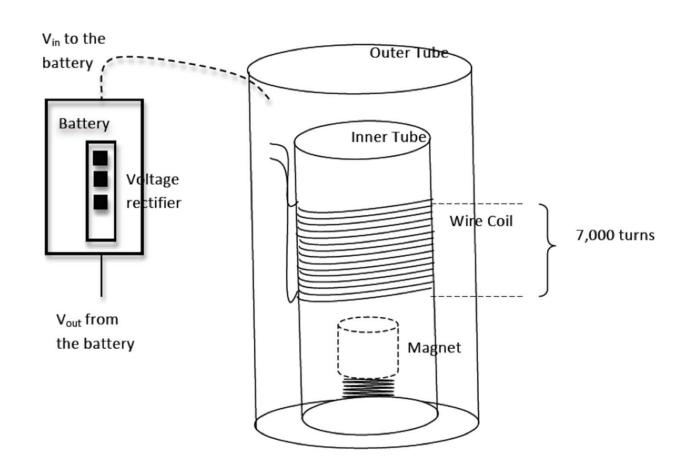
Cons

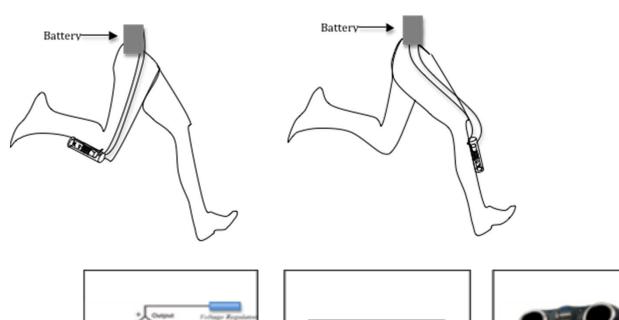
- More expensive
- Heavy

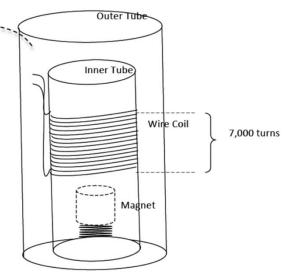
- Alternative Solution: Toroidal Coil generator
 Pros
- Require less turns of coil
- Continuous flow of current

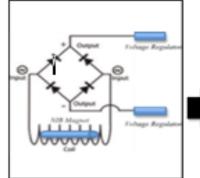
Cons

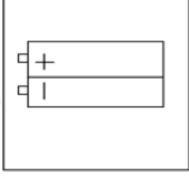
- Time to construct
- Less Practical


Decision Matrix


4


-					
	Selection Criteria	Weight	Primary Solution	Several Tubes	Toroid Tube
	Cittella		Solution		
	Weight	5	3	1	4
	Cost	5	4	2	2
	Feasible	5	4	4	1
	User friendly	5	4	3	1
	Total	25	15	10	8





Transmission Circuit

Rechargeable Battery

Multiple outlets for charging devices

Electronic devices

Engineering Approach

$$E = -N \frac{d\phi}{dt}$$

N-Number of turns

A - Surface area of tube

 B_o – Magnetic field intensity in the middle of tube

 $B_{\it END}$ – Magnetic field intensity at end of the tube

g - gravitational force

L – Length of the tube

t - Time for one oscillation

E - Induced emf

 $\frac{d\phi}{dt}$ - Rate change of flux

$$N = \frac{E}{A \frac{B_o - B_{END}}{\Delta t}}$$

$$= \frac{E}{\frac{B_o}{1 + \frac{L}{2}}}$$

$$A \frac{\sqrt{\frac{L}{g}}}{\sqrt{\frac{g}{g}}}$$

$$N = \frac{E}{AB_o \frac{2\sqrt{g}}{(2+L)\sqrt{L}}}$$

$$Frequency = 3.5Hz$$

Total length of wire =
$$7000 \times 3.92$$
 inches
= $27,489$ inches
= 2290 feet
Weight of the wire = $\frac{0.7692 \text{ lb}}{1000 \text{ ft}} \times 2290$ ft
= 1.76 lb
Resistance of wire = $1.76 \text{ lb} \times 53.061$ $\frac{\Omega}{\text{lb}}$
= 93.46Ω

Weight Calculation

Coil	=	1.76 lb
Magnet	=	0.28 lb
Tube	=	0.09 lb
Stoppers + Spring	=	0.10 lb
Battery	=	0.50 lb
Rectifier+ Wires		0.10 lb

Total Weight of Device = 2.83 lb

Specifications:

Input: 5VDC 500mA

Output: 5VDC 800mA Max.

Push capacity button with green LED

indicator for battery condition

-1st LED = 35% of full capacity

-2nd LED = 60% of full capacity

-3rd LED= 100% of full capacity

Built-in Battery: Li-Ion 3.7V 1800mAh

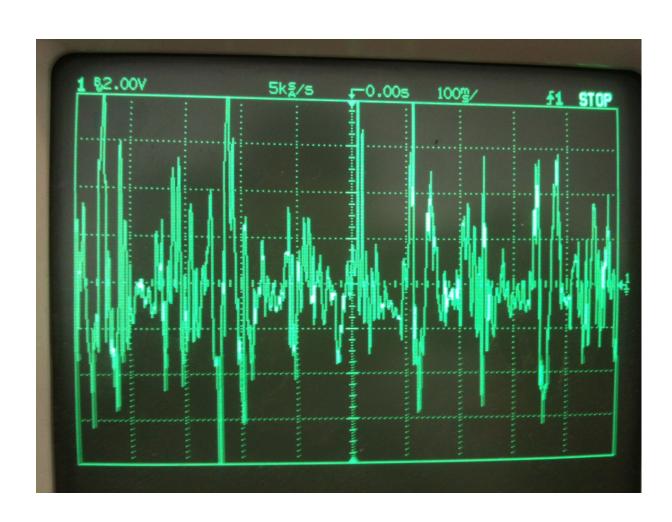
Operate temperature: o'C - 45'C

Pack's dimension (LxWxH): 86mm(3.4") x

51mm(2.0") x 15mm(0.6")

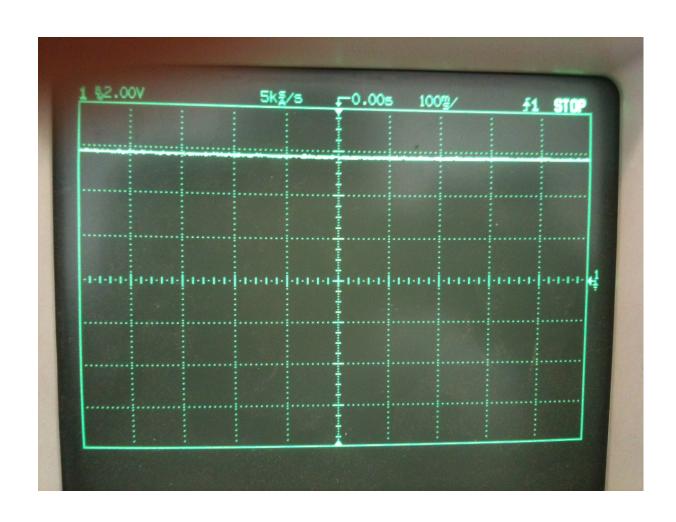
Pack's weight: 2.5 Oz (71 grams)

Project Management


Costs

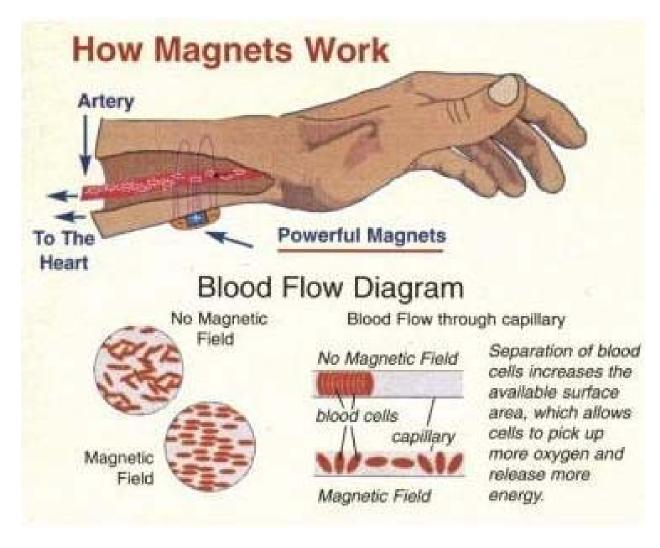
•	Magnets	\$10
•	Wires	\$200
•	Tubes	\$30
•	Circuit Elements	\$20
•	Battery	\$65

Total Cost = **\$325**


Supporting Information

Supporting Information

Supporting Information



<Demo video goes here>

	Monitoring/ Management
Powerful magnet may pose safety issues.	Research done to ensure magnets are not hazardous to health

International Agency for Research on Cancer

"There is limited evidence in humans for the carcinogenicity of extremely low-frequency magnetic fields in relation to childhood leukaemia. There is inadequate evidence in humans for the carcinogenicity of extremely low-frequency magnetic fields in relation to all other cancers.."

- National Institute of Environmental Health Sciences (NIEHS)
- "After reviewing more than two decades of research in this area, NIEHS scientists have concluded that the overall pattern of results suggests a weak association between increasing exposure to EMFs and an increased risk of childhood leukemia. The few studies that have been conducted on adult exposures show no evidence of a link between residential EMF exposure and adult cancers, including leukemia, brain cancer, and breast cancer."

Future Work

- Develop a prototype using 2 tubes
 - Reduced resistance in the system
 - Balance the weight distribution on both legs

• Use a magnet with a stronger magnetic field intensity

Conclusion

• Performance Evaluation

Design Requirements	Our Solution
Generate 5Vdc @ 50mA	
Charge battery up to 5 WHr	
Operating Temp (-10°C to 40°C)	
Deliver Power Nominal to a USB device	
Provide external indicator of power condition	

Questions

