
WWW.MWFTR.COM 5/3/2012

Outline

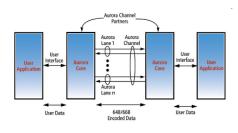
- Background
- Problem
- Design Requirements
- Current Status of Art
- Solution Approach
- Implementation
- Project Management
- o Conclusions & Questions

Background

- Modern radar systems utilize digital signal processing. The radar receivers contain high speed A/D converters at the end of the analog signal path. The digital data is transmitted by fiber to the signal processor. Data rates on these signal paths are extremely high (6+ Gb/sec).
- For example, today
 Northrop Grumman uses expensive
 MIL-SPEC hardware simply to test
 their receivers in the factory.

Problem

- We need to build a test receiver system that can handle data at high rates but is more cost effective than the expensive MIL-SPEC hardware that is in use.
- In a nutshell, we need to build a cost effective system that will help Northrop Grumman test receivers in the factory.
- The main question asked is:
 - How can we design and test an on demand converter



Design Requirements

- The unit should acquire data, buffer it in memory and upon request transfer the block over a LAN interface to a requesting computer.
- Real time conversion from fiber to LAN is not required.
- The data comes in as serial data encoded in the Xilinx Aurora protocol.

Aurora Interface

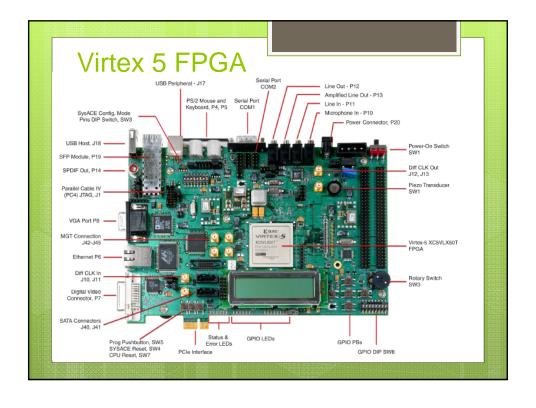
- Aurora is a scalable, lightweight, link-layer protocol that is used to move data across point-to-point serial links.
- It is an open protocol and is free of charge.

Why use the Aurora?

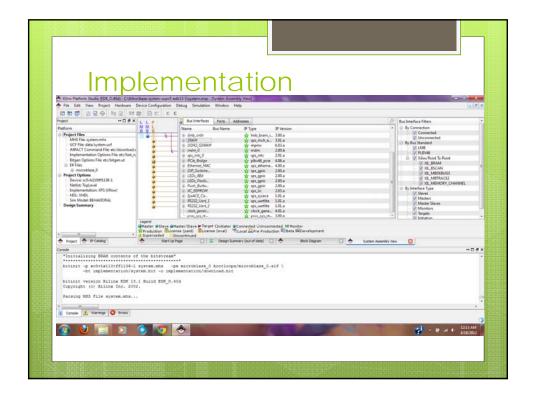
- Very efficient low-latency protocol that uses the least possible amount of logic
- Aurora increases bandwidth through bonded lanes.
- It is intended for use in high speed connections internally in a computer or in an embedded system.

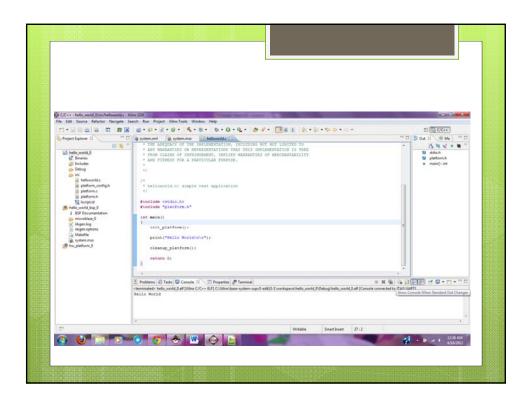
Basic Operational Concept

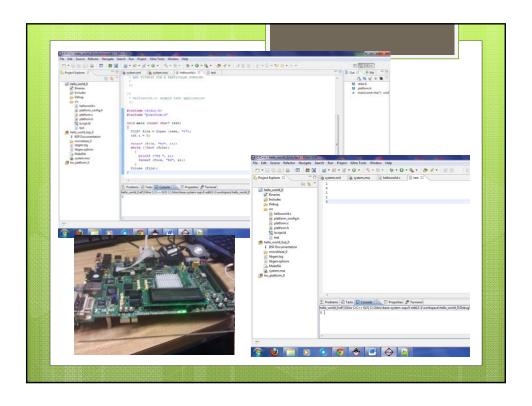
- 1. Our system is intended to acquire data on a fiber interface and buffer it in memory.
- 2. Completion is reported through LED.
- 3. A controller requests data acquired be transferred over LAN.
- 4. Our system then transfers the data and awaits next command.


Current Status of Art

- Currently there are no commercial products that have the ability to do on demand conversations at the speeds required for this project.
- The only products available are MIL-SPEC hardware. This hardware is very expensive and is not for commercial sale.




Solution Pros and Cons


- Pros
 - The Aurora protocol is supported by the Virtex-5 FPGA.
 - The Virtex-5 is the only component needed to meet our requirements.
- Cons
 - The Virtex-5 is very expensive
 - Programming this FPGA is a challenge

Design Matrix								
			BS2/ Atom Board		Atom Board/ I/O Explorer		Virtex-5	
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score	
Aesthetics	10 %	1	.1	2	.2	3	.3	
Sustainability	15 %	1	.15	2	.3	3	.45	
Software (user- friendly)	15 %	3	.45	1	.15	2	.3	
Price	25 %	2	.5	3	.75	1	.25	
Memory	35 %	1	.35	2	.7	3	1.05	
Total	Total		1.55	11	2.1	11	2.35	
Score = Weight * Rating								
		1	744					

Budget Unit Discount Quantity Cost (\$) Item Cost (\$) Price (\$) Xilinx Virtex®-5 2000 750 1 750 XC5VLX110T 0 Miscellaneous 100 0 **Total Cost** 750

Conclusion

- Creating a receiver system that is cost effective and can handle high-speed data rates is a daunting task
- Given the chance to work with the Virtex 5 again, we would like to continue on this project, perfecting the system until it is industry worthy.
- Great learning experience!

Future Work

- o In the future we would like to:
 - Implement two Virtex-5 boards into the system
 - Make real time conversion from fiber to LAN possible
 - Incorporate the use of two buttons into our system

Acknowledgements

- Department of Electrical and Computer Engineering, Howard University
- Howard Graduate Marlon Winder
- Ravindranath Jaglal & Gerard Spivey
- Dr. Charles Kim and the entire Senior Design I/II class

Questions

F2E Convert On Demand

Team Members: Damola Alabi, Andrew Hillocks, Montaque Jones and Jasmine Little

Dept of Electrical and Computer Engineering EECE 404 Senior Design II Instructor Dr. Charles Kim