Green lighting Project

Senior Design/Cornell Cup Project

Members: Ravi Jaglal Isaac Collins Shamir Saddler Ameer Baker Chidi Ekeocha

- Lights have revolutionized the way we work, live and play
- About 5% of the energy used in the nation is used for lighting homes, buildings and streets
- Lighting is about 25% of a building's electrical use, therefore efficient lighting can save a lot of money
- 1000 sq. ft. area needs 30 foot-candles i.e. 30 lumens per sq. ft.

Problem Formulation

- How to minimize energy consumption in a room while simultaneously creating a productive work environment.
- System must cut consumer power and simultaneously save the institution money in energy savings.

Problem Formulation (Cont.d)

- Design standpoint: the system should be so discrete it is not readily recognizable
- Implementation standpoint: the system will read the intensity of light coming into a room and fixate the amount of light being distributed throughout out the room to meet a standard amount at all times (323 lux)
- Consumer standpoint: the system will cut the respective institutions energy expenses by (15-30%)

Current Status of Art

- Solar energy can be used in many ways to help conserve energy
- Some as simple as keeping the shades up so sunlight can light or warm a room
- Installing devices that trap the sun's energy or convert it to electricity

Common Ways of Saving Energy through lighting:

 Turning off lights, Using fewer electric lights, Using efficient lighting, Dimming Light switches

Innovative Ways of Saving Energy through lighting:

- Bringing different technologies together unto a common platform, using a control system to vary how energy is consumed

Different Technologies:

Microcontrollers	Intel Boards	Indoor Light Sensors	Relay	Control Systems	Interface
 BS2 Boards Various Ports Cost Range: \$100 - \$150 	 Tunnel Creek FPGA Cost Range: \$400 - \$450 	 APDS-9007 Range of 3 lux to 70K lux Cost Range: \$1.05 - \$2.00 	 Relay (Switching voltage 240VAC) Cost is \$5-\$7 per unit 	 Develop using Java, etc. Cost is relative to Developer 	 Develop using Java, C#, etc Cost is relative to Developer

Photo courtesy of Politics in the Zero

Light Sensors

Ambient Light sensor Photo current response to wide dynamic range of 3 lux to 70K lux

Photoconductive Photocell Can sense light from 400 to 700 nm

Solution Approaches

- Comprised of the application of all the available light energy control resources that available today.
- This would be achieved using the sun's energy to complement the room's overall intensity at all times of day.
- System will work with the available light intensity from the sun to maintain the room's intensity at about 30 foot candles.
- Includes the use of a Tunnel creek(Intel Atom board) along side other electrical components.

Solution Approaches (Cont.d)

• Layout depends on the positioning of the lights in the room.

Solution Approaches (Cont.d)

- The system will respond to sudden changes, such as clouds passing by, or closing the blinds.
- Testing will be simulation based. Takes a lot of time to test a physical testing environment such as a room.
- Surveys will also be employed to observe consumer reactions to the lights.
- We will build a prototype office with dimensions 5Lx4Wx5H to test the capabilities of our system.

Time and Project Management

Timeframe	Deliverables
November 2011	 Determine current power consumption of a Howard University Determine location to test our system
Nov-Dec	 Determine how best to implement the light sensors given the specifics of our test room. Test compatibility of ATOM board with BS2 software
December	 Being testing the different components & documenting compatibility issues Determine algorithm for the digital interface
Jan-March	 Begin testing the components of and document any issues that may arise Sketch design possibilities for digital interface Commence construction of the system beginning with the sensors and microprocessors.
April	 Present completed and fully functional system for Intel Cup and EECE department

Cost and Resources

Budget

Device	Quantity	Cost
Relay(Switching Voltage 240VAC)	2	\$14.00
Ambient Light Sensor (Avago Technologies)	10	\$9.35
Basic Stamp 2 Module	3	\$299.98
Intel ATOM Board	1-2	Free
Simulation software	1	Free
	Total	\$323.33

Conclusion

- The system will help save energy and improve the work rate of whoever uses the system
- The user friendly interface should help keep track of what's going on within the system and notify of how many energy is actually being saved
- The room would always have an intensity equivalent 30 foot candles.
- Our Lighting Efficiency System design solution will accomplish our goal, please building administrators with a lower electricity bill and please the users as they would have better conditions conducive to working.

Questions

