



# Green Lighting Project

#### **Team: Green Lighting**

Shamir Saddler Ameer Baker Chidi Ekeocha



### Intel Cup Competition



- The Cornell Cup USA, presented by Intel, is a collegelevel embedded design competition
- Re-enforces the importance of the design process, finding and defining the problem's real need, and validating that that need is met
- •1 of 24 teams chosen across the nation.



• Competition May 5, 2012 In Orlado Fl.



#### Background



- Lights have revolutionized the way we work, live and play
- About 5% of the energy used in the nation is used for lighting homes, buildings and streets
- Lighting is about 25% of a building's electrical use, therefore efficient lighting can save a lot of money
- Natural Lighting creates a better work environment and in turn better work quality



#### Problem Formulation



- Use natural light to supplement the artificial light sources in the work environment.
- How to minimize energy consumption in a room while simultaneously creating a productive work environment.
- System will demonstrate how productivity is maintained and the amount a selected institution can save by using our design.







### Problem Formulation (Cont)



- Design: the system is so discrete it is not readily recognizable
- Implementation: the system canread the intensity of light coming into a room and vary the amount of light being distributed throughout out the room, or turn off the affected unnecessary lights.
- Consumer: the system will could cut the respective institutions energy expenses by about 5- 10%



Problem Definition Research Implementation Testing



### Solution Approaches



- Comprised of the application of many of the available light energy control resources that available today.
- This can be achieved using the sun's energy to complement the room's overall intensity at all times of day.
- System can work with the available light intensity from the sun and maintain the room's intensity at or about 30 foot candles if the sunlight is inadequate.
- Depending on the intensity of light received from outside, the lights are systematically brightened or shut off completely to save energy.



Problem Definition

Research

**Implementation** 

**Testing** 



# Circuit Solution Approach





#### Test Environment/Demo

Room model designs considered.











Problem Definition

Research

Implementation

Testing

opt.info



#### Sensor Arrangements Considered





#### Text Box Design

#### Final test box design













### Text Box Design















### One Light Bulb Model



 In Order to test our equipment and code, we employ a onelight bulb model. i.e. One light bulb, One sensor, and One I/O board.







#### Complete Circuit Outline





Complete Circuit



Circuit During LED test



#### Arduino Code (Pseudo)

```
1
     //This method is called when the board is turned On.
     void Setup()
    //The Digital resistor we are using has 2 channels/resistors
     //So we only need 3 pins
7
     Open Digital Pins {0,1,2} as OUTPUT; //This sets the corresponding pins as select/output
     SPI.Begin(); //This Method initializes the Serial Peripheral Interface
9
     Serial.Begin(9600); //Sets up USB serial out with BAUD rate 9600
10
11
12
      //This method is called several times a second for
13
      //the duration of the time the device is ON
14
     void Loop()
15 - {
16
      //Sensors
17
      Analog Read{Pin0 - Pin6};
18
      Serial.Print{Analog Read};
19
20
     //LEDs
21
      Analog Read{Pin0 - Pin6};
22
      Serial.Print{Analog Read};
23
24
      //Read Resistor steps from Serial, and Set resistor value
25
      Value = Serial.Read();
26
      Digital Port Write (Value);
27
28
29
      Print Format = "<s Value Device number>"
```



# Flow Chart (Arduino)





### Java (Atom) Code (Pseudo)

```
2 //This method is called when the program is rum
    void Setup()
 4
    □ {
         Open Serial Connection (Port) : // Open a connection to selected port
         Setup SQL Connection();//Setup connecction to SQL database
 7
 8
 9
     //Similar to the Loop() function in Arduino
10
     //This method is called whenever the serial buffer is filled
11
     void SerialEvent()
12
13
         Read Data();//Reads the data in the buffer
14
         Write Data();
        //----
15
16
        //Resistor Behavior Code goes Here
17
18
20
21
22
     //Returns a string with the Data Or stores it
23
    //directly into the Database
24
     Read Data()
25
    F €
26
     Value = Read Until("\n"); // Reads the buffer until a newline
     Interprete Value ("<type Value Device");//Interpretes the Data based agreed format
28
     Store into DB();//Stores data into Database
29
30
31
     //This function handles writing data into Serial link
32
    Write Data()
     Write Format ("type Value Device");
35
```



# Flow Chart(Java)





## Java Application(Demo)





#### Cost and Resources

| Device                | Quantity | Cost     |
|-----------------------|----------|----------|
| Digital resistor      | 4        | \$8.00   |
| Ambient Light Sensors | 7        | \$97.02  |
| Arduino Mega 2560     | 1        | \$65.00  |
| Intel ATOM Board      | 3        | Provided |
| Test Environment      | 1        | \$230    |
| LED Bulbs             | 12       | \$24.00  |
|                       | Total    | \$424.02 |





#### Conclusion



- The system could assist in saving energy and compliment the work enivronment of whoever uses the system
- The user friendly interface helps to keep track of what's going on within the system.
- The room would always have a productive lighting environment at increased efficiency
- With further innovation our Lighting Efficiency System design solution will accomplish our goal of providing the consumer with a lower electricity bill and please the users as they would have better conditions conducive to working.



#### Question







