Swallowable Capsule

Brima Bah Kurubel Medemdemia Lauren King Bathiya Senevirathna

Topics

- Background
- Problem Statement
- Current Status of Art
- Solution Approach
- Tasks & Deliverables
- Conclusion

Background

- Over 3 million people suffer from Gastro-Intestinal (GI) disease in the U.S. every year
 - Internal bleeding
 - Hemorrhoids
 - Cancer

Source: Given Imaging

12/29/2011

Problem

- Need an endoscopic device to provide data about the GI tract
 - Information about acidity (pH), temperature, and pressure
 - Images

• Problem Definition:

• Design a compact swallowable capsule that provides images, temperature, pressure, and acidity data

Design Requirements

• Sensor Requirements:

Sensor	Time Interval (s)	Precision/Quality
Temperature	15	±0.5°C
Pressure	5	±3.6 mmHG
Acidity	2	±0.28
Image	0.5	QVGA

- Battery Life: 8 hours
- Capsule Size: 9 mm diameter, 23 mm length
- Compliance:
 - FDA Approval
 - Safe for human ingestion pass material toxicity & reliability tests
 - FCC Code of Federal Regulations: Title 47, Part 15 C

Current Status of Art

- Several swallowable capsule products in the market
 - Phillips iPill
 - PillCam
 - SmartPill
- Provide either imaging OR numerical data

Source: Toenniies et al. (Fig 1)

Current Status of Art

Product	Localization	рН	Temp.	Pressure	Power	Imaging
PillCam	RF	-	-	-	Battery	CMOS
EndoCapsule	RF	-	-	-	Battery	CCD
iPill	Time	X	X	-	Battery	-
NORIKA	-	-	-	-	Wireless	CCD
SmartPill	Time	X	X	X	Battery	-
CorTemp	-	-	X	-	Battery	-
MiRo	RF	-	-	-	Battery	CMOS

Adapted from Teonnies et al. (Table 1)

- Main Limitations:
 - Size
 - Battery Life
- Two part system:
 - Capsule
 - Receiver

- Capsule Shell
 - Material Silicon, plastic
- Sensors
 - Flush with capsule surface
 - pH antimony electrode, Ion-Sensitive Field Effect Transistor (ISFET)
 - Temperature thermistors
- Transmitter
 - Required throughput: 1.230 Mbps (2 fps, raw images)
 - Need Compression!

Source: Gonzalez-Guillaumin et al.

Transmitter

- Protocols:
 - ZigBee
 - Bluetooth Low Energy (BLE)

Product	EM-250	TI CC 2540
Protocol	ZigBee	BLE
Band	2.4 GHz	2.4 GHz
A/D Converter	Y	Y
Bitrate	250 kbps	1 Mbps
Modulation	O-QPSK	GFSK

- Receiver
 - Carried at patient's waist
 - RF receiver
 - Data stored on device
 - Minimum 4.3 GB capacity
 - Flash memory, USB stick
 - Data transferred to PC via USB

Tasks

- Temperature, pH, pressure sensors
 - Available parts
 - Power requirements
- Camera, image processing
 - Technology to use
 - Image compression
- RF transmission/receiving
 - Communication protocol
 - Receiver design
- Microprocessor
 - Programming microprocessor
- Power
 - Battery technologies
 - Size restraints

Timeline & Deliverables

Milestone	Scheduled Completion Date	
Initial proposal	September 2011	
Peer evaluations	November 2011	
Final proposal presentation	November 9, 2011	
Selection of design / Complete research	November 2011	
Finalize Design	December 2011	
Ordering of components/Parts	December 2011	
Commencement of the development of the design	January 2012	
Completion of project prototype	March 2012	
Testing of prototype	March 2012	
Documentation of project	March 2012	
Project Presentation	April 2012	

Estimated Budget

Component	Unit Price	Quantity	Total Cost
Temperature Sensor	\$20.00	1	\$20.00
Acidity Sensor	\$50.00	1	\$50.00
Pressure Sensor	\$20.00	1	\$20.00
Camera	\$20.00	1	\$20.00
Microprocessor	\$10.00	1	\$10.00
Battery	\$2.00	5	\$10.00
Receiver	\$50.00	1	\$50.00
Misc.	\$50.00	1	\$50.00
Manufacturing	\$220.00	1	\$220.00
		Total	\$450.00

Conclusion

- **Goal**: To provide images and environmental data of GI tract in a single package
- Design: Sensors, Processor/Transmitter SoC, Receiver
- Project is feasible
 - Have qualifications & knowledge
 - Technology exists

Thank you for listening!

Any Questions?