

Pedometer-type Energy Harvester

Bodunrin Jawando

Dhanushka Fernando

Illium William

March 2011 | Senior Design Project | Howard University

WWW.MWFTR.COM

Outline

- Introduction
- Problem Statement
- Design Requirements
- Solution Approach
- Project Management
- Project Update
- Future Work
- Questions

Introduction

- The need for environmentally friendly energy solutions is the major driver for a system like the Pedometer Energy Harvester
- The PEH harnesses energy from the bodies of young/active persons for use as a power source

Problem Statement

Design a PEH that:

- is portable
- detects and converts human motion into electrical energy
- stores harvested energy for use in recharging electrical accessories

Design Requirements

The PEH should:

- Generate 5Vdc @50 100mA (or 12V version)
- Charge battery up to 5 WHr
- Operating Temp: -10 40 Celsius
- Deliver Power: Nominal to a USB device, Large to battery reserve
- Provide external indicator of power condition

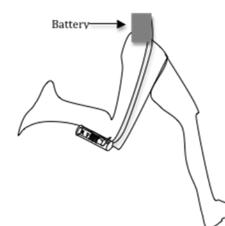
Current Status of Art

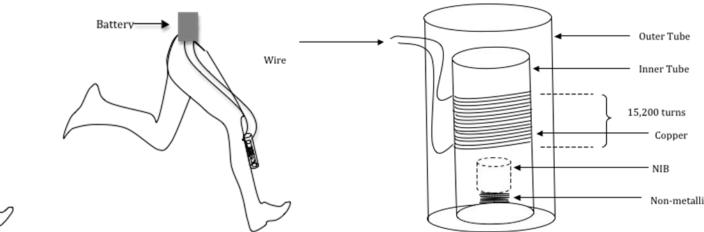
Sanyo's Pedometer Charger

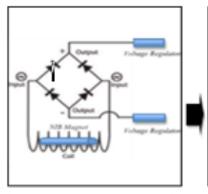
Ugly Sneakers Power
 Generator

Current Status of Art

• Knee Brace


- Nominal power output:
- Maximum power output:
- Effort Level setting:
- Output voltage:
- Maximum output current:
- Operating temperature:
- Storage temperature:

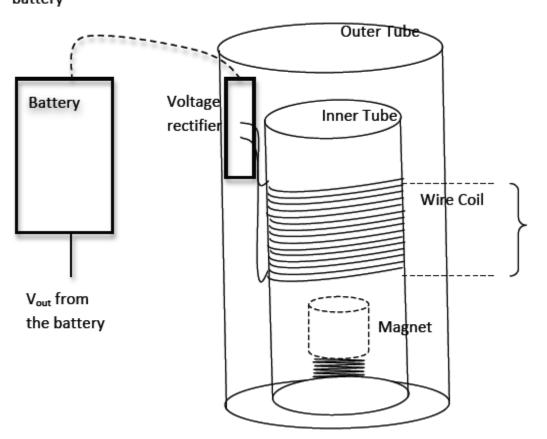

8-14W (1.5m/s walking sped) 25W (15 degree down slope) 10 levels 5V to 16.8V (2 to 4 Li Ion cells) 5A -20C to + 50C -40C to + 70C



- Using Faraday's Law of Induction, we intend to use a magnet that passes through a metal coil which, when you move, induces voltage in the coil generating electricity
- The generated electric energy will then be stored in a rechargeable battery for use by the owner
- An adapter will be added at the other end of the battery for whatever suitable connector the user desires

Electronic devices

Transmission Circuit


Rechargeable Battery

Multiple outlets for charging devices 9

10

V_{in} to the battery

 Alternative Solution: Series Combination of Tubes

Pros

- More redundant than the single tube approach.
 One tube can act as a failover for the other
 Cons
- More expensive
- Heavy

Alternative Solution: Toroidal Coil generator
 Pros

- Require less turns of coil
- Continuous flow of current

Cons

- Time to construct
- Less Practical

Decision Matrix

⊕					
	Selection Criteria	Weight	Primary Solution	Several Tubes	<u>Toroid</u> Tube
	Weight	5	3	1	4
	Cost	5	4	2	2
	Feasible	5	4	4	1
	User friendly	5	4	3	1
	Total	25	15	10	8

Project Management

Deliverables

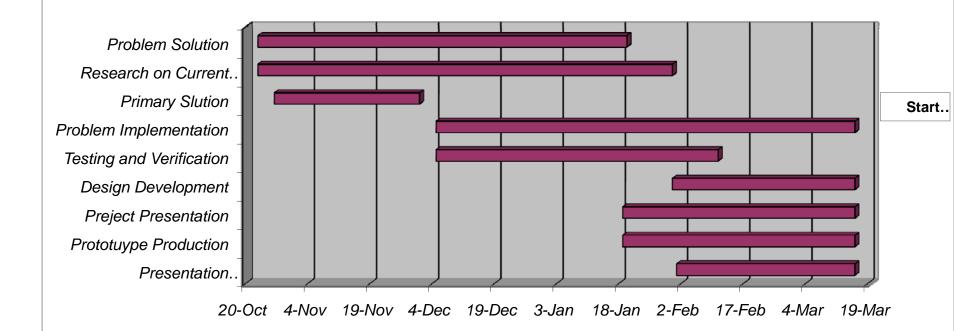
After completion of this project, we expect to meet the specified requirements set forth by Northrop Grumman:

- Detect & convert human motion into usable electrical energy
- Provide a portable power source that delivers power, nominal to USB device, large to battery reserve

Project Management

Costs

•	Magnets	\$10
•	Wires	\$200
•	Tubes	\$48
•	Circuit Elements	\$20
•	Battery	\$80


Total Cost = \$358

Project Management

16

PEH Gantt Chart

Project Update

Gauge	Diam. In Mils	Lbs. per	Ohms per	Feet per	Ampacity	Ohms	
No	1mil=1/1000 inch	1000 ft.	lb.	lb.		per lb.	
26	15.94	0.7692	53.061	1300	0.5082	53.061	
27	14.19	0.6100	84.371	1639	0.4030	84.371	
29	11.26	0.3836	213.31	2607	0.2535	213.31	

Table 1: Wire gage number and their specifications

Supporting Information

Coil Type	Current (A)	Voltage (V)	Power (W)
100	0.02	0.1	0.002
300	0.06	0.15	0.009
1000	0.09	0.2	0.018

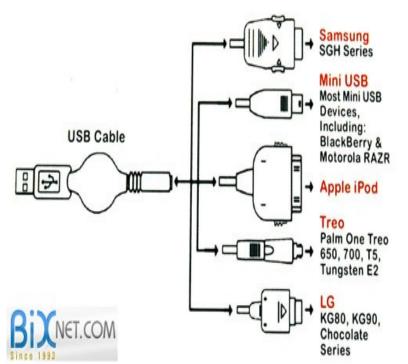
Table 1: Results using Faraday's Electromagnetic Induction Apparatus

Coil Type	Current (A)	Voltage (V)	Power (W)
100	0.03	0.15	0.0045
300	0.08	0.2	0.016
1000	0.1	0.3	0.03

Table 2: Results using magnet from flashlight with kit

Project Update

	Battery Type:
	Capacity:
	Output Voltage:
	Output Current:
	Charging Mode:
	Chargeing Time:
	Operating Temperature:
	Storage & Transp. Temp.:
	Case Material:
	Dimensions:
	Weight:
	Cycle Life:
Ę	Fuel Gauge LED:
Α	
fu	Charging Indicator:


Lithium-ion Cell 3400mAh 5.5v+/-0.2v **700mA max** cc/cv 6 hours -10 ~ 45C -20 ~ 45C Aluminum 100x62x13mm 120g 500 cycles 5 level LED indicator II 5 LEDs are lit when

LEDS are in when Illy charged. Leftmose LED flashes when charging is required

Project Update

Future Work

- Order battery
- Order circuit components e.g diodes
- Continue experimenting with parts already purchased
- Continue to provide periodic progress reports to our advisors

Questions

