Senior Design Project Topics

with Risk & Impact Ratings

EECE401 Senior Design I

Dr. Charles Kim

Department of Electrical and Computer Engineering Howard University

Fall 2010

Charles Kim - Howard University

1

Design Project Topics

- Northrop Grumman
 - Autonomous Buoy Energy System (ABES)
 - Portable Perimeter Detection and Monitoring (PopDAM)
 - •Paramilitary Ruggedized Solar Energy Harvest (PaRSEH)
 - Pedometer Energy Harvester and USB/CL Power Hub (PEHUP)
- Honeywell
 - •TBD
- •FERC or Consumer Energy
 - •TBD
- Students
 - •Gerard Spivey (J-Bert)
 - •Alix Martin (Defense against common mode failure)

Charles Kim – Howard University

Autonomous Buoy Energy Systems A(BES)

- Background
 - UUV's frequent Use in Commercial, , military, and research purposes
 - Extension of mission lengths is needed
 - A method of harnessing energy while deployed is required
- Problem (Objectives)
 - Design, build, and test a transfer of energy system from a buoy energy source to anchored UUV
 - Components
 - Power conversion

 - Budy tether interface
 Backup battery
 Communication between anchored UUV and the energy source substation

Requirements

- Deliver 28Vdc from solar panels to a battery capacity of 100WHr in less than 24 hours
- Maintain electrical integrity in underwater environment
- **Deliverables**
 - Detailed design with modeling and simulation
 - Prototype
- External Project Advisor
 - Gregory West and Allen Kelly

Charles Kim - Howard University

Portable Perimeter Detection and Monitoring (PopDAM)

- **Background**
 - Blind spot detection and recognition of friend vs foe in closed perimeter for soldiers
 - Proximity alarms and monitors in unknown neighborhood would reduce casualties
- Problem (Objectives)
 - Present plan and produce some portion of demonstration prototype for a back-pack contained wider proximity alarm and monitoring system

 - Integration of established technologies
 - Power consumption must be minimized or solar powered

Requirements

- A suite of sensors for various forms of detection (motion, sound, temp, vision,
- Detection range: 15 30 ft
- Operating Temp: -10 25 Celsius
- Night time image detection
- Classification of friend and foe
- Wireless communication
- Batter Power: 12Vdc, 100AHr
- **Deliverables**
 - Demonstration Prototype
- **External Project Manager**
 - Gregory West/Allen Kelly

Charles Kim - Howard University

Paramilitary Ruggedized Solar Energy Harvest (PaRSEH)

- Background
 - A handy recharging system from solar power for electronic devices such as GPS, Night vision goggles, and communication equipment
- Problem (Objectives)
 - Rugged solar energy harvesting and charging system
 - Management of power: available sunlight vs stored power conditions
 - Charging capacity indicator
- Requirement
 - Rugged, quick deployable solar collector with nominal battery reserve
 - Multiport Power Output with priority selection of port
 - Operating Temp: -10 40 Celsius
 - Power Outputs: 5V USB, 12V Automobile Jack, Rechargeable for C, D, AA, and AAA cell sizes.
 - Power Management and Indicator
- Deliverables
 - Design of the system and demonstration prototype
- External Advisor
 - Gregory West and/or Allen Kelly

Charles Kim - Howard University

5

Pedometer Energy Harvester and USB/CL Power Hub (PEHUP)

- Background
 - Body power from pedometer type energy sources presents possibilities as energy harvest for the active and young
- Problem (Objectives)
 - Energy harvest from body power for recharging electrical accessories
 - Portable Power source
 - Detect and convert human motion into usable electrical energy
- Requirements
 - Generation of 5Vdc @50 100mA (or 12V version)
 - Charge battery up to 5 WHr
 - Operating Temp: -10 40 Celsius
 - Delivery of Power: Nominal to a USB device, Large to battery reserve
 - Provide enough external indicator of power condition
- Deliverables
 - Demonstration prototype with 5V USB or 12V Cigarette Outlet
- External Advisor
- Charles Kim Howard University

6

- Gregory West and/or Allen Kelly

Cheap J-Bert

- Background
 - A cheaper version of a system is needed that has the ability to determine the confidence level (via "bit error rate" / "eye pattern")of a receiver of a noise added ("jitter")transmission line under LVDS technology.
- Problem (Objectives)
 - Full spec systems are expensive
 - A simple LVDS check may be possible with a cheaper system
- Requirements
 - Identify mismatch bits under white noised transmission line with LVDS specification (probability?)
 - Capable of generating and transmitting pseudo-random noise (quantifiable measure?) through the loop in the data rate of (???) Mbps or Gbps
- Deliverables
 - A simple LVDS check system
 - Simulation Results and Comparison with the implemented system (?)
- External Advisor

Charles Kim - Howard University

7

Defense against Common Mode Failure

- Background
 - Safety Critical Application (as in Digital Instrumentation and Control in NPT) needs redundancy, diversity, separation, and indepence
 - Hardware/Software Diversity is needed to defeat the common mode failures
- Problem (Objectives)
 - A training and education system for hardware/software diversity
- Requirements
 - At least 2 types of hardware with different architectures
 - At least 2 principles of software for the same functionality
 - At least 2 methods of causing common mode failures
- Deliverables
 - Training and education system
- External Advisor

Charles Kim – Howard University

Lunar Satellite (LunaSat)

Background

- A customer is interested in flying a simple, low-cost spacecraft (call it LunaSat) near the Moon.
- The attitude of a spacecraft is its orientation in space, or more precisely, is a transformation between a body frame and a reference frame.

Problem (Objectives)

- A simple system to control and determine the attitude of LunaSat is needed.
- Design such a system, and demonstrate the design on the ground using simulations and/or a prototype

Requirements

- Can't use magnetic field or GPS (near the Moon).
- Use Sun, Star, Earth, and/or Moon observations.
- Only very coarse accuracy needed ... several degrees.
- Should not need simultaneous observations

Deliverables

- Simulation and/or prototype for demonstration
- External Advisor
 - Dr. John Rowe, Honeywell

Charles Kim - Howard University

9

Risk Rating

Risk Impact

- How does the project impose risks in technical, cost, and schedule aspects in completing and delivering.
- How am I prepared for the project's technical requirements?
- How is the project well defined and quantified?
- How does the project positively/negatively impact the technical aspect of problem solving and design experience, and reputation and future growth?

Rating

- 3: High Consequence
- 2: Moderate Consequence
- 1: Low Consequence
- 0: No Consequence

Project Evaluation Chart

Charles Kim – Howard University

Projects and Teams

- 1. Development of a Protable Perimeter Detection and Monitoring System (Elijah, Monique, and Nosakhare)
- 2. Development of a Pedometer Energy Harvester (Fernando, Jawando)
- 3. Development of an Economical Transmission Line Bit Error Rate Tester (Gerard, Ode)
- 4. Development of a Training System for Defense against Common Mode Failure (Alix, Jaglal, King)

Order of Business

- Initial Design Requirement (Oct 27 class)
 - Presentation
 - Issues
 - Compromises
- Current State of Arts (Nov 3)
- Initial Solution Approach (Nov 3)
 - Presentation of above 2 subjects (Nov 3 class)
- Writing a proposal (by Nov 10 class)
- Keep working on Solution (through the semester)
- Proposal Presentation (W December 1, 2010) before internal/external reviewers
- Proposal Submission