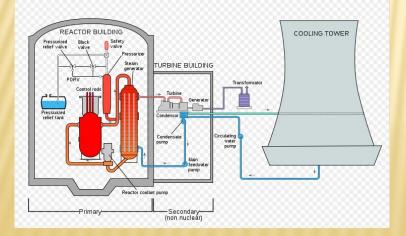
Howard University Department of Electrical and Computer Engineering

DEVELOPMENT OF A TRAINING SYSTEM FOR DEFENSE AGAINST COMMON MODE FAILURE

Progress Presentation

Alix Martin Don King II Ravindranath Jaglal


March 9th, 2011

OUTLINE

- × Background
- Problem Formulation
- × Current State of Art
- × Design Requirements
- × Scenario for Kit
- × Alternative Designs
 - + Design A "One Kit"
 - + Design B "Two Levels"
 - + Design C "Simplistic"
- × Design Selection
- Implementation Plan
- × Milestones Achieved
- × Conclusion & Future Work

BACKGROUND

- + Three Mile Island melt down that took place in Dauphin County, Pennsylvania.
- + The most significant accident in American history in commercial nuclear power generating industry.
- + Failures in the non-nuclear system.
- + Followed by a stuck-open pilot-operated relief valve (PORV)
- The situation spiral out of control because of the combination of mechanical and human errors.

BACKGROUND

× What is Common Mode Failure?

 Common Mode Failure is a phenomenon that occurs when events are not statistically independent. That is, one event causes multiple systems to fail. e.g. Power Spikes, Water, Magnetism, Temperature Variation, and Software Errors.

BACKGROUND


× Why Hardware Diversity?

+ Intel, AMD, ARM Cortex

+ PC, MAC

PROBLEM FORMULATION

× Problem Definition

+ To develop a kit that would assist in educating engineering students in the area of Common Mode Failure.

CURRENT STATE OF ART

- **×** A training kit for teaching CMF is not currently on the market.
- There is no single course in any university that educate students in CMF in both hardware and software applications.
- There are many institutions that lecture on CMF in hardware using FPGAs,
 PICs, and PLDs.
- Also a lot of research is being done on CMF in software, and hence there exist graduate level courses that lecture on CMF in software applications.

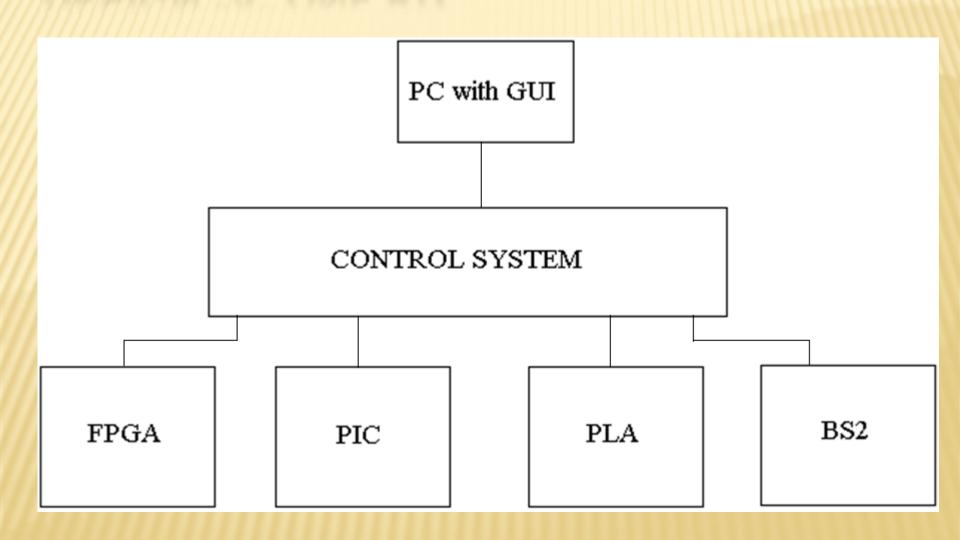
DESIGN REQUIREMENTS

> Designed for engineering students

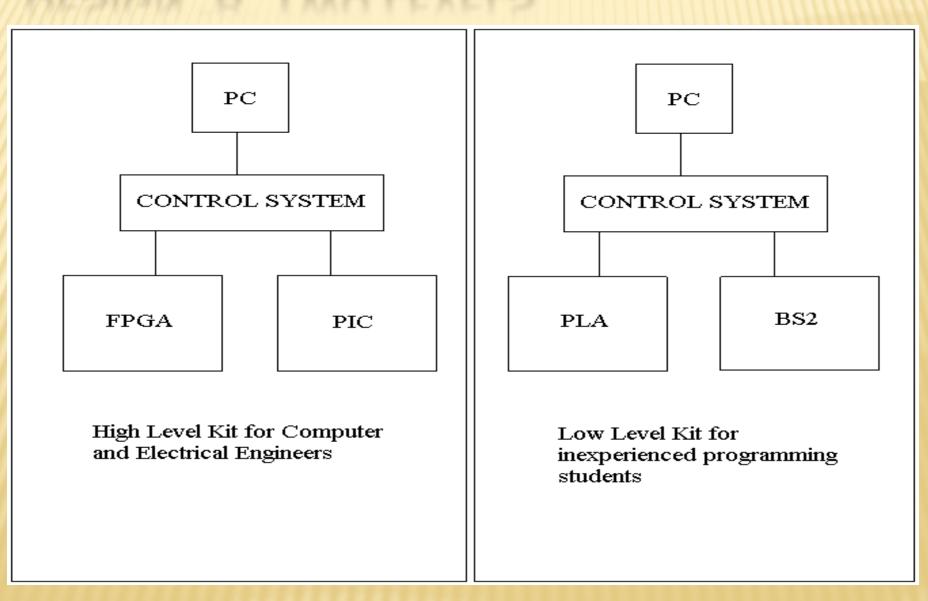
× Common Mode Failure Test

× High Mobility

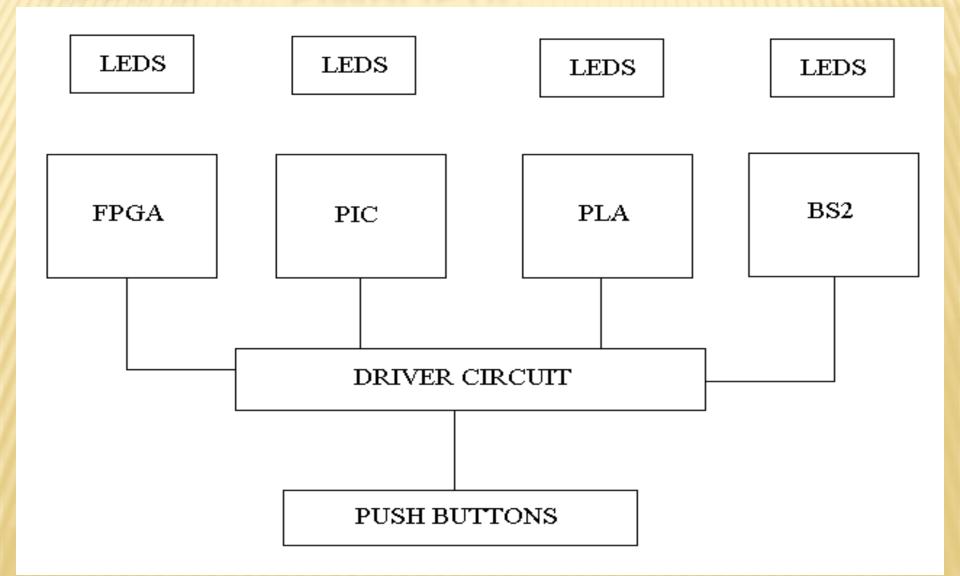
× Safety Regulations


SCENARIO

- * The conditions to be monitored are pressure, temperature, water level, and thermal power.
- × 0 is normal 1 is abnormal
- * When the LED's are 0 there is no action being taken, but when the LED's are 1 it means the power plant would be performing a certain action.
- LED1 = Inject More Coolant
- LED2 = Containment Spray System
- x LED3 = Insert Control Rods into Reactor
- LED4 = Plant Shutdown


SCENARIO

Pressure	Temperature	Water Level	Power	LED1 Inject More Coolant	LED2 Containment Spray System	LED3 Insert Control Rods into Reactor	LED4 Plant Shutdown
0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	1


DESIGN "A" ONE KIT

DESIGN "B" TWO LEVELS

DESIGN "C" SIMPLISTIC

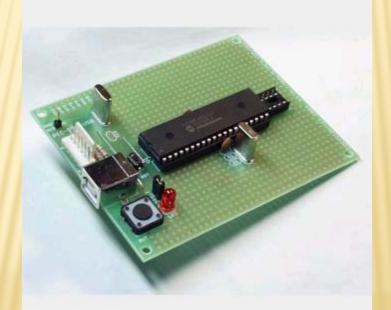
DESIGN SELECTION

Design	Mobility	Student Comfort	Teacher Comfort	Learning Curve	Price	Difficultly to Construct	Total (30)
А	5	3	5	2	1	2	18
В	4	5	4	4	3	3	23
С	2	5	1	5	3	5	21

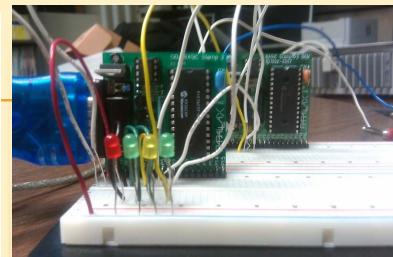
IMPLEMENTATION PLAN

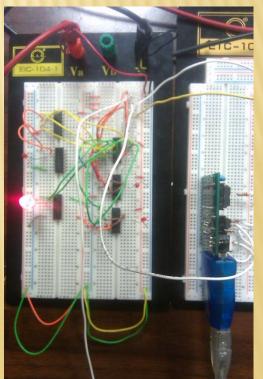
Objective	Due Date			
Acquire Computer Architectures	1/19/2011			
Housing for Architectures	2/2/2011			
Design of Power Supply	2/2/2011			
CMF Application	2/23/2011			
Prototype Completion	3/9/2011			
Programming of Computing Systems	3/9/2011			
Final Testing	3/16/2011			

IMPLEMENTATION PLAN


Final Testing Programming of Computing Systems Prototype Completion **CMF** Application **Design of Power Supply** Housing for Architectures Acquire Computer Architectures

PROGRESS


- × Controller
- × BS2
- × PLA
- × PIC
- × FPGA


FPGA

PIC Microcontroller

BS2 & Controller

PLA & Controller

PROGRESS

CONCLUSION & FUTURE WORK

× Power supply

Housing for Computing Systems

× Test complete kit for response to input

× Develop Graphical User Interface

QUESTIONS

