Development of an economical Bit Error Rate Tester (BERT)

March 9, 2011

Gerard Spivey Oludotun Ode

Outline

- Introduction/background
- Problem Definition
- Design Requirements
- Solution Generation
- Top Design Selection
- Tasks and Deliverables
- Completed Tasks
- Tasks to be completed
- Timeline of Tasks

- Jitter-Bit Error Rate Tester (J-Bert) is an expensive machine used to test the receiver component of a transceiver device
- We are designing an economical version of the bert that can identify a confidence level of the receiver component

- J-Berts cost about (350K) and there are times when analysis can be done before requiring such an expensive system.
- Cause: Extremely High Levels of Accuracy and, exotic jitter injection methods drive of the cost of the device.

- A typical environment for a J-Bert:
 - A driver
 - An interconnect (transmission line)
 - A receiver
- The J-Bert is used to test the receiver

driver interconnect receiver

Picture From LVDS Transceiver device specification sheet by Linear Technologies

Industry Usage

J-BERT simplifies USB3 Receiver Characterization

Industry Usage

common-modeS.I. with 120 MHz sinewave

Figure: PCI Express 3.0 Receiver Test Setup with J-BERT N4903B

Industry Usage

TEST #3 Conditions:

Data Rate = 100 Mbps Cable Length = 5 meter PRBS Code = 2¹⁵ - 1 NRZ

For this test, the PRBS code applied to the four driver inputs was offset by four bits. This creates a random pattern between channels.

TEST #3 Results:

Total Seconds: 10,050 Total Bits: 4×10^{12} Errors = 0 Error Rate = $\leq 1 \times 10^{-12}$

- BER is a ratio between the number of bit errors transmitted and the number of bits received. $BER = \frac{N_{Err}}{N_{Err}}$
- You must determine a confidence level (CL) at which you would like to operate at. you must find out the number of bits you need to transmit based on your CL.

$$N_{bits} = \frac{-\ln(1-CL)}{BER}$$

• We then need to determine how much time we the device will needed to run in order to meet our BER and confidence level.

$$Time(seconds) = \frac{-\ln(1-CL)}{bps*BER}$$

Problem Definition

- Our objective is the development of an economical Bit Error Rate Tester (BERT) that has the ability to determine if the receiver component of the Device Under Test (DUT) is working satisfactorily.
- The signal must be transmitted through the LVDS Signal Specifications.

Current State of the Art

- The closest devices on the market to ours are the AGILENT BERT N4903A/B and the Tektronix BertScope are on the market.
- These are the complete BERT systems that cost 350K
 - Note: Our system is not meant to replace these, but to minimize their use

Test Conditions

- The testing setup for our test environment has been heavily explored and some methods have been determined. The setup is as follows:
- Transmitter with 100 Ohm termination
- Transmission Line with 100 Ohm differential impedance (SMA cables)
- Receiver with 100 Ohm termination

Tasks and Deliverables

<u>Deliverables:</u>

A working prototype which:

- Outputs a Bit Error Rate
- Outputs a status (Pass/Fail/Intermediate)
- Refreshes the BER and status displayed on the user interface at least every 15 seconds.
- Allows the user to start, pause, and restart the BERT

Design Implementation Choices

- The two options for our BERT implementation:
 - An FPGA based BERT
 - A microprocessor based BERT
- Two options for noise generation
 - AWGN
 - Johnston–Nyquist

Decision Matrix Microprocessor VS FPGA (BERT)

Decision	FPGA	Microprocessor
Usage 10	8	4
Ease of Generation	6	3
Speed 20	20	5
LVDS 25	19	3
Learning Curve 25	20	15
Cost 10	3	10
Total:	76	40

Decision Matrix AWGN VS Johnson-Nyquist Noise

Decision	AWGN	Johnson–Nyquist Noise
Usage 10	10	2
Ease of Generation	3	3
Model Accuracy 10	9	3
Total:	22	8

Engineering Approaches

 We propose an FPGA based Bit Error Rate tester which is composed of two main parts; the BERT; and the Additive White Gaussian Noise (AWGN) Generator.

Engineering Approaches

Engineering Approaches

Completed Tasks

Ordered and received the main FPGA Board that will be used as the BERT

Completed Tasks contd

- Consulted with Dr Dimian
 - Confirmed that our noise addition technique is, OK as long as our frequencies are within an appropriate range

Completed Tasks Contd

Create PRBS generator and Checker VHDL code

🖩 wave - default													
File Edit View Add Format	: Tools Window	- 01, (5	H 10 🛪	1	▶ !]]]	0 ns 🚔 🖭		0 m	_± ⊥= ٦← -	•F F m.	n : ⊡ ⊻ R - ∰		×
Messages	1				:								
🔶 /top/clk	0												
/top/dat	1												
/top/dat2 /top/comp1/clock	0 0												
/top/comp1/reset /top/comp1/datain	0 0												
/top/comp1/tx_data	1												
<pre>/top/comp1/lfsr_reg /top/comp1/lfsr_reg</pre>	000000011111111	00)0000	20000 20000)0000)(. (0000 (100	0 11100	1110 (1111.		211111 21111	21111 21111 21	<u>111 11111 11111</u>	<u> 11111 111</u>
/top/comp2/reset	0												
/top/comp2/tx_data /top/comp2/lfsr_reg	1 0010100111111111	01 (1010	20101 20010	1001)	1100 11110		1 0111	0011 (1001.)0100)0010	X1001 X1100	20110 21011 21:	101 (0110 (0011)0001)00
/top/comp3/clock /top/comp3/reset	0 0												
/top/comp3/shiftin /top/comp3/shiftout	1 0												
/top/comp3/lfsr_regs (10)	11111110000 1	11	<u>11111 1</u> 1111			. (1111111111	1		0111	20011 21001	20100 21010 20:	101 20010 21001	<u> 11100 111</u>
(9)	1												
	1												
(5)	1												
(4) (3)	1 0												
(2)	0 0												
└_� (0) � /top/ledo	0 0												
Now	10.05		l					hannahanna					/
Cursor 1	0.897 ns	0.6 ns	0.8 ns	1 n .897 ns	s i	2 hs	1.4 ns	1.6 ns	1.8 ns	2 ns	2.2 ns	2.4 ns 2.	6 NS
532 ps to 2762 ps	Now: 10 ns	Delta: 2											1

Current Issues

Minute but detailed soldering must be done to our board in order to use the SMA component

- Spoke with Altera (FPGA company) about rework
- Altera site in MD is sales only
- Forwarded to the FAE, dropped off board for rework
- Will not hold up progress for noise and receiver building

Proof of Concept 1

POC 1 contd

Tasks and Timeline

No	Task	Estimated Date	Actual Date
1	Look into current state of art	10/27/2010	10/27/2010
2	Select most appropriate solution	11/03/2010	11/03/2010
3	Consult with faculty on initial solution	11/03/2010	11/03/2010
4	1 st Draft of proposal writing	11/10/2010	11/10/2010
5	Submission of 1 st draft of proposal	11/17/2010	11/17/2010
6	Revision of proposal	11/17/2010	11/17/2010
7	Submission of proposal	12/01/2010	12/01/2010

Tasks and Timeline

No	Task	Estimated Date	Actual Date
8	Seek applicable hardware	12/05/2010	12/05/2010
9	Commence development of design	1/15/2011	1/15/2011
10	Order remaining components	3/04/2011	3/08/2011
11	Improve PRBS code	3/05/2011	In progress
12	Create AWGN code	3/07/2011	In progress
13	Build System	3/08/2011	In progress
14	Continuous improvement and testing	4/10/2011	In progress
15	ECE day presentation	4/15/2011	In progress

Total Cost

- Signal Integrity FPGA \$400
- XCVR/CDR \$75
- 8 SMA cables \$95
- Others \$45

• Total \$615

References

- [1] Agilent Technologies, How do I measure Bit Error Rate (BER) to a given confidence level, Palo Alto, California
- [2] IEEE, IEEE Standard for Low–Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI) IEEE Std 1596.3–1996
- [3] Linear Technologies, Differential Driver and Receiver Pair LTC491 Device Manual
- [4] Yongquan Fan, Zeljko Zilic, and Man Wah Chiang, A Versatile High Speed Bit Error Rate Testing Scheme