Lunar Satellite Attitude Determination System

SENIOR DESIGN
PROPOSAL PRESENTATION

TEAM EPOCH
KUPOLUYI, TOLULOPE (LEAD DEVELOPER)
SONOIKI, OLUWAYEMISI (LEAD RESEARCHER)
WARREN, DANAH (PROJECT MANAGER)

NOVEMBER 13, 2009
Outline

1. Background
2. Problem Formulation
3. Current Status of Art
4. Solution Approaches
5. Tasks
6. Project Management
7. Verification Plan & Deliverables
8. Costs and Resources
9. Conclusion
10. Questions
Background: Lunar Satellites

Manned (Orbital and suborbital) & Unmanned (Earth Orbit and Lunar Orbit)
Lunar Satellites include:

- **Clementine**—US Navy mission, orbited Moon, detected hydrogen at the poles
- **Luna 1**—first lunar flyby
- **Luna 2**—first lunar impact
- **Luna 3**—first images of lunar far side
- **Luna 9**—first soft landing on the Moon
- **Luna 10**—first lunar orbiter
- **Luna 16**—first unmanned lunar sample retrieval
- **Lunar Orbiter**—very successful series of lunar mapping spacecraft
- **Lunar Prospector**—confirmed detection of hydrogen at the lunar poles
- **SMART-1** ESA—Lunar Impact
- **Surveyor**—first USA soft lander
- **Chandrayaan 1**—first Indian Lunar mission
Background: Attitude Determination

- **Spacecraft**: A vehicle intended to be launched into space.
- **Attitude**: Orientation in space or transformation between a body frame and a reference frame.
- **Attitude determination**: Computing the spacecraft attitude from optical sensor measurements and ephemeris information. (Sun, Stars, Earth, Moon)

WHY?

Torques (Disturbance)

- Gravity gradient
- Solar radiation
- Atmospheric drag
- Magnetic torque
- Internal Forces
Closed loop (actuators controlled on board), Active (uses electricity or propellant).
Problem Formulation

- Customer wants to fly a simple, low-cost spacecraft near the Moon.
- A simple system to determine the attitude is needed.
- Design system, Build prototype, **Test prototype on Ground**.
- No magnetic field or GPS.
- Sun and/or Moon observations (not simultaneous)
- Coarse degree of accuracy needed
- Onboard Processing (real mission), External computer Processing (prototype).
Current Status of Art

- **Deterministic Method**
 - Measurements of two vectors in body frame
 - Know these vectors in the reference frame
 - Ephemeris, calculations (need to know position in orbit)
 - Find the rotation matrix, i.e. the attitude

- **Estimation Method**
 - Measurements of one vector in body frame
 - Recursive process
 - State estimation
 - Facilitated by gyros measurements

- **Example**
 LRO- Lunar Reconnaissance Orbiter
Current Status of Art

Current Systems’ main focus (Advantage)
- Null rotation rates to prevent data corruption

Achieved by
- Rate Sensors
- Sun Sensors
- Occasional Star tracker usage
- Reaction Wheels

Disadvantage
Sequential Estimation (Iterative), Required Algorithm (Complex)
Solution Approach

Impractical to use a real satellite. Hence the following:

- Earth Rotation (orbital motion)
- Servos or stepper motors (attitude motion)
- Box mounted on a tripod with a simple Sun or Moon optical sensor
- Control loop driving a servo to track the Sun or Moon.
Attitude Representation

Representation of attitude

- **Frame of reference**
 - Inertial frame
 - Orbit frame

- **Give orientation with respect to that frame**
 - Euler Angles
 - Quaternion

Tasks

LUNASAT Timeline

- Needs: 0
- Topic/Problem Formulation: Start 1, Duration 2
- Problem Solving/Alternative Designs: Start 2, Duration 2
- Best Design/Implementation Plan, Evaluation Plan: Start 3, Duration 4
- Solution Implementation/Problem Solving: Start 7, Duration 2
- Solution Implementation/Evaluation: Start 9, Duration 7
- Test/Evaluation: Start 16, Duration 2
- Final Report: Start 18, Duration 2
- Final Presentation: Start 19, Duration 2
Project Management

Danah – Project Manager.
- Checks up on individual tasks
 - Enforce timelines
 - Keeps track of meeting minutes
- Makes sure that all individual assignments are combined together appropriately.

Oluwayemisi – Lead Researcher.
- Research problem and constraints
 - Implement solution

Tolulope – Lead Developer.
- Simulation
- Code writing
Verification Plan and Deliverables

- **Lunar Satellite Attitude Determination System**
 - Input: Optical Sensors
 - Control Unit: Computer
 - Output: Visual

- **Demonstration Environment**
 - Gravity
 - Random Torques
Cost and Resources

- Total Cost < $1000
- Sensors
- Computer
- Box (Container)
- Less than 10 watts of power.
Conclusion

- Attitude determination and control = key component of satellite inspection and orbital rendezvous missions
- Simple Attitude determination System is needed.
- Prototype would be tested on ground
- Prototype would make use of Optical Sensors
- Finish Date: March 2010