The mere formulation of a problem is far more essential than its solution, which may be merely a matter of mathematical or experimental skill. To raise new questions, new possibilities, to regard old problems from a new angle requires creative imagination and marks real advances in science. - Albert Einstein
Problem Formulation and Design Requirement

• Contents
 – Identify Needs
 – Define Problems
 – Current Status of Art
 – Identify Requirements

• Goals
 – Why need identification and problem definition are important
 – Strategies for gathering information about a problem
 – Develop a set of requirements for a problem
Problem Formulation

“The process of converting a dissatisfied situation into a well-understood problem”

- Understanding the problem Not finding solution to the problem
- Confusing Process relied upon intuition and hard (essential) “soft” skills.
- It’s result?
 - Need Identification and Problem Definition
 - Clear set of Requirements that can guide the design process through to its completion
Identifying Needs and Defining Problem

- **Identify Needs**
 - Dissatisfied situation
 - Need exists
 - Accept responsibility for corrective actions
 - “Attitude”?
 - Pioneer Mentality
 - Identifying a need and accepting responsibility for meeting it
 - Commit time, energy, other resources
 - Take risks
 - Willingness to adapt to situation and use available resources
 - Agent of change

- **No Rush to get a solution** after Needs Identified:
 - A wrong problem may be solved!
 - A symptom may be solved!
 - A part of the problem may be solved!
 - Or a partial solution is obtained
Problem Definition (Answer to “what is THE problem?”)

• Process of Defining Problem
 – Outline why the present situation is so dissatisfying
 – Asking questions about it
 – Comparing it to other situations that are familiar or where experience already exists
 – Gaining and understanding what caused it.
 – Then “one sentence problem statement” which includes every element

• Example
 – Needs from customer: “Actually, we need help figuring out how to fit everything in our room... it’s way too small for all of our stuff,”
 – Problem Definition: “We need to rearrange the contents of the room in such a way as to increase the efficiency of space usage and the convenience of item location”
Gathering Information

• Search for Current Status of Art
 – Patent Search
 – Web Search
 – Market

• Customer Interview
 – Customer Interview
 – Focus group interview
 – Objective is to define needs not to wring out a solution

• Gathering Information from Within the Design Team
 – Draw insight from previous experiences
 – Focus on customers needs NOT their own needs
 – Use Creativity
Creativity

• Unleashing Your Creativity- “How can one gain better access to his or her creative energy?”

• Creativity as Process
 – **Preparation**: Ground work. Background of the situation
 – **Incubation**: Taking time out. A rest period.
 – **Illumination**: Getting the answer (Aha!). The light bulb is on! Generate Ideas.
 – **Verification**: Does the idea work? Confronting and solving the practical problems.

Fill in the missing number.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>52</td>
<td>63</td>
<td>94</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Attributes of Creative People

• Discipline and Self-Confidence
• Adaptability and Resilience
• Conceptualization and Recall
• Flexibility and Fluency
• Visualization Ability
• Curiosity
• Comfort with Complexity
• Mental Agility, detachment, and playfulness
• Skeptical of Accepted Ideas
• Persistence and Capacity
• Informality
• Originality
Approaches for Creative Solution

• Powerful approaches
 – Brainstorming
 • Creation of Affinity Diagram
 • Creation of Cause-and-Effect Diagram
 – Synectics
 • “joining together different and seemingly irrelevant elements”
 • Analogy (Personal, Direct, Symbolic, Fantasy)
 – TRIZ
 – The Theory of Inventive Problem Solving
 – Systematic method based on the hypothesis that creative innovations follow universal principles which can be followed.
• A group process
• Popularized but misunderstood –
 – Not just “sitting down and thinking of ideas”
• A process with guiding principles
• Primary Goal
 – Generation of a large quantity of ideas
• Core Elements
 – No judgment of other people’s ideas is allowed
 – No judgment of your own ideas is allowed
 – Build onto the ideas of others
 – Welcome wild ideas
• People Involvement
 – Gather a diverse team of people
 – Designate a facilitator
 – Keep everyone involved
Team Idea Generation

• Team Idea-generation Strategy
 – Illuminate the first time individually: “generate ideas”
 – Incubate: “set the problem aside”
 – Presentation of individual ideas and build on them in group brainstorming
 – Incubate
 – Generate ideas as a team, and cycles of incubation-illumination- until….
Attention-Directing Tools

• Affinity Chart
 – Team has a big list of ideas (after brainstorming) and is not sure what to do with it
 – Grouping similar ideas into categories
• Fishbone Diagram
 – Team wants to identify causes for a problem
 • Examples:
 – What are all possible safety issues with the design?
 – Why are meetings always so unproductive?
Affinity Chart

• Groping Ideas into Categories
 – Generate Ideas
 – Sort the ideas
 – Create Headings
 – Draw an Affinity Diagram
Fishbone (Cause-and-Effect) Diagram

• The opposite of Affinity Chart
• Start from Categories and Ideas are found to fit within each category
 – Develop a problem statement
 – Construct an empty fishbone diagram with major cause categories identified
 – Generate ideas for each category
 – Identify most likely causes
Class Activity

- Form a Group (temporary)
- **Define the needs** and **Identify the problem** of “Method of E-Waste Reduction” by
 - Individual Idea Generation (10 minutes)
 - Internet Search Allowed
 - Brainstorming (10 minutes)
 - Affinity Chart OR Fishbone Diagram (10 min)
- **Submission** (10 min)
 - Description of (summarizing the chart or diagram)
 - Problem Definition --- 1 sentence
E-Waste Problem

• E-waste:
 – consumer and business electronic equipment that is near or at the end of its useful life
 – Certain components contain hazardous materials
 – The mantra of "Reduce, Reuse, Recycle"

• Fundamentally better way of solving the E-waste problem?
Homework

• Customer Needs:
 – “I am a disabled man and I have difficulties when I am reading to turn page of book.”

• Homework:
 – Identify the problem and
 – Gather information, and
 – Define the problem with 1 sentence.

• Due: Next Wednesday (before class starts)

• Submission:
 – Materials (notes, descriptions, drawing, etc)
 – One sentence problem definition (hardcopy)