Solution Implementation

Paper Design Into Reality

Charles Kim – Howard University

Objectives

- Steps of Solution Implementation
- Consideration for Implementation Planning
- Elements of Good Test Plan
- Strategy for Evaluation
- 3 C's
 - Commitment
 - Communication
 - Coordination

PLAN

- What's Involved
 - Conversion of Paper Design into Reality
 - Make sure the implemented design meets thedeign requirements
 - Efficient Process to do the work
- PLAN
 - "Perception of how to best operate in the future"
 - Impossible to know everything in advance
 - Opportunities and crises occur unexpectedly
 - "A road map to a goal"
 - Outline the future
 - Coordinate efforts
 - Manage the 3 key resources
 - Time
 - Personnel
 - Money

Detailed Plan for Implementation

- TIME
 - Details of Tasks to be executed
 - The Order the Tasks to be done
- PERSONNEL
 - Who will work on which tasks
- MONEY
 - Allocation of necessary financial resources
- Mutual Understanding of the PLAN

Key Points of Planning -1

- "DETAIL"
 - You can and should be very detailed with your plan
 - Instead of "construction"
 - Breakdown to much smaller tasks;
 - "order motor", "manufacture brackets", "align optical components"
 - Instead of "Coding"
 - Breakdown to much smaller modules;
 - "module A", "subroutines", "objects"
 - Timeline
 - Gant Chart
 - Spreadsheet
 - Project

Key Points of Planning -2

• "x3"

- Everything takes longer than you think even if you think it will take longer than you think.
 - Parts will not arrive when promised by suppliers
 - Building parts yourself will take longer than expected
 - Software coding takes much longer than you think
- Rule of Thumb
 - (estimated time) x 3
 - Time estimation is learned only through experience

Key Points of Planning - 3

- "SQUARE 1 ?"
 - What if you don't have enough money or time or people to complete the project?
 - Should have been figured out before
 - Iterate back and reconsider your design
 - Consider a small tweak to save time and money

Consideration when you plan for Implementation and Evaluation

- Focus
 - Produce (implement) high quality product quickly, economically, environmentfriendly, etc
- Design for Manufacturing & Assembly
- Design for Affordability
- Design for Reliability & Maintainability
- Design for Sustainability

Manufacturing Costs

Design for Manufacturing/Assembly

- Design for Manufacturing
 - Design for manufacturing is a development practice emphasizing manufacturing issues throughout the product development process.
 - Successful Design results in lower production cost without sacrificing product quality.

Design for Assembly

- Minimize parts count
- Maximize ease of handling parts
- Maximize ease of inserting parts

Design for Affordability

- Money always has an effect on design choices
 - Opportunity cost
 - Risk
 - Need to consider a full life cycle costs for a design, not just initial costs

Design for Reliability/Maintainability

- Reliability
 - probability that an item will perform its function under stated conditions of use and maintenance for a stated measure of time or distance.
 - probability of failure.
 - Mean Time Between Failures (MTBF)
 - Design Redundancy into systems
- Maintainability
 - probability that a failed component or system will be restored or repaired to a specific condition within a period of time.

Design for Sustainability

- Impacts
 - size & scope of impacts
- Environmental Impact of the Design
 - Air quality.
 - Water quality & consumption
 - Energy demands
 - Waste
 - Energy saving
 - Toxicity
- Consideration
 - Choose of design/implementation concept
 - Selection of parts
 - Selection of operating principle

IMPLEMENTATION

- Do it, Grab hold and make it move, Action, Carrying out the plan
- Hardest Step of the Design Process
 - Be prepared to work through
 - Adapt with situation

Tips for Success in Implementation

- Carefully defined problem -meeting the needs of the customer (Creating a design that meets the requirement, albeit after a few setbacks during implementation-is much better than creating a design that will not meet the requirements even if it is implemented perfectly)
- Selection of top design by thorough screening process the best combination to meet the requirements (Experiencing a few problems in the implementation of a clear concept is a much smaller problem than implementing a poor concept flawlessly)
- Better understanding of the design concept by analysis work (When problems arise, this better understanding is critical in effectively responding to the problems)

Alpha Testing

- Conduction of a pilot ("alpha") implementation of a Plan prior to complete commitment to it
- "Plan, Do, Check, Act"
 - **Plan** the implementation
 - **Do** it on a simplified or alpha prototype
 - Check to verify that the alpha prototype effectively accomplishes the desired results
 - Act on the plan by doing a full-scale implementation
- Advantages
 - Errors are relatively inexpensive
 - Adjustments are easy
 - Unexpected glitch does not close down the main operation

Evaluation Plan ("Test Plan")

• Procedures to evaluate a design against all of the design requirements

• 3 types of assessment

- Inspections
 - Without extensive testing or analysis
 - Materials are all on the FDA approved list?
 - Press/Release of function buttons
- Analyses
 - Used when testing is prohibited and inspection is not enough
 - Tall building \rightarrow scale model experimentation
 - Tank rupture \rightarrow calculation of volume
- Tests
 - Experimentations
 - Dropping 2-liter container
 - Vital sign monitored and alarmed if above threshold?
 - Content checking faster?
 - Emergency situation announced with a set time?
- Pick 2 or all 3 for evaluation
- Write Evaluation Plan (Test plans) against the measurable/quantifiable design requirements
 - Clear
 - Unambiguous
 - "Must be possible to hand the plan to someone not involved in the design project and have them successfully conduct the evaluation procedures"

Evaluation Reports

- Inspection, analysis, and test
- Act of measurement
- Reporting Evaluation Results
 - The background and requirements
 - The exploration of concepts
 - The Final design
 - Results from Testing
 - Summary of the design's Performance of each requirement
- When Design Requirements are Not Met (reasons)
 - Inherent flaws in the design
 - Problems with implementation/manufacturing
 - Unexpected user behavior
 - Artificially restrictive design requirement
- How to respond to unmet design requirements
 - Report what your evaluation indicates
 - Don't fudge data or ignore purposefully ignore some data to make your design look better than it is → Clear violation of engineer's ethical code
 - Documentation of deign steps would help in resolving the problem and explaining how you design a system that did not meet one or more requirements
 - Timely and appropriate communication with project managers and with customer.
 - Extra time into a design process for disappointing tests results

Assignment and Schedule of Feb/March (1/2)

Implementation Plan

- multiple"---ability"s must be considered and reflected in the design implementation plan
- Presentation File Submission
 - by Tuesday, Feb12,2008
- Class Presentation
 - on Wednesday, Feb13, 2008

• Progress Report

- Presentation File Submission
 - By Tuesday, Feb 26, 2008
- Class Presentation
 - On Wednesday, Feb 27, 2008

• Evaluation Plan

- Presentation File Submission
 - by Tuesday, Mar 4, 2008
- Class Presentation
 - On Wednesday, Mar 5, 2008

Assignment and Schedule of Feb/March (2/2)

• Project Progress Review Panel

Contents

- The background and requirements of the project
- Design Concept based on "---- ability"s
- Alternative Designs/Solutions
- Screening process
- The Final design
- Implementation Plan
- Evaluation Plan
- Current Status
- Plan for near future
- Presentation date TBA (Early March)
- Reviewers Faculty, Alumni Engineers, Industry Advisors