
Problem Solving

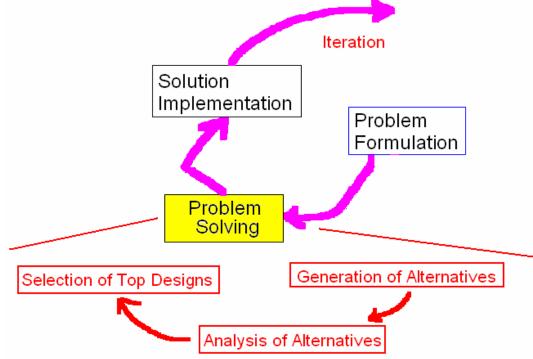
•Objectives:

-The steps of problem solving

-Strategies for generating, analyzing, and selecting alternatives

Side Bar

•Schedule


–January: Alternative Solutions are merged into THE solution

-February: Implementation of the Project

- -March: Continuation of the Implementation
- •Final Project Presentation (ECE Day)
 - -Thursday, April 17, 2008
 - -Blackburn Center
- •Class Policy
 - -More time to teams
 - -Progress Report Presentation

Problem Solving

- Problem Solving Process
 - Finding design solutions to a well-understood problem --- "Alternative Solution Generation"
 - Exploring and Analyzing those designs, and ---"Analysis of Alternatives"
 - Selecting the most promising design for implementation ---"Top Design"

Step 1: Generation of Alternatives

- The act of expansion all possible solutions
- Overcome the temptation to adopt the first idea
- Developing ideas individually and pooling them together generate more ideas
- Wide design space but true to the problem (functional requirements)
- Building onto existing solutions

Step 2: Analysis of Alternatives

- Screening
 - Remove those that do not meet the functional requirements ("concept screening")
- Further Analysis
 - Expert Opinion
 - Customer Preference
 - In-depth analysis of final candidates.
 - Modeling analytically with equations
 - Modeling with a simulation
 - Experimentation (with prototype)
 - Qualitative Reasoning

Analysis with Equations/Models

- Key Tools
 - Use equations to model a design before building it
- Examples
 - Cell Phone battery : Prediction of battery life (electrical analysis)
 - Airplane : Prediction of Lift-to-Drag ratio (Fluid mechanics analysis)
 - Power Plant: Prediction of the amount of sulfur in the emission for different combustion process or fuel types (Chemical and Thermal Analysis)
 - Database: Prediction of MB needed for data storage (Software Analysis)
 - Wireless Amplification: Prediction of Signal Power for wireless transmission (Signal Analysis)
- Cautions
 - Equations are representations of reality, not reality itself
 - Example: Diode models

Analysis with Computer Simulation

- When hand-derived equations are too complex
- Examples of Computer Simulation:
 - New wing shape for a plane
 - Temperature of computer chip for different cooling methods
 - Size for electrical component in a thermostat circuit used to turn on and off heating or cooling
 - Computer Simulation Tools for wireless communication?
- Weakness:
 - Assumption, restrictions, and limitations of computer simulation tools
 - You get what is modeled, not the reality

Simulation Tools – a Web page

Charles Kim – Howard University

Analysis with Experimentation

- Note: This is NOT the solution implementation. Still in the screening and selection process.
- Purpose of Experimentation/Prototyping
 - When Analysis is inadequate or model is too complex
- Cautions
 - Starting prototype without clear sense of learning from prototype → trial-end-error process that may not lead to a good design
 - Must be a rigorous process with clear sense of purpose driving experiments
 - Requires more time and money

Problems Observed

- The problems observed in the previous Senior Designs
 - No Needs, No Functional Requirements
 - No constraints, no standards, no regulations
 - No Alternative Designs
 - Simulation for Simulation's Sake
 - No effort of designing a circuit
 - Instead, let Internet do for them
 - A purchased kit replaced the design
 - No evaluation of the design

Selection of Top Designs

- Selection is decision-making
- Decision-making involves making tradeoffs
 - Multiple requirements
 - Conflicting requirements
 - Requirements of different importance
- Decision Tool
 - Decision Matrix

Using a Decision Matrix

- Step 1: Collect Information
- Step 2: Determine and Weight Attributes
- Step 3: Rate the Concepts
- Step 4: Rank the Concepts
- Step 5: Combine and Improve the Concepts
- Step 6: Resolve the Decision

		Bluetooth Development Boards								
		Teleca	a Comtec	Stones	treet One	C	GCT	А	tmel	
Selection			Weighted		Weighted	(a	Weighted		Weighted	
Criteria	Weight	Rating	Score	Rating		Rating	Score	Rating	Score	
Price	40	4	1.6	3	1.2	1	0.4	1	0.4	
Power	15	4	0.6	4	0.6	4	0.6	1	0.15	
Software	35	2	0.7	4	1.4	3	1.05	2	0.7	
Version	10	1	0.1	4	0.4	4	0.4	4	0.4	
Total Score			3		3.6		2.45		1.65	
	Rank		2		1		3		4	

Charles Kim – Howard University

Decision Matrix Exercise

Purchase of a used car										
CAR	COST	ODOMETER READING	MECHANIC'S RATING (1 - 10)	LOOKS (1 - 10)						
RED	\$2000	50,000	7	5						
BLACK	\$2500	40,000	5	6						
BLUE	\$3000	20,000	8	8						

- Which car do you buy under the following two different weight scenarios
 - You concerned about all four attributes equally.
 - You concerned about cost and fairly indifferent about looks. Mileage and the mechanic's ratings are equally important for you.